
1

Flow setup latency in SDN networks
Ramin Khalili, Zoran Despotovic, Artur Hecker

Abstract—In Software-Defined Networking (SDN), the typical
switch-controller cycle, from generating a network event noti-
fication at the controller until the flow rules are installed at
the switches, is not an instantaneous activity. Our measurement
results show that this has serious implications on the performance
of flow setup procedure, specifically for larger networks: we
observe that, even with software switches, the flow setup latency
for networks of around 500 switches is in order of 50 milliseconds,
with 99th percentile exhibiting 10 times higher latencies. To
reduce both the latency and the variance of the flow setup, we
propose path aggregation strategies, which turn the network into
a set of pre-configured pipes that connect any pair of nodes.
Our approach radically simplifies the flow setup procedure by
minimizing the set of switches to be updated for new user-
initiated flows to a constant number. We implement our solution
in our testbed and study its performance through measurements.
The results show that, in similar settings, it reduces the median
and 99-percentile latencies to 5.9ms and 7ms, respectively, sig-
nificantly improving the performance, especially in the tail.

Index Terms—SDN, Scalability, Latency

I. INTRODUCTION

Conventional network devices embed dedicated, closed
software and are characterized by long and costly evolution
cycles. Such devices are doomed to complex tradeoffs, such
as feature-set richness vs. ease of use and costs. SDN reduces
network devices to programmable flow forwarding machines,
termed Switches, while the network logic runs in a logically
centralized sooftware platform termed Controller [1][2]. The
latter collects the network state and exposes it to control
applications that make forwarding decisions, while the former
encodes and stores these decisions in form of flow rules to
apply to incoming flows [3][4].

The SDN research so far mainly addressed design and
performance of SDN controllers [5][6][7][8][9] and switches
[10][11][12]. A comprehensive evaluation of the entire system,
comprising both a controller and a network of switches, is
however still missing. This paper fills this void by reporting on
a set of experiments performed to understand the end-to-end
performance of SDN networks. Although we frame our discus-
sion below in the context of operator networks and specifically
use OpenFlow SDN as an example, the conclusions are general
and hold for the SDN as a concept.

A. Problems with current SDN deployments
Our tests build on the observation that the typical switch-

controller communication cycle, from the controller notifica-

Manuscript received March 10, 2018; revised August 10, 2018; accepted
August 20 , 2018. This work was supported in part by the EU H2020
Programme (H2020-ICT-2018-1) under Grant Agreement No. 815279 (5G
Verticals INNovation Infrastructure ”5G-VINNI”). (Corresponding author:
Ramin Khalili).

R. Khalili, Z. Despotovic, and A. Hecker are with Huawei Technolo-
gies, Munich 80992, Germany. (E-mail: {ramin.khalili, zoran.despotovic,
artur.hecker}@huawei.com).

tion generation (so-called packetIn message in the OpenFlow
protocol) to the flow rule installation, is never an instantaneous
activity, even if the packetIn processing time at the controller
and the controller-switch link latencies are negligible. Instead,
it takes a variable and non-negligible time that depends on the
changing operating conditions of the switch such as its flow
table occupancy, rule complexity and priority, etc.

Even as a minor issue as it may at first sound, this creates
serious implications for flow path setup, the most typical task
in SDN requiring updates of a set of switches. Normally, the
time to install a flow rule along a path of several hops roughly
corresponds to the largest of the individual switch times.
During this time however, the path is partially established, and
there is a non-negligible possibility that a flow packet could
be forwarded along this partially established path, triggering a
table-miss event on some intermediate switches along the path.
To deal with this table-miss event at intermediate switches,
the controller needs to know the path assigned to the flow, to
be able to enforce packet forwarding on an appropriate out-
port of the switch. If such information is not available at the
controller, it can do no better than to either drop the packet
or to flood it over all outports of the switch. Both solutions
result in undesirable performance and scalability issues.

Our measurements over a Floodlight/Mininet testbed show
that in a small SDN network with around 50 switches, setting
up a path takes about 6ms in the median and 11ms in the
99th percentile. However, for a larger network with approxi-
mately 500 switches, these times grow to 50ms and 490ms
respectively, when flooding is used to deal with packetIn
from intermediate switches; and to 16ms and 36ms, when the
controller knows the path and forwards the packets over the
corresponding outport. Note that the reported values are for
one way flow setup latency. In any case, this latency is hardly
acceptable in networks that have tight latency requirements,
in orders of few milliseconds, such as data centers [13][14]
and 5G [15], which provides a strong hint on performance and
scalability limits of a straightforward SDN deployment.

B. Our solution

Insights collected from our tests sketch ways, how one
can cut down these times. One way is to reduce the in-
dividual switch update times and their variations, including
across different defined states and optimizing for different
hardware platforms. This lies in the focus of the current
literature (see §II). Note however that software switches, such
as OpenVSwitch (OVS), studied here, have generally very
small update times compared to hardware switches [14][16],
and that even for such fast operating switches the flow setup
latency is very high as shown by our measurements. Hence,
reducing the update times of switches is not enough to address

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2018.2871291

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



2

this problem. Another way is to reduce the number of switches
to update, when setting up a path in the network, which we
study in this paper. Specifically, we advocate for the edge/core
separation idea, where the fine-grained flow management is
performed at the edge switches, and the core is configured as
a fabric that interconnects these edges.

