
1

Artificial Intelligence for Elastic Management and
Orchestration of 5G Networks

David M. Gutierrez-Estevez, Marco Gramaglia, Antonio De Domenico, Ghina Dandachi, Sina Khatibi, Dimitris
Tsolkas, Irina Balan, Andres Garcia-Saavedra, Uri Elzur, Yue Wang

c©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—The emergence of 5G enables a broad set of diversi-
fied and heterogeneous services with complex and potentially con-
flicting demands. For networks to be able to satisfy those needs,
a flexible, adaptable, and programmable architecture based on
network slicing is being proposed. Moreover, a softwarization
and cloudification of the communications networks is required,
where network functions (NFs) are being transformed from
programs running on dedicated hardware platforms to programs
running over a shared pool of computational and communication
resources. This architectural framework allows the introduction
of resource elasticity as a key means to make an efficient use of
the computational resources of 5G systems, but adds challenges
related to resource sharing and efficiency. In this paper, we
propose Artificial Intelligence (AI) as a built-in architectural
feature that allows the exploitation of the resource elasticity of
a 5G network. Building on the work of the recently formed
Experiential Network Intelligence (ENI) industry specification
group of the European Telecommunications Standards Institute
(ETSI) to embed an AI engine in the network, we describe a
novel taxonomy for learning mechanisms that target exploiting
the elasticity of the network as well as three different resource
elastic use cases leveraging AI. This work describes the basis of
a use case recently approved at ETSI ENI.

Index Terms—Resource elasticity, artificial intelligence, net-
work orchestration, slice lifecycle management ETSI ENI.

I. INTRODUCTION

In order to achieve the 5G Key Performance Indicators
(KPIs), the most relevant standardization bodies have already
defined the fundamental structure of the 5G architecture.
By leveraging Software Defined Networking (SDN), Network
Function Virtualization (NFV) and modularization, the new
architecture proposed by relevant organizations such as the
3rd Generation Partnership Project (3GPP) or the European
Telecommunications Standards Institute (ETSI) will natively
support the service diversity targeted by the future commercial
ecosystem [1], [2].

Besides the design of access and core functions, one of
the most challenging tasks to be accomplished is network
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management. That is, the transition from the rather fixed
operations support system/business support system (OSS /
BSS) capabilities, to a new hierarchy of elements that have
to deal with a very complex ecosystem of tenants, network
slices, and services, each one with different requirements.
In addition to management, 5G networks need orchestration
capabilities that in turn, are further divided into two main
categories: service orchestration and resource orchestration.
The former deals with the specific virtual network functions
(VNFs) that compose a network slice, while the latter takes
care of assigning resources to them. Tasks such as deciding
whether a VNF shall be shared across slices or across ten-
ants, their location in a possibly highly heterogeneous cloud
infrastructure, or the number of allocated CPU cores are just a
few examples of the Management and Orchestration (MANO)
layer responsibilities.

The design of an efficient multi-service, multi-slice, and
multi-tenant MANO entails challenges on both architectural
and algorithmic levels. Although the state-of-the-art MANO
already provides baseline functionality, high computational
resource efficiency is a real challenge today, and it is further
aggravated by the complexity introduced by a 5G architecture
based on the infrastructure sharing principle of network slic-
ing. Our assertion is that an optimized utilization of cloud
resources in the network, while providing desired Service
Level Agreement (SLA) under 5G network slicing, can only
be achieved if fast and very fine-grained AI algorithms are
designed and integrated into the network architecture itself.
This allows for a more cost-efficient network management
and orchestration by avoiding both resource under- and over-
provisioning, which are the main causes of service outages
and excessive expenditure, respectively.

