

Security Engineering for Large Scale Distributed Applications

Konstantin Beznosov

Electrical and Computer Engineering
University of British Columbia
http://konstantin.beznosov.net

airplanes vs. cars

- flying is fast
- driving is slow
- why isn't everybody flying?

why aren't secure systems everywhere?

almost completely insecure, or "secure" **but**

- too expensive and error-prone to build
- too complex to administer
- inadequate for real-world problems
- forever

examples

examples

- CORBA Security
 - no compliant system
 - over 600 pages
 - 3 days to install and configure a toy set up

- Web services security
 - harder than RPC-based CORBA

outline

- research direction
- access control mechanisms overview
- some things that can be done about it
- some specific things: attribute function, composable policy engines
- other research projects

what can be done about it?

improvements towards

- inexpensive and error-proof to build
- effective and inexpensive in administration
- adequate for problem domains
- easy and inexpensive to change and integrate

THE UNIVERSITY OF BRITISH COLUMBIA

access control mechanisms overview

conventional computer security

enforces the rules, when rule check is possible

overview of access control

Specific to Application Domain Request-specific Is attending physician? Subject Security Attributes Object Attributes role=physician id=Alice patient=Bob Authorization Context type=patient_record Not Engine sensitive subtype=current episode managed by Emerge Action Attributes Authorization security Decisions Fine admin-s grain Reference ons monitor **Object Security** Obj Subject Non-security **Attributes Subjects Access Control Attributes** owner=Fred

"physician can read medical records"

age=40

"attending physician can modify patient current episode sensitive records"

Mechanism

domain=hospital A

decision-enforcement paradigm

THE UNIVERSITY OF BRITISH COLUMBIA

some things that can make it better

separation of concerns

- application vendors sell application(s) product
- middleware vendors sell middleware products
- security vendors sell security products
- application owners sell service(s)

all security in middleware

studying DF expressiveness

K. Beznosov and Y. Deng, "A Framework for Implementing Role-based Access Control Using CORBA Security Service," Fourth ACM Workshop on Role-Based Access Control, Fairfax, Virginia, USA, 1999.

making better to administer

middleware security limitations

reconfigurable decision function

- K. Beznosov, Y. Deng, B. Blakley, C. Burt, and J. Barkley, "A Resource Access Decision Service for CORBA-based Distributed Systems," Annual Computer Security Applications Conference (ACSAC), Phoenix, Arizona, USA, 1999.
- OMG, Resource Access Decision Facility, Object Management Group, OMG document number: formal/2001-04-01, August 2001.

relationship-based access control

J. Barkley, K. Beznosov, and J. Uppal, "Supporting Relationships in Access Control Using Role Based Access Control," Fourth ACM Role-based Access Control Workshop, Fairfax, Virginia, USA, 1999.

RBAC ⊗ RAD == RelBAC

THE UNIVERSITY OF BRITISH COLUMBIA

one specific thing: attribute function

enforcement in middleware

how to get application data for decisions?

Coupled with the object

Disadvantages

- Each business object has to implement the backdoor
- Could be inefficient on expensive to activate objects
 - Weak in the face of denial of service attacks

a better way - Attribute Function

Advantages

- + security out
- + application data in
- + separation of concerns
 - EF middleware vendor
 - DF authorization vendor
 - AF application owner

Access Request K. Beznosov, "Object Security Attributes: Enabling Application-specific Access Control in Middleware," The 4th International Symposium on Distributed Objects & Applications, pp. 693-710, Irvine, California, October 28 - November 1, 2002.

THE UNIVERSITY OF BRITISH COLUMBIA

another specific thing: composable policy engines

K. Beznosov, "On the Benefits of Decomposing Policy Engines into Components," in *Proceedings of The 3rd Workshop on Reflective and Adaptive Middleware*, Toronto, Canada. October 19 2004.

problem motivation

Distributed app. developers/admins have limited choices:

- 1. Pre-built policy engines with limited capabilities
 - e.g., JAAS default policy file, COM+, EJB authorization
 - Limited support for non-trivial or application-specific policies
- 2. Pre-built policy engines "one size fits all" generic
 - e.g., CORBA
 - Unnecessary complex and expensive to use
- 3. "plug-in" APIs for creating custom "do-it-yourself" engines
 - e.g., CORBA Sec. Replaceable, JSR 115, SiteMinder and alike
 - Hard to do it right

premise

- common policy elements
 - e.g., authorizations based on roles, groups, location
- differences in
 - the weight and composition
 - e.g., location || (role && group) vs.role || (location && group)
 - application-specific factors
 - e.g., relations, certification, license

component framework for A&A policy engine

expected benefits

- wide range of supported policies
- "pay as you go" cost of supporting a policy
 - determined by required policy
 - not by policy engine complexity
 - incremental changes proportional to policy ∆-s
 - addition/removal/re-composition of policy components
 - re-use of existing policy logic by developers/administrators

THE UNIVERSITY OF BRITISH COLUMBIA

example 1

university course web service

university course web service policy

- 1. Anyone can lookup course descriptions.
- 2. All users should authenticate using HTTP-BA.
- 3. Registration clerks can list students registered for the course and (un)register students.
- 4. The course instructor can list registered students as well as manage course content.
- 5. Registered for the course students can download assignments and course material, as well as submit assignments.

policy engine assembly for example 1

example 2

human resources web service for an international organization

HR web service policy

- Only users within the company's intranet or those who access the service over SSL and have valid X.509 certificates issued by the company should access.
- 2. Anybody in the company can look up any employee and get essential information about her/him.
- 3. HR employees can modify contact information and review salary information of any employee from the same division.
- 4. HR managers can modify any information about the employees of the same division.

policy engine assembly for example 2

summary

- what
 - adequate for different application domains
 - inexpensive and error-proof to build
 - effective and inexpensive in administration and management
 - easy and inexpensive to change, and replace
- how
 - RBAC in CORBA
 - XACML
 - Resource Access Decision (RAD)
 - RelBAC
 - attribute function
 - composable policy engines

THE UNIVERSITY OF BRITISH COLUMBIA

other research projects

multiple-channel SSL

- end-to-end security with partially trusted proxies
- selective data protection

usability of security administration

- improving visualization of the information
 - existing cognitive models of security administration
- improving feedback to security administrators
 - "what if" scenarios
 - safe staging playgrounds
 - testing system state
- better cognitive models
- mappings between different mental models/abstractions
 - application-specific model oriented on business processes
 - mechanism-specific technical model

agile security assurance

- examined the mismatch between security assurance and agile methods
- 2. classified conventional security assurance practices according to the degree of clash
 - 1) natural match, 2) methodology nuetral, 3) (semi-)atomatable, 4) complete mismatch
- 3. suggested ways of alleviating the conflict
 - tool support, knowledge codification, agile-friendly assurance, intermittent assurance

Advanced ADAE/ADME Scheme

security diffuses in applications

attribute function in CORBA