To configure the fabric, we apply our path aggregation
solution proposed in [17], which turns the network into a
set of pre-configured pipes that connect any pair of edges.
Using this core fabric, flow management becomes simpler and
more scalable, as it suffices to maintain only end-points per
flow: indeed, the end-to-end flow setup degrades to a simple
update of a minimal switch set, thus reducing the flow setup
latency and its variance. The measurement results show that
our solution provides flow setup latencies below 8ms, even in
the largest setting. We further show how more complex tasks,
such as user mobility and dynamic topology handling, can be
efficiently supported within our solution. Our implementation
in Floodlight proves that it is relatively straightforward to
realize our solution in a state of the art SDN controller.

C. Main contribution

The main contributions of this article are the demonstration
of the performance and scalability issues of the current SDN
deployments; the investigation of the underlying causes of
such problems; the introduction, implementation, and per-
formance analysis of the edge/core separation solution; and
its extension to support network dynamics, together with the
implementation and performance analysis of these extensions.

The article starts with the discussion of related work in §II.
§III presents the flow rule installation time for an individual
switch. In §IV, we study the flow setup latencies in SDN
networks, using OpenFlow SDN as a concrete example. §V
introduces our proposal and presents the corresponding results.
§VI concludes the paper.

II. RELATED WORK

A number of recent surveys introduced useful SDN tax-
onomies and defined the relevant SDN terms [1], [2]. Our
terms are consistent with the definitions in [1]. Performance
evaluation of SDN has focused on understanding performance
and scalability limits of individual constituent elements of its
architecture, rather than seeing a network as a whole. Further,
existing studies typically made distinction between data and
control plane performance. To this end, switch design and
performance evaluation of the data plane have received a lot
of attention [11][18][12]. As for the control plane, we here
distinguish controller and switch performance when executing
control plane steps such as sending a network event to the
controller, determining appropriate flow rules and installing
those in a (set of) switch(es). The main focus of the SDN
research has been on controller design and performance in
this process [5][6][7][13][19].

At the same time, the performance aspects that pertain to
the SDN switch, e.g. how fast it can reply to commands from
the controller, are just getting in focus of SDN research. A
few recent papers report on the performance of the control

plane of various SDN hardware switches [14][20][21][22]. In
particular, they measure the latencies of the basic control plane
operations such as event generation (“inbound latency”) and
flow rule installation, modification and deletion (“outbound
latency”). Specifically, the flow rule installation latency ranges
from few to tens of milliseconds depending on the number of
the rules installed in the switch, the priority of the rule to insert
etc. Besides, there are significant differencies in latency trends
across switches with different chipsets and firmware. Our
paper builds directly on the insights from these measurements,
checking their implications for the network-wide view, i.e. for
the path setup. As we use software switches (OpenVSwitch),
we first establish equivalent claims for these. We then extend
these measurements to a network-wide view.

The literature discusses possible negative effects of the
switch diversity. [16] proposes to reduce such effects at the
source of the problem, i.e. in the switches, introducing new
methods to efficiently manage switch TCAM to provide switch
performance guarantees. [22] relies on real-time probing to
assess the state of a switch and to make it available to control
applications, before they make their control decisions; hence,
is closest to our work. However, it evaluates the performance
of the control plane only and fails to provide any end-to-end
performance values. Finally, [17] proposed a path aggregation
method to reduce the flow table sizes at the core switches,
which we use in this paper. However, [17] only describes how
to create the fabric and provides no end-to-end solution and
no flow setup latency evaluation.

III. SINGLE-SWITCH FLOW SETUP MEASUREMENTS

We first consider the simplest scenario, a network with a
single switch S. The users are connected to different ports of
this switch and communicate with each other. When a new
flow arrives, generated by a user and destined to another user,
the first packet of the flow triggers a table-miss event at S.
The resulting packetIn message is processed at the controller
by a control application, and the corresponding flow rule is
installed at S. Within our path setup application, we derive a
suitable output from the source and destination IP addresses.

Fig. 1. We measure D indirectly by measuring RTTs observed by the first
and the second ping packets, where D = RTT 1−RTT 2

2 .

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2018.2871291

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



3

The time difference between the moment of the table-miss
event and the moment, when the packet is forwarded over
the corresponding outport is referred to as flow setup latency
D. This latency is the sum of the control plane latency and
the latency at the switch (cf. Fig.1). In our definition, the
control plane latency is the time, when a packetIn is sent
by the switch to the controller, until the related flow rule
is received by the switch. The switch latency is the sum of
two terms: the first term is the latency to generate a packetIn
message upon receiving the first packet of a new flow; and
the second term is the time to set up a flow rule upon
receiving the rule from the controller. We test this scenario in
our Floodlight [6]/Mininet [23] testbed, running FloodLight
v1.1, OpenFlow v1.4 [24] and OpenVSwitch v2.3 [10]. The
Floodlight controller runs on a server with 48 Intel CPUs and
24x 32GB of RAM (Huawei RH2288H), hence it is not a
bottleneck in our study. We run Mininet on a separate server,
with a similar configuration, and interconnect both servers via
an otherwise unused Gigabit Ethernet link.