Resource Elasticity

In order to solve the aforementioned problems, we have
introduced the concept of resource elasticity for networks [3].
In a nutshell, the resource elasticity of a communications
system can be defined as the ability to gracefully adapt to load
and other system changes in an automatic manner such that at
each point in time the available resources match the demand
as closely and efficiently as possible. Furthermore, temporal
and spatial traffic fluctuations in networks require efficient
network resource scaling: the network shall adapt its operation,
by eventually re-distributing the available resources as needed,
up to the point of gracefully scaling the network performance
to deal with excessive peak demand, avoiding thus abrupt
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Fig. 1: The ETSI ENI Architecture and its interaction with the ETSI NFV MANO framework

decays. Although elasticity in networks has traditionally been
exploited in the context of communications resources (e.g.,
when the network gracefully downgrades the quality for
all users if communications resources such as spectrum are
insufficient), here we address the computational aspects of
resource elasticity since the virtualization and cloudification
of networks at the core network (CN) and partially at the
radio access network (RAN), mean that the management
and orchestration of its computational resources have now
become a key challenge of 5G systems. In fact, in contrast
with 4G systems, network slicing requires virtualized 5G
networks to be able to jointly optimize communication and
cloud resources.

We further consider elasticity in three different dimensions,
namely computational elasticity in the design and scaling
of VNFs, orchestration-driven elasticity achieved by flexible
placement of VNFs, and slice-aware elasticity via cross-
slice resource provisioning mechanisms. These dimensions
encompass the full operation of the network and together
they build our proposed elastic management and resource
orchestration. To that aim, we envision a very prominent role
for AI, as a tool to enhance the performance of elasticity
algorithms. AI, and in particular machine learning (ML), has
been proposed as a toolbox for different aspects of wireless
networks [4]. In the context of elasticity, some examples of
performance-boosting capabilities that could be provided by
AI techniques are the following: i) learning and profiling the
computational utilization patterns of VNFs, thus relating per-
formance and resource availability, ii) traffic prediction models
for proactive resource allocation and relocation, iii) optimized
VNF migration mechanisms for orchestration using multiple
resource utilization data (CPU, RAM, storage, bandwidth), and
iv) optimized elastic resource provisioning to network slices
based on data analytics.

Although by AI we refer to a wide range of techniques that
could be employed for network management and orchestration,
in this paper we focus on three use cases that leverage specific
ML algorithms, i.e., drawing from a subset of the whole AI
range of techniques, to exploit resource elasticity as follows:

• A computationally elastic scheduler applying deep learn-

ing to signal-to-noise ratio (SNR) prediction and the
reinforcement learning technique of contextual bandits for
making scheduling decisions.

• Slice-aware resource management based on traffic predic-
tion using deep artificial neural networks (i.e., supervised
learning).

• Efficient slice setup using the unsupervised learning tech-
nique of spectral clustering.

It is worth mentioning that even though these three spe-
cific examples of AI-based elasticity algorithms utilize ML
techniques, the authors believe that other AI techniques, not
necessarily constrained to the ML domain, could also be
applied.

The remainder of this paper is structured as follows. In
Section II, we provide a description of a prominent architecture
for the use of AI in the management and orchestration of future
networks proposed by ETSI. In Section III, we discuss the
application of AI in the context of resource elasticity and in
Section IV we elaborate on the above mentioned elasticity use
cases and the AI techniques they employ. Finally, we conclude
the paper in Section V.

II. AI-ENABLED 5G NETWORK ARCHITECTURE

In response to the industry demand for AI-driven intelligent
networks, ETSI has created the ENI work-group [5]. ENI’s
goal is to improve operator’s experience and add value to
the telco provided services, by assisting in decision making
to deliver operational expenditure (OPEX) reduction and to
enable 5G deployment with automation and intelligence. In
particular, ENI aims to define an architecture that uses AI
techniques and context-aware, metadata-driven policies, to ad-
just service configuration and control based on changes in user
needs, environmental conditions, and business goals, according
to the “observe-orient-decide-act” control loop model [5].

Network slicing for 5G can serve as a prime example to
demonstrate ENI’s architecture and the operator’s benefits it
provides, especially around VNF’s computational resources
efficiency, while preserving the user requested SLA.

The telco industry’s evolution towards standardization of
AI-assisted networks, requires various industry consensus, in-
cluding grammar and syntax for service policy and associated
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domain specific language (DSL), as well as data ingestion
format, to foster ability to interact with the broad variety
of tools used for management and monitoring. A normalized
format is required also to address the difficulty to harmonize
the state of the divergent infrastructure, due to use of silo
specific tools e.g., per compute, network, and storage and
due to the variety of “assisted systems”, each with different
capabilities and different exposed API and varying degrees of
ability to interact with the AI system, like ENI. It is therefore
essential for ENI to define architecture components such as
data ingestion and normalization, to provide a common base
for ENI’s inter-modular interaction as well as for transforming
the external assisted system (e.g., a 3GPP/5G implementation)
inputs to a format that is understood by ENI.

To date, ENI has defined a modularized system architec-
ture, as shown in Figure 1a. Having a modularized system
architecture, facilitates the flexibility and generalization in the
system design, as well as increase vendor neutrality. A brief
description of each module, according to [5], is given below.

• The Policy Management module provides decisions to
ensure that the operator’s goals and regulator’s policies
are met.

• The Context Awareness module describes the state and
environment in which a set of the assisted system entities
exists or has existed. For example, an operator may have
a business rule that prevents 5G from a specific type of
a network slice in a given location.

• The Situational Awareness module enables ENI to under-
stand how information, events, and recommended com-
mands that it may provide to the assisted system, may
impact its next state, actions, and ability to meet its
operational goals.

• The Cognition Management module operates at the higher
level and enables ENI as a whole to consult and meet its
end to end goals.

• The Knowledge Management is used to represent infor-
mation about ENI and the assisted system, differentiating
between known facts, axioms, and inferences.

The interaction and interoperability of ENI with an assisted
system is determined by the latter’s support of the ENI
Reference Points [5]. Specifically for the use of compute
resources elasticity and efficiency, as presented in this paper,
few elements, determined by relevant ENI Reference Points
are needed. As depicted in Figure 1b, the current NFVI
Information allows ENI to be aware of the computational
resources’ capabilities (e.g., type of CPU, memory, data plane
and accelerators) and availability (status and utilization level),
while in turn this enables ENI to influence and optimize
placement decisions made by the VIM, while ensuring that
3GPP policies, resources allocation and SLA are adhered too.
Moreover, by using this information, ENI can further optimize
resource utilization by i) enabling higher density for a given
set of workloads under associated SLA, ii) anticipating and
reacting to changing loads in different slices and assisting
the VIM in avoiding resource conflicts, and/or iii) timely
triggering of up/down scaling or in/out scaling of associated
resources.
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Fig. 2: Learning taxonomy axes for slice lifecycle manage-
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III. APPLYING AI IN SOFTWARIZED MOBILE NETWORKS:
A TAXONOMY VIEW

Despite recent publications in the field [6], the full inte-
gration of AI in mobile network architecture is still in its
early stages, and the design of learning algorithms that provide
promising features such as network elasticity, as described in
Section 3, is yet a greenfield research topic. In this section,
we describe learning techniques for applying and exploiting
elasticity in the upcoming generations of mobile networks.
Specifically, we propose i) a taxonomy on the learning charac-
teristics required to provide elasticity, and ii) three specific AI-
based elasticity use cases, namely elastic RAN VNF design,
slice-aware elastic resource management, and efficient slice
setup.

We propose two different taxonomies for learning in the
context of elasticity based on i) the data used for learning,
and ii) the network slice lifecycle phase. Firstly, with respect
to the data, learning techniques for the elastic network slice
management can be categorized along two main directions,
independently of the actual algorithm in place:

• Inputs: learning techniques shall learn features from the
user demand to the network, the infrastructure utilization
and the slice policies. These inputs shall be conveniently
measurable (and labeled in case of supervised techniques)
in order to be applied in one of the outputs.