To measure D, users exchange ping flows (i.e. they send
ICMP echo request and ICMP echo reply messages, simply
called ping request and ping reply). Upon receiving a packetIn
at the controller, due to the reception of the first ping-request
generated by user i toward user j at S, the controller sets up
the uplink flow rule at the switch and forwards the packet
over the corresponding outport of the switch to j (cf. Fig.1).
Once the ping-request is received by j, a ping-reply message
is generated by j to i, which in turn generates a packetIn
message to the controller, and the controller therefore installs
the downlink flow rule at S and forwards the ping-reply
message over the related outport of S to i. We measure the
difference between the round trip times (RTT) seen by the
first (RTT1) and the second (RTT2) packets of a flow, i.e. the
first and second ping requests, which gives us an estimation
of the sum of the setup latencies of uplink and downlink of
the flow. (By subtracting RTT2 from RTT1, we remove the
latency terms due to the transmission and propagation delays
over the data plane from our estimation). Dividing the result
by two we obtain an estimate of D: D = RTT1−RTT2

2 .

A single OVS switch
0.0

0.5

1.0

1.5

2.0

2.5

fl
o
w

 s
e
tu

p
 l
a
te

n
c
y
 (

m
s
)

Fig. 2. The flow setup latency on a single switch.

We measure D, where new ping flows arrive according to
a Poisson process with rate 1000 requests/sec. No forwarding
rule is initially installed at the switch, hence, to set up a flow,

the controller only needs to add new rules. No rule deletion
is performed by the controller, unless stated otherwise. All
the rules have similar priority and match on the source and
destination IP addresses of the flows. Source and destination
of the generated flows are selected randomly. Each experiment
has a duration of 10 seconds. We run 20 independent experi-
ments and collect all the measurements together. We report the
measurement results for D in Fig.2. We observe that the flow
setup latency is not negligible and has a random distribution
with median around 0.75 ms and with a large dispersion (e.g.
its 99-percentile is around 2ms).

IV. FLOW SETUP LATENCY IN SDN NETWORKS

In this section, we study flow setup latencies in SDN
networks, starting with a simple linear topology.

A. Linear topology

We first consider a linear topology composed of N switches,
S1,S2, · · · ,SN , with the users attached to S1 and SN . Flows are
generated by the users at S1 towards the users at SN . As in
the previous case, we generate ping traffic among the users
with Poisson arrivals with rate 1000 requests/sec. To set up
a flow, the controller needs to configure all the N switches
over the path as depicted in Fig.3. When S1 receives a ping
request, if there is no flow rule that matches the packet, it
generates and sends a packetIn message to the controller. The
controller determines the necessary rule for each switch along
the path and pushes these rules to the corresponding switches.
The ping request will therefore be forwarded to the destination.
A similar process will be performed for the ping-reply. The
configurations of the switches are performed in parallel by the
controller; hence, one may expect similar flow setup latency as
in the single switch case. Our measurement results, however,
show that the flow setup latency in this setting is much higher
than for the single switch case, especially in the tail of the
distribution. We report the results in Fig.4 for N = 4 and N = 8.
According to our results, median latencies are 1.22ms and
1.8ms for N = 4 and N = 8, respectively, and the corresponding
99-percentiles are 3.7ms and 12ms.

The observed increase in network-wide flow setup latencies
can be attributed to the following reasons:

(R1) - increase of the control plane latency: First,
the controller application needs to perform a more complex
computation to calculate a path than in a single switch case.
Second, the number of flow setup commands (in OpenFlow:
OFP FLOW MOD, in the following simply “flowmod”) sent
by the controller increases to N , which increases the control
plane latency. Note that the exact mechanism is quite complex:
the control plane latency depends on how Floodlight processes
the incoming packetIns, how TCP schedules the transmissions
of small flowmod messages, and how the device manager and
other modules of Floodlight interact with our application. We
refer to [25] for a deeper analysis of the processing latency
specifically in the Floodlight controller.

(R2) - maximization effect: As the controller sets up the
whole path on the reception of the initial packetIn, the overall
process is not sequential. In other words, a path is established,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2018.2871291

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



4

Fig. 3. Flow setup process for a path composed of three switches. This
example depicts an ideal situation, where the flow rule at S2 (resp. S3) is
installed before receiving UL packet from S1 (resp. S2), and where the flow
rule at S2 (resp. S1) is installed before receiving DL packet from S3 (resp.
S2). As we discuss later in this section, this is not always the case in practice.

Fig. 4. The flow setup latency on a linear topology of 4 and 8 hops.

when all the switches over the path are configured. We are
not aware of any dedicated mechanisms in place in barebone
Floodlight controller to serialize these actions. Rather, the new
flow rules are calculated and distributed to all relevant switches
on the calculated path over the available point-to-point TCP
control channels. Indeed, in our measurements we observe
an increase of the median of the flow setup latencies. This
effect could be modeled by representing the individual switch
latencies as a set of i.i.d. random variables with distributions
similar to what is depicted in Fig.2. Let Xi be the latency of
configuring switch i over the path, then the flow setup latency
of a path of length N is

D(N) =max{X1,X2, · · · ,XN }. (1)

In other terms, we have P(D(N) ≤ l) =
∏

i P(Xi ≤ l). This
would imply that the distribution of D(N) is stretched towards
larger values of Xs, corresponding to the observation. Using
(1), we can numerically evaluate the distribution of D(N).

Note that the i.i.d. assumption might not hold in general.
Moreover, the distribution of Xi , for i > 1, might not exactly

follow the same distribution as X1, as the controller does not
need to send the original packet to all the switches along the
path but to S1 only. Hence, this numerical evaluation only
provides an estimation of D(N). We observe that despite all
these reservations, (1) can provide a good approximation of
the median, as shown in Fig.4 for N = 4 and 8. We can see
that the medians are 1.25ms and 1.55ms for N = 4 and 8,
respectively, and hence are close to the median observed
through measurements (1.22ms and 1.81ms, respectively). It
however fails to predict the tail, as the tail is mainly a result
of the effect of partially established paths, as explained below.