• Outputs: following the 3GPP definition [7], lifecycle
management is composed of four stages: preparation,
instantiation, run-time and decommissioning. Hence, de-
pending on the kind of algorithms, its target and the input
features, the learning algorithm shall be employed in one
of these phases.

The input direction can be further split along three di-
mensions, depending on the characteristics of the learned
input feature. In Figure 2 we show this three-dimensional
classification, highlighting its three main axes: the demand,
the infrastructure, and the requirements. Triangles in Figure 2
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represent the granularity on each of the axes, being the darker
the finer.

• Demand. Learning the user behavior is paramount for en-
forcing elasticity in the network. As previously discussed,
the multiplexing gains achieved by efficiently combining
different slices on the same infrastructure necessarily
requires learning of the user demand. That is, anticipatory
resource re-orchestration builds on the understanding of
the temporal and spatial demands of services. This input
data may have a coarse granularity (i.e., order of minutes)
as the current orchestration technologies and the increased
signaling overhead caused by numerous re-configurations
prevent a too fast resource reassignment. This operational
point is marked as D2 in Figure 2. Nevertheless, demand
may be learned at more granular levels (D1 in Figure 2)
when designing elastic RAN NFs. In this case, learning
metrics such as the user requests queuing reports at faster
time scale (i.e., sub-seconds) enables a better decision
making on the short-term future scheduling decisions
according to the available computation capacity.

• Infrastructure. Learning how the underlying infrastruc-
ture reacts or limits elastic management/orchestration
decisions is fundamental. For example, elastic resource
assignment algorithms need to learn about the com-
putational behavior of NFs when subject to a certain
load and to different requirements to provide a precise
VNF location (I1 in Figure 2). Analogously, the wireless
infrastructure (i.e., the channel) is probably the main
driver for the elastic behavior of RAN functions, as it
is the most important limiting factor.

• Requirements. A very important challenge for future
sliced 5G networks is the service creation time. ML can
greatly enhance the service setup by automatically trans-
lating consumer-facing service descriptions into resource-
facing service descriptions that can be processed by
the network management and orchestration functionality
in order to allocate the proper resources to the new
service. AI tools can thus replace human interventions,
which increase costs and are time consuming, to identify
the resource requirements of a new service from the
slice down to the VM/container levels; furthermore, this
approach can smartly take into account existing services
with similar requirements to favor resource multiplexing
across services and increase the system efficiency.

On the output dimension, the proposed taxonomy refers to
the network slice lifecycle phases, as various approaches can
be adopted and applied in all the phases of the lifecycle of a
slice instance [7]. For example, slice behavior analysis can be a
critical asset for elasticity provisioning in the slice preparation
phase, since statistics can be exploited to efficiently decide the
basic configurations and set the network environment.

In this paper, we provide insights and use cases on AI-based
elasticity mechanisms that are applied in the instantiation and
run-time phases, but the preparation and decommissioning
phases could similarly benefit from AI.

• Instantiation phase. The pool of parameters that feed
the learning process of AI-based elastic mechanisms in

this phase may be: i) requirements depicted in SLAs
and service demands, ii) past measurement and statistics
related to resource consumption profiles of VNFs, iii)
real time measurements from already instantiated slices,
and iv) the current state of computational and resource
consumption in the system. Based on these factors, the
AI mechanism decides the admission of new slices and
potentially the re-configuration of the running slices in the
network. Here, we focus on slice setup mechanisms based
on AI that guarantee flexible slice admission control and
deep network slice blueprint or template analysis. In
Section IV-C we propose a learning approach for network
slice admission control, which precisely takes place in the
instantiation phase.

• Run-time phase. For the AI-based elasticity mechanisms
that are applied in the slice run-time phase, all the param-
eters that are available in the instantiation phase can be
exploited. However, the learning capability is much more
challenging since traffic load measurements are available,
while the adaptation should be done in a faster scale,
including re-configurations at VNF or slice level. Here,
we focus on advanced sharing of computation resources
among VNFs of multiple slices to provide resource elas-
ticity, while the involved slices are in operation. Such an
approach is presented in Section IV-B. Furthermore, the
challenge of enabling VNF self-adaptation during run-
time phase is handled in Section IV-A.

Challenges

The above taxonomy is useful to understand where AI
can help in the management and orchestration of networks.
However, the selection of the right AI-based algorithm is not
necessarily a trivial task. Clearly, the features of the learned
parameters described in this taxonomy do have an impact on
the type of learning algorithm that is employed. For example,
highly dynamic parameters such as load may require algo-
rithms with fast and adaptive online learning capabilities; yet
other parameters such as the slice blueprint given the service
requirements are more static and offline training could suffice
for an artificially intelligent system to make the right decisions.
Hence, although the fast-evolving field of AI makes difficult an
a-priori selection of certain types of learning algorithms (e.g.,
deep neural networks, reinforcement learning, etc.) for specific
types of parameters, it becomes apparent that a correlation
between those does exist, and the design of the learning system
and algorithms must carefully take into consideration such
a correlation. In addition, labeled (and reliable) data sets to
implement supervised learning algorithms in many cases are
only (partially) available, since the 5G deployment is not
started yet. Furthermore, these AI algorithms may deliver but
a sliver of the more comprehensive and ambitious goals of
cognitive network management systems where architectural
support is also required. An analysis or such architecture
requirements is, however, out of the scope of this paper
but the interested reader is referred to [8], where extensive
architectural impact analysis has been performed.



5

Real Signal LSTM

32 MAE

Loss function

(a) NN Architecture.

0 100 200 300 400
Time [ms]

-4

-2

0

2

N
or

m
al

iz
ed

S
N

R

Real
Max to min

(b) SNR Prediction

Fig. 3: A framework for SNR prediction

IV. USE CASES

Next, we describe three possible use cases for the applica-
tion of AI algorithms that target network elasticity by applying
cognitive techniques on different inputs and in different phases
of the lifecycle.

A. Computationally Elastic Scheduler

As discussed in Section I, computational elasticity deals
with the performance optimization of a NF given additional
constraints on the available computational capacity assigned
to such function by an orchestrator. While this approach
can be applied to any kind of NF, those that imply higher
computational loads can benefit more it. As consistently shown
in the literature, the most expensive NF in terms of compu-
tational demand are the ones related to the MAC, encoding
and decoding [9]. In a previous work [10], we proposed an
algorithm for uplink MAC scheduling that offers graceful
degradation in case of a sudden load variation that could not
be served with the available computational resources (i.e., a
flash crowd).

The algorithm in [10] showed indeed the potential of such
approach. However, it relies on strong assumptions on both the
channel conditions and the user demand. As already discussed
in Section III, such metrics shall be considered as part of
a learning process: in the following, we propose a possible
approach to an AI-based computational elasticity.

In nuce, achieving computational elasticity at MAC level
implies a joint optimization of Modulation and Coding Scheme
(MCS) selection for each user (as discussed in [11], different
MCS have different computational complexity depending on

the SNR margin), and the actual user scheduling. That is,
rather than selecting just who to schedule, the elastic MAC
controller shall also select the best MCS to be used given the
constraints on the available computational capacity.

Selecting the best scheduling decision at each time transmis-
sion interval (TTI) entails, thus, learning characteristics such
as the traffic demand and the channel conditions. However,
given the trend of centralizing access NFs, it is likely that an
elastic MAC scheduler will need to take scheduling decision
for thousands of devices at the same time. Therefore, the
scalability of the learning process is of paramount importance
for its practical implementation. A promising learning solution
for solving this problem is that of contextual bandits [12].
Contextual bandits employ the concept of policy selection,
as opposed to action selection in classical bandit problems.
A policy essentially maps context information (encoded as a
sample from a potentially rich feature space) into a scheduling
action. By learning the history of policy-context-reward tuples,
randomized greedy algorithms can be built to maximize the
total reward for any upcoming context, which in this case
includes the user data queues and the buffer state of the
computing processor.