Fig. 5. An illustration of the effect of partially established paths for a line
with three switches and for the uplink flow setup procedure. As the uplink
forwarding rule is not yet installed at S2, the switch needs to generate a
packetIn to the controller, requesting for appropriate action.

(R3) - effect of partially established paths: The flow
setup process is not instantaneous, as there is a gap between
pushing forwarding rules to a switch set and the time that the
entire path is established. During this gap of random duration,
the path is partially established, and there is a non-negligible
possibility that a flow could be forwarded along it triggering
a table-miss event on some of the switches along the path.

Fig.5 illustrates this situation for three switches in a line and
the uplink flow setup. Assume that the flow rule installation
at S2 is delayed, either due to the control plane delay or due
to some switch delay, and, hence, the user flow arrives at S2
before the corresponding rule is installed. S2 then generates
a repetitive packetIn to be processed by the controller. Our
results show that such events are not rare, even in such a
small setting. Specifically, for the scenario with N = 4, 200
out of 2800 flows have experienced this problem. The ratio is
600 out of 2800 flows for N = 8. The setup latencies for the
flows that are affected by this are high, explaining the long
tail we observe in our measurements.

Receiving such packetIn, the controller needs to determine
an appropriate action. The default “flooding” solution used
by Floodlight is our first baseline: Floodlight divides the set
of switches in the network into two disjoint sets, the set of
edge switches and the set of non-edge switches. The set of
edge switches is defined by Floodlight as the set of switches
that are directly connected to the users (i.e. the first and the
last switches in this example). The rest of switches in the
network belong to the set of non-edge switches (i.e. switches 2
to N−1). When a packetIn is received from a non-edge switch,
the controller simply floods the packet over all outports of the
switch, exempting the inport. A more advanced solution, which
we use as our second baseline, is to assume that the controller

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2018.2871291

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



5

stores flow information, i.e. the sequence of switch-port pairs
of the path that the flow ought to take. Receiving a packetIn
from a non-edge switch, the controller uses this information
to determine the outport at this switch. This solution has the
advantage that it can prevent flooding. Its drawback is the
requirement to store path information for each individual flow
in the controller, which might be impractical in large settings.

For this linear setting, both baseline solutions eventually
result in the same action: send the packet over port 2, if the
packet is received over port 1, and vice versa. The measure-
ment results shown in Fig.4 hold for the second baseline.

B. Hierarchical topology

We now study the flow setup latency in larger and more
complex settings. Specifically, we use network topologies
generated from [26] [27], representing backhauls of carrier
networks. They resemble k-array fat-trees, which are also used
in data centers [28]. They are hierarchical and consist of three
layers: access, aggregation, and core. They contain K switches
at the core, K pods of size K switches, e.g a total of K2

switches, at the aggregation, and K2 switches at the access.
K/2 switches of each aggregation pod are connected to the
access, with five access switches per each of these switches,
and K/2 of them are connected to the core, each of which is
connected to two core switches. The degree of connectivity in
the core and within aggregation pods is set to 3.

small network size medium network size large network size
10

-1

10
0

10
1

10
2

10
3

fl
o
w

 s
e
tu

p
 l
a
te

n
c
y
 (

m
s
)

Fig. 6. The flow setup latency using the first baseline solution, which uses
flooding to deal with packetIn received from non-edge switches.

We consider three different topologies: a small topology
(K = 4) with 40/16/4 acc/agg/core switches; a medium size
topology (k = 8) with 160/64/8 acc/agg/core switches; and a
large topology (k = 12) with 360/144/12 acc/agg/core switches.
There are 800 users attached to the access switches. Flows
arrive according to a Poisson process with parameter 1000
requests/sec. The source-destination pairs are selected ran-
domly, under the constraint that their access switches are not
connected to the same aggregation pod. Hence, their paths
should cross at least one core switch and four aggregation
switches: the flow path lengths are minimum 6 hops and
maximum as many hops as the network diameter, which is 7, 8,
and 9 for the small, medium and large topologies, respectively.

small network size medium network size large network size
0

10

20

30

40

50

60

70

fl
o
w

 s
e
tu

p
 l
a
te

n
c
y
 (

m
s
)

Fig. 7. The flow setup latency when the second baseline solution is applied.

In Fig.6, we present the measurement results for different
network sizes, when the first baseline solution is applied.
Clearly, the performance is very bad (y-axis in this figure is
logarithmic). This is due to the packet flooding in the network,
i.e. packetIns from non-edge switches (refer to R3). Fig.7
presents the performance of the second baseline solution. We
observe that the flow setup latencies are significantly smaller
that those observed in Fig.6. In particular, the median and 99-
percentile latencies are 5.8ms and 11ms for the small topology,
10.8ms and 26.8ms for the median size topology, and 16.1ms
and 36.5ms for the large topology. Even so, these results show
that none of these solutions can efficiently mitigate problems
arising from R1, R2, R3, and none of them is scalable.

In §V, we proposes a solution that mitigates all these
problems by minimizing the number of switches to be updated
for a new flow. Before that, we provide a short discussion
about other possible solutions to mitigate performance issues
arising from R3 using the current SDN model.