A necessary input for contextual bandits is, as discussed
in Section III, the prediction of the infrastructure status for
a given time frame. In mobile networks, forecasting the
SNR quality of given user is, thus, fundamental to take the
scheduling decisions as described above. We thus explored the
feasibility of a SNR prediction algorithm (results are depicted
in Figure 3). The objective was to obtain a short scale (5 ms)
forecast of the SNR values, taking into account a window of
the past 40 ms samples. For this purpose we employ a layer of
Long Short Term Memory (LSTM) network, activated with a
Scaled Exponential Linear Unit (SELU) function and a Mean
Absolute Error (MAE) loss function (See Figure 3a). As shown
in Figure 3b, this network is capable of forecasting a real world
SNR trace collected in a lab environment, demonstrating the
effectiveness of a learning scheduling framework.

B. Slice-aware Resource Management

The design and setup of a network slice capable of accu-
rately satisfying the need of mobile services with very diverse
requirements is an important challenge for 5G networks. This
process can be optimized by enabling the 3GPP Network
Slice Management Function (NSMF) and Network Slice Sub-
net Management Functions (NSSMF) to use AI mechanisms
capable of automatically translating service requirements to
network requirements. To this aim, 3GPP recently introduced
the Management Data Analytics Service (MDAF) in the or-
chestration architecture [13].

The goal in slice-aware elastic resource management is to
develop algorithms, which consider the Quality of Service
(QoS) requirements, SLAs, and demands of network slices
operating on the same physical infrastructure to optimally
allocate/de-allocate a portion of available resources to each of
them. The two main design challenges are i) modeling of the
essential parameters, and ii) adapting the models to changes in
the run-time. This information is extremely useful for resource



6

allocation and provisioning at every level of the network. In a
scenario where a limited number of RAN radio resources have
to be shared among multiple slices with significantly different
requirements, different RAN parameter set configurations are
needed. These may vary in spatial domain due to changing
radio conditions as users are moving, and in temporal domain
depending on the traffic load distribution over time.

The VNFs computational performance is highly dependent
on the implementation techniques as well as channel quality.
In [14], a profiling procedure has been proposed; it uses
AI-based regression (i.e., Lasso regression), to generate an
mathematical model. On the same research path, AI-based
solutions (Lasso, Support Vector Machine (SVM), or rein-
forcement learning) can learn (or adapt) the computational
performance of VNFs based on the reported input parameters
and the measured processing times for any new VNFs.

The channel quality between the antennas and the mobile
terminals is the foundation to estimate the total network
throughput and allocated the available radio resources to each
slice as well as the required computational resources. In
both cases, AI-based approaches can either provide or adapt
the channel models based on the monitoring reports to be
used in estimations and provisioning of slice-aware resource
management algorithms.

AI techniques could also be used for traffic prediction,
which can be a valuable input for many elastic resource
allocation algorithms. The resource management algorithms
either act in passive mode (i.e. observing the demand and react
to it) or always assume the maximum demand. The prediction
of slice demands can enhance inter-slice resource utilization.
Figure 4.a presents the deep Neural network architecture with
two dense layer with ReLU activation function and a sigmoid
activation function. It is used to predict the traffic demands
of two network slices with different behaviour and Figure 4.b
shows the predicted against the actual traffic. Virtual resource
management models, consequently, can now consider also
predicted slice demands to adapt the service provisioning; for
example, some services may have a repetitive pattern or may
only be active during certain times of the day or year.

The movement of traffic concentration around the network
could also be predicted, e.g., groups of users could be identi-
fied that move in a coordinated fashion through the network
and following a certain trajectory. Such input may be very
useful for adjusting the beam patterns of groups of cells
proactively. Dynamic beam pattern adjustment would shift the
load distribution between cells and ensure that all users are
best served at the same time. Knowing in advance the traffic
characteristics of each slice and its evolution over time and
space is essential to reaching the correct beam forming for
each cell and aligning across neighbors in order to create
stable coverage in a timely manner. This is clearly valuable for
latency sensitive services/slices or throughput-hungry ones.