C. Discussion

To mitigate the effect of partially established paths, one may
delay the transmission of the first packet of the flow, until the
path is fully established. For instance, the controller could
estimate the time that it takes for the full path setup and delay
the transmission of the first packet by this time. A real-time
estimation of this delay time is, however, difficult to obtain.
Another possibility is to send the path commands in the reverse
way using e.g. OpenFlow bundles [24], which result in explicit
confirmations by switches. The controller could send the flow
setup to all but the original requestor switch and wait for the
confirmations before setting up the first switch and sending
out the original packet from it. Yet, both solutions penalize
all flows, which is especially bad for short or single-packet
flows, and, hence, not of interest for us. We should also note
that our baseline solutions in this section also send the path
setup in the reverse order, but do not use OF bundles.

An alternative is to ignore packetIn from intermediate
switches at the controller. Doing so results in packet loss,
because switches do not keep the original user packet after
they send packetIn to the controller [24]. Buffering packets

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2018.2871291

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6

comes with a considerable complexity increase at the switch
and does not always work: e.g. buffer could be full [29],
resulting again in packet loss. The end users can recover from
such packet losses using retransmission schemes such as TCP.
This, however, does not solve the effect of partially established
paths but delegates it to the end users. Besides, these solutions,
if applicable, can only mitigate the effect of the performance
problems caused by R3 but do not provide any solutions for
the performance problems due to R1 and R2.

V. CORE AS A FABRIC

We argue that in many scenarios, the fine-grained flow
management should be left over to the edge (or access)
switches, while the core should perform as a fabric that
interconnects these edge switches. For example, backhauls of
mobile networks and the transport networks of data centers
have hierarchical topologies. Here, the traffic load in the core
switches is by several magnitudes higher than in the access
switches: e.g. a typical number of users attached to an access
switch in a carrier network would be around 1000, which, with
each user generating 10 flows on average, results in a total
of 10000 flows per access switch. In contrast, the number of
flows crossing a core switch in a carrier network could easily
surpass millions of flows [30].

We therefore advocate for the edge/core separation. In our
view, the edge is a set of logical switches that are directly
connected to either the users, or middle-boxes, where the net-
work functions reside [31]. We see the transport/core switches
as interconnecting such edge switches. In our solution, the core
switches are proactively configured to provide connectivity
among all edge switches. The individual flows are processed
at the ingress edge, from where they are forwarded through
pre-configured fabric pipes to the egress edge switches.

We configure the fabric using the Access Switch Classifica-
tion (ASC) algorithm from [17]. It assigns to each edge switch
i a multi-layer classification vector, ID, of the form

ecvi = (vi(1),vi(2), · · · ,vi(L))

with vi( j), 1 ≤ j ≤ L, being 1, if there is a “routing” path
crossing directed arc j that ends in edge node i, and 0
otherwise. L is the size of the vector, as determined by the
algorithm. The set of paths in the network is determined by the
controller. ASC does not impose any constraints on the routing
decision of the controller, but uses the routing information
from the controller to assign IDs to the edges. It performs a
multi-layer classification of edge switches, where any edge can
belong to a number of groups. Let Ne be the number of paths
crossing a directed arc e ∈ E , the set of all directed arcs in the
network. ASC groups all edge switches that are destinations
of the paths crossing e ∈ E with Ne > 1 and repeats this for all
such edges. The classification vector of each access switch is
determined from this grouping. This information is also used
to encode flow rules in the core switches.

With ASC edge addressing, the core network becomes a
static fabric that delivers any packet arriving at one of its
inports to an appropriate outport without any further action.
ASC achieves the minimum internal state at core switches

Algorithm 1: AASC algorithm

Input: routing and graph information, limit L;
Extract grouping information and construct the set of all
these groups, named G;
Calculate number of rules per switch, set k = 1;
while G , ∅ or k ≤ L do

Find c, switch with largest number of rules;
Find G, largest group in G with source index c;
Set v(k) = 0 for a ∈ G and v(k) = 1 for s ∈ GC ;
Remove G and all other elements equal to it from G;
Recalculate number of rules in c;
Set k = k +1;

Add extra bits to v where necessary;
End.

[17]. As large networks may require a large ID space, [17]
proposes an approximate method that trades off the state of
transport switches for ID space and shows that a small increase
of this state brings a large reduction of the ID space. This
method, Approximate Access Switch Classification (AASC),
is what we use in this paper (cf. Algo.1).

A. Edge Configuration

We now discuss, how the flow setup can be done with our
fabric. To set up a flow, the controller needs to configure
only two switches: the source and the destination edge switch.
Consider a user (a mobile node) j attached to edge node i.
To locate the user in the network, we assign it the following
locator ID: (ecvi .uidi

j), where ecvi uniquely identifies edge
node i, and uidi

j identifies the user in the context of that edge.
This address changes as the user moves though the network.
This is to contrast with the IP address that the user receives
as part of the network attachment, which is essentially serving
as an identifier and remains constant throughout the session of
the user. Assuming IPV4 transport in the switches, we assign
12 bits to identify a user within an edge node and use the
remaining transport bits for the edges, i.e. L = 20.

The controller maintains a mapping between the IP and the
locator address for each user. On flow arrival, the attachment
edge switch (referred to as source edge) sends a packetIn to
the controller. The controller looks up the locator IP of the
destination of the flow (we assume that the destination is in
the same network). It then pushes a flow rule to the source
edge to encapsulate flow packets with the locator ID of the
destination edge. Similarly, it pushes a rule to the destination
edge to de-capsulate the packet. The forwarding in the core
switches is performed on (parts of) the locator ID in the outer
header. The destination edge uses the original IP address in
the packet to forward it to the receiver.

Our solution mitigates R1 by reducing the computational
load at the controller and the number of flowmods per flow to
exactly two, independently of the network size; it mitigates R2
by reducing the number of terms under maximization in (1) to
two. Finally, it solves R3 by pre-installing paths among edge
switches. Note that our solution maintains the control logic
and the fine-grained management capability of SDN: indeed,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2018.2871291

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



7

as it relies on usual OpenFlow flow rules, each of these can
be changed as required. Hence, the controller can reconfigure
core switches or the entire fabric as necessary. Furthermore,
the controller can deploy more complex fabrics catering for
different traffic classes or provide multiple paths among two
edges for load-balancing purposes. Besides, even within our
solution realm, the fine-grained management is preserved, as
the controller can still manage each individual flow at the edge.

The encapsulation and de-capsulation at the edge switches
may increase the processing load. However, in many settings
we expect much lower traffic loads at the edges than in the
core. Besides, the load of an edge switch can be well addressed
through network planning, as an edge switch only serves local
users: an edge switch can be assumed to be dimensioned to
process the load of the attached users (cf. [32] for an example).
We therefore do not expect that this extra processing overhead
at edges affects the performance in any significant way. Our
evaluation shows that this is indeed the case.

We implemented this solution in our testbed and studied
its performance through measurements. We show how the
flow setup procedure and more complex tasks, notably the
support of user mobility and the support for network topology
dynamics, perform over the fabric created using AASC. Our
implementation uses wildcard matching to forward packets
based on bits of the locator IDs embedded in the destination IP
address. We developed our flow setup and mobility solutions
on the Floodlight controller.

B. Flow Setup Latency

Fig.8 depicts the flow setup latency of our mechanism
for different topologies described in §IV-B. The results are
obtained through measurements over our testbed. We observe
that the latency is small in all cases: the median and 99-
percentile latencies are 1.15ms and 2.6ms for the small, 2.9ms
and 3.8ms for the medium, and 5.9ms and 7.7ms for the large
topology. With this, we conclude that our solution clearly
outperforms those studied in §IV-B and effectively reduces
the flow setup latencies, both in the median and the tail,
by factors 3 to 5 compared to the results shown in Fig.7.
Specifically, it provides a good performance in the tail, which
indicates its scalability: while we increase the network size
from 60 switches for small networks to 516 switches for large
networks, the 99-percentile of flow setup latency increases by
only a factor of 3 and remains below 8ms in all the cases.

Although our solution mitigates R1, it cannot completely
solve it, as the interplay of the multi-threaded Floodlight con-
troller, the used Java networking packages and the underlying
Linux operating system is quite complex, as discussed in
more detail in [25]. Our analysis shows that this explains
the observed increase of the flow setup latencies with the
growing network size. We insist, however, that these increases
are negligible, compared to values in Fig. 6 and Fig. 7.

In short, these results indicate that the proposed solution
efficiently mitigates problems R1, R2, and R3 and also provide
significantly better performance than the state of the art
solutions, as discussed in §IV-B. Furthermore, the proposed
solution is scalable, both for the fabric setup and, even more

small network size medium network size large network size
0

2

4

6

8

10

fl
o
w

 s
e
tu

p
 l
a
te

n
c
y
 (

m
s
)

Fig. 8. The flow setup latency measured over our testbed using our solution.

so, for the end-to-end flow setup, which is paramount to be
able to use SDN e.g. as an enabler for 5G mobile networks.

C. Network Dynamics and User Mobility

We now show how our solution can easily handle network
dynamics, such as topological changes and user mobility.

Support for topological changes and diverse failures in the
network, even if infrequent, is important, as the controller may
need to modify a large set of paths in the network when
they happen. The central insight is that we do not need an
instantaneous reconstruction of the classification vectors in the
case of topological changes, which would be time consuming.
To avoid it, we apply a “fast reaction” strategy: following a
topology change event in the fabric, we specify correcting
forwarding rules at the core switches for the flows affected
by these changes. This is a tradeoff: it comes at the cost of
additional flow table space, yet efficiently mitigates the time
criticality of the potentially required re-routing. This is also
to contrast to [33], in which interventions in all source access
switches of the flows affected by the changes are necessary.

To analyze the behavior of our solution under topological
changes, we perform additional experiments. To emulate such
network dynamics, we randomly choose core arcs in the
network and drop them, such that the edge-to-edge paths
affected by this change need to be re-routed. According to
the fast reaction strategy, this requires both addition of new
flow rules in some switches in the network and the removal of
rules in some others to avoid routing over old, incorrect paths.
We measure these additions and removals and report them in
Table I, varying the fraction of path changes from 10% to
30%. For comparison, we report the performance of a solution,
which performs per edge switch aggregation [30], referred to
as SoftCell. The results are shown for the large network with
K = 12. These results show that the proposed fabric solution
not only reduces the number of rules in individual switches,
but also does it in a way that enables efficient handling of
changes in the network: the number of added and removed
rules are in the same order, or even smaller, than when a
per edge aggregation mechanism such as SoftCell is used,
a clear indication that our solution does not affect the fine-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2018.2871291

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8

grained management capabilities of SDN and imposes no extra
overhead on the controller.

Path #added rules #removed rules
Changes SoftCell Our solution SoftCell Our solution

10% 1390 1390 1065 895
20% 2520 2520 1975 1450
30% 3530 3530 2615 2105

TABLE I
TOTAL NUMBER OF ADDED AND REMOVED RULES FOR SOFTCELL AND

OUR SOLUTION UNDER TOPOLOGICAL CHANGES.