C. Efficient Slice Setup

We envision an important role of AI algorithms during the
run-time phase of a network slice. However, unsupervised
learning algorithms are fundamental also in the instantiation

Fig. 4: Traffic demand prediction using deep neural network.

phase, where they shall analyze the generated requirements
and identify whether a slice already instantiated can efficiently
support the new service or an additional slice needs to be
deployed. This approach not only further reduces the service
creation time by avoiding the instantiation of a new slice for
each new service, but also enhances the system efficiency by
increasing the resources shared across elastic slices. To be
effective, this approach has to operate on slices that do not
need fully dedicated resources, e.g., they are elastic in the
sense that they have relaxed constraints in terms of resource
isolation. In contrast, slices characterized by stringent resource
isolation constraints are non-elastic and may not accept to
share their resources with concurrent slices and limit the
system flexibility.

A practical example is the case of different broadcasters
covering the same sport event: 3GPP’s NSMF may mutualize
the radio resources allocated to the different services to trans-
mit common contents, and use dedicated resources for slice-
specific content such as the speaker’s voice. More specifically,
most mobile services are typically characterized by a set of
dedicated NFs in charge of guaranteeing its specific require-
ments (e.g., multi-connectivity for high reliability) and a larger
set of shared NFs that deal with more generic requirements
(e.g., the handover function that guarantees coverage.

An AI-based mechanism can classify in an unsupervised
manner the instantiated slices with respect to the NFs shared
with the new request, and then assign the new slice request
to the deployed slice based on the number of shared NFs.
In this way, the additional resources needed to fulfill the
requirements of the new slice can be reduced and the slice
deployment process accelerated. This approach can also be
used as a congestion control mechanism to prevent resource
outages: when the system is close to saturate, the NSMF can
re-cluster the overall set of services in new network slice
instances to maximize the resource sharing. The latter could
be implemented by using a spectral clustering scheme [15],
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where the deployed slices are represented as nodes of a
connected graph and clusters are found by partitioning this
graph based on the nodes’ affinity (e.g., related to the number
of shared NFs). Figure 5 shows the variation of the slice
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request dropping probability as a function of the non-elastic
slice arrival probability. In this results, slices are classified
between elastic and non-elastic and we assume that non-
elastic slices lead to high revenues as they require dedicated
network resources. We evaluate the performance of three
different approaches. In the first one, resource sharing is not
implemented, which results in higher resource requirements
and larger slice dropping probability. In the second case, we
assume that resource sharing is enabled by assigning a new
slice request to the already instantiated slice maximizing the
number of common VNFs (i.e., max VNF). Finally, in the
third case, spectral clustering is implemented at each slice
request arrival/departure to maximize the resource sharing in
the system. Spectral clustering shows the best performance
since it continuously optimizes the shared resources at the
cost of higher complexity. The results in Figure 5 show that
both the mechanisms enabling resource sharing improve the
performance for both elastic and non-elastic slices; however,
the slice dropping probability reduction obtained when using
the simple max VNF approach is limited (around 11%); in
contrast, the spectral clustering approach leads to 50% of
reduction of the slice dropping probability, therefore enabling
a large improvement in terms of potential incomes for the
operator.

V. CONCLUSIONS

In this paper, we have introduced the novel idea of utilizing
AI techniques with the purpose of exploiting the resource elas-
ticity of a 5G network, hence improving resource efficiency
and the overall performance of its management and orchestra-
tion machinery. Using as basis the architectural work recently
developed by ETSI ENI and the concept of resource elasticity,
we propose a taxonomy for elastic slice lifecycle management
and three different use cases showing the applicability of AI

on different management and orchestration problems where
elasticity can be exploited. The paper constitutes the basis of
a recently approved use case at ETSI ENI.
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