In essence, our fabric produces logical pipes, which carry
traffic between any two edge switches in the network. When
users move through the network, their flows get migrated from
one pipe to another under the coordination of the controller.
This is done in the edges, using the old and new locator
assigned to the user. Thus, only three switches need to be
updated on user mobility: source, old destination, and new
destination edge switches (in the case the destination moves;
similar applies to source mobility). The motivation is to reduce
the involvement of the controller to the minimum possible and
to reduce the user mobility latency in SDN (by reducing the
effects of R1, R2, and R3). While being minimal, this still
allows the implementation of different edge-based mobility
support strategies. In this paper, we use the following strategy.

When a user moves to a new edge switch, a new locator ID
is assigned to the user by the controller. This new locator ID is
used to forward the new packets generated towards this user.
The controller therefore needs to update the forwarding rule
at the source edge switch, using this new locator ID. It also
installs a forwarding rule at the new destination edge switch,
in order to remove the encapsulation header and to forward
the packet to the user. The inflight packets however still carry
the old locator ID of the user in the header. The controller thus
installs a forwarding rule at the old destination edge switch, to
replace the old locator ID with the new locator ID in the header
of these packets, and to forward them to the new destination
edge switch. (It may set a timeout for this re-forwarding rule,
to be able to reuse the old locator ID for other users attached
to this edge switch). Besides, the old forwarding rules at the
previous destination switch needs to be removed. Clearly, this
is a more complex task than a classical flow setup procedure
and requires updating three access switches, notably adding
new and removing old rules. Our results show that all these
tasks can be performed very efficiently.

We implemented this mobility solution within Floodlight
and evaluated its performance on our testbed. We define the
handover latency as the difference between the RTT of a ping
packet sent immediately after a mobile user changes the point
of attachment and the RTT of a ping packet sent without
mobility. In other terms, we measure the additional latency
observed by the user, when the user changes the point of
attachment. Consequently, in contrast to the results in Fig.8,
which reports one-way latency, here we report the round-trip
time (RTT), which includes the time to reconfigure uplink and
downlink paths of a flow. Note that these two paths could be
disjoint. We show the results for the three topologies used in

this paper and for a user handover rate of 1000 handovers per
second. Fig. 9 depicts the results. We observe that our solu-
tion can efficiently handle user mobility providing handover
latencies below 20 ms in the largest topology. Specifically, the
median and the 99-percentile handover latencies are 8ms and
17ms, respectively. Note that these latencies, as RTT values,
are almost twice as big as the one-way flow setup latencies
depicted in Fig. 8. We can therefore claim that the one-way
handover latency remains in the same order as the one-way
flow setup latency, and hence, while dealing with a more
complex task, our solution provides the same performance.

small network size medium network size large network size
0

5

10

15

20

25

h
a
n

d
o
v
e
r 

la
te

n
c
y
 (

m
s
)

Fig. 9. The handover latency measured over our testbed using our solution,
for different network sizes and for a handover rate of 1000 users per seconds.

In summary, this section shows that the fabric-based solu-
tion not only can mitigate the scalability problem we observed
in §IV, but can also be easily extended to perform more
complex tasks such as handling user mobility and topological
changes. Using these insights, [34] describes, how this solution
can be used to provide an efficient service function chaining
in the network, and hence, support complex settings such as
core networks of mobile carriers.

VI. CONCLUSION

This article studies the performance of SDN from the end-
user perspective. It shows that a strictly separate handling of
topology and flows is essential for low latency guarantees.
These are in turn critical for many novel use cases such as
machine-type or V2X communications. The article presents
an alternative approach to flow setup in SDN, which separates
the control of edge and core switches and scales well to
large settings. We showed that the proposed solution not only
supports fine-grained end-user flow management, but can also
support more complex scenarios related to network dynamics.
In particular, we demonstrated and evaluated the support for
user mobility and network topology changes.

Multiple directions of future work are open. First, we are
interested in extending our study to the case of hardware
switches. As the flow rule installation latencies in hardware
switches exhibit higher variances than in software switches, we
expect the performance problem to be aggravated, especially
when the network is composed of a diverse set of hardware
switches. This is because switches from different vendors

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2018.2871291

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



9

switches might present different performances, increasing the
effect of R2 and R3. Second, we plan to study how to adapt
the hierarchical control [35] to our solution, to make it even
more scalable. Our initial results show the feasibility of that.
We are interested to study how more complex procedures,
such as dynamic SFC chaining, perform using our solution.
As indicated in §V, these procedures can be easily integrated
in our solution. The question is how they perform and scale.

REFERENCES

[1] Y. Jarraya, T. Madi, and M. Debbabi, “A survey and a layered taxon-
omy of software-defined networking,” IEEE Communications Surveys
Tutorials, vol. 16, no. 4, pp. 1955–1980, 2014.

[2] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present,
and future of programmable networks,” IEEE Communications Surveys
Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[3] N. McKeown and et al., “OpenFlow: Enabling Innovation in Campus
Networks,” ACM SIGCOMM CCR, vol. 38, no. 2, pp. 69–74, April 2008.

[4] ONF, “Software-defined networking: The new norm for networks,” in
Open Networking Foundation, April 2012.

[5] P. Berde and et al., “Onos: Towards an open, distributed sdn os,” in
ACM Workshop HotSDN, 2014.

[6] Floodlight, “Floodlight OpenFlow Controller – Project Floodlight.”
[Online]. Available: http://www.projectfloodlight.org/floodlight/

[7] T. Koponen and et al., “Onix: A distributed control platform for large-
scale production networks,” in USENIX OSDI, 2010.

[8] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On controller performance in software-defined networks,” in USENIX
Workshop Hot-ICE, 2012.

[9] M. Jarschel, F. Lehrieder, Z. Magyari, and R. Pries, “A flexible openflow-
controller benchmark,” in European Workshop EWSDN, 2012.

[10] OVS, “Open vswitch,” http://openvswitch.org/.
[11] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore, “Oflops:

An open framework for openflow switch evaluation,” in ACM PAM’12.
[12] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “Openflow switching:

Data plane performance,” in IEEE ICC, 2010.
[13] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based

networking with difane,” in ACM SIGCOMM, 2010.
[14] K. He and et al., “Measuring control plane latency in sdn-enabled

switches,” in ACM SOSR, 2015.
[15] 3GPP, “Service requirements for the 5G system; Stage 1,” 3GPP,

Technical Specification (TS) 22.261, 09 2017, version 15.2.0.
[16] H. Chen and T. Benson, “The case for making tight control plane latency

guarantees in sdn switches,” in ACM SOSR, 2017.
[17] R. Khalili, W.-Y. Poe, Z. Despotovic, and A. Hecker, “Reducing state

of sdn switches in mobile core networks by flow rule aggregation,” in
IEEE ICCCN, 2016.

[18] R. Bifulco and M. Dusi, “Position paper: Reactive logic in software-
defined networking: Accounting for the limitations of the switches,” in
European Workshop EWSDN, 2014.

[19] A. R. Curtis and et al., “Devoflow: Scaling flow management for high-
performance networks,” in ACM SIGCOMM, 2011.

[20] K. He and et al., “Latency in software defined networks: Measurements
and mitigation techniques,” in ACM SIGMETRICS, 2015.

[21] M. Kuźniar, P. Perešı́ni, and D. Kostić, “What you need to know about
sdn flow tables,” in ACM PAM, 2015.

[22] A. Lazaris and et al., “Tango: Simplifying sdn control with auto-
matic switch property inference, abstraction, and optimization,” in ACM
CoNEXT, 2014.

[23] “Mininet,” http://mininet.org/.
[24] ONFv14, “Openflow switch specification v1.4.0,” https:

//www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-spec-v1.4.0.pdf.

[25] C. C. Marquezan, Z. Despotovic, R. Khalili, D. Perez-Caparros, and
A. Hecker, “Understanding processing latency of sdn based mobility
management in mobile core networks,” in IEEE PIMRC, 2016.

[26] R. Nadiv and T. Naveh, “Wireless Backhaul Topologies: Analyzing
Backhaul Topology Strategies,” White Paper, Ceragon, August 2010.

[27] M. Howard, “Using carrier Ethernet to backhaul LTE,” White Paper,
Infonetics Research, February 2011.

[28] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM, 2008.

[29] T. A. Pascoal, Y. G. Dantas, I. E. Fonseca, and V. Nigam, “Slow tcam
exhaustion ddos attack,” in IFIP SEC, 2017.

[30] X. Jin, L. E. Li, L. Vanbever, and J. Rexford, “SoftCell: Scalable and
Flexible Cellular Core Network Architecture,” in ACM CoNEXT, 2013.

[31] J. Halpern and et al., “Service function chaining (sfc) architecture,” in
RFC 7665 (INFORMATIONAL), October 2015.

[32] K. He and et al., “Presto: Edge-based load balancing for fast datacenter
networks,” in ACM SIGCOMM, 2015.

[33] A. Hari, T. Lakshman, and G. Wilfong, “Path Switching: Reduced-State
Flow Handling in SDN Using Path Information,” in ACM CoNEXT’15.

[34] R. Khalili and et al., “Optimized service function chaining,” in IETF
draft. draft-khalili-sfc-optimized-chaining-00, March 2018.

[35] M. Moradi, L. E. Li, and Z. M. Mao, “SoftMoW: A Dynamic and
Scalable Software Defined Architecture for Cellular WANs,” in ACM
Workshop HotSDN, 2014.

Ramin Khalili received his B.Sc. from Shiraz Uni-
versity, his M.Sc. from the Sharif University of
Technology, both in Iran, and his Ph.D. in com-
puter networks and distributed systems from UPMC,
France. He was with the University of Massachusetts
at Amherst, EPFL, and the Telekom Innovation Lab-
oratories in Berlin, before joining the Huawei Re-
search Center in Munich, Germany. Ramin published
over thirty scientific papers and received multiple
best paper awards during these years.

Zoran Despotovic received his M.Sc from Univer-
sity of Belgrade, Serbia and his PhD in Computer
and Communication Systems from École Polytech-
nique Fédérale de Lausanne (EPFL), Switzerland.
After his graduation he worked for NTT DOCOMO
until September 2011, first as a senior researcher
and then as a manager. In 2011 he joined Huawei in
Munich, where he still works as a principal engineer.
Zoran participated in many EU funded projects and
published around forty scientific papers.

Artur Hecker (Dipl. inform. from Universität Karl-
sruhe, Germany; PhD from ENST, Paris, France)
is Director of Future Network Technologies at the
Munich Research Center of Huawei Technologies.
From 2006 to 2013, Artur was Associate Professor
at Télécom ParisTech, acting as Head of Security
and Networking research. Overall, Artur looks back
at more than 15 years of entrepreneurial, academic
and industry experience in networks, systems and
system security.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2018.2871291

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


