
A Framework for Implementing Role-based

Access Control Using CORBA Security Service

Konstantin Beznosov

beznosov@cs.fiu.edu

Center for Advanced Distributed Systems Engineering

School of Computer Science

Florida International University

May 14, 21

1999

Copyright c
1999 Konstantin Beznosov

We Will Discuss Today:

� CORBA access control model

� De�nition of CORBA protection state con�guration

� Framework for implementing RBAC models using CORBA Security

Service

� Example con�gurations of CORBA protection state that support RBAC

models

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 1

RBAC Introduction

� Role-based access control (RBAC) { a family of reference models:

{ permissions are associated with roles, and

{ roles and users are assigned to appropriate roles

� role can represent competency, authority, responsibility or speci�c duty

assignments

� relations

{ between roles

{ between permissions and roles

{ between users and roles

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 2

RBAC Introduction (cont'd.)

� established reference models:

1. unrelated roles (RBAC0),

2. role-hierarchies (RBAC1),

3. user and role assignment constraints (RBAC2), and

4. both hierarchies and constraints (RBAC3).

� supports three security principals: least privilege, separation of duties

and data abstraction.

� purpose { to facilitate access control administration and review.

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 3

Problem Statement

� RBAC is getting popular and recognized by the industry and the

government

{ Implementations of RBAC concepts in: Oracle, NetWare, Java,

DG/UX, object-oriented systems, object-oriented databases, MS

Windows NT, enterprise security management systems.

{ proposed rules on security from the DHHS include RBAC

� signi�cant �nancial investments in CS in commercial and government

organizations

� It is important to foresee if CS will fully support RBAC models

� No work in the research community that has explored the potential of

CS for support of RBAC reference models

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 4

Solution Overview

� De�ne a con�guration of CORBA protection system

� Re-de�ne RBAC models in the language of CORBA protection system

� Identify what needs to be implemented for support of RBAC0-RBAC3

besides CORBA security service

� Provide a check-list for users of CORBA Security Service

implementations

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 5

CORBA Security: Basics

� interfaces to a collection of objects for enforcing a range of security

policies

� abstraction from an underlying security technology

� not tailored to any particular access control model

� to be adequate for the majority of cases and could be con�gured to

support various access control models

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 6

CORBA Security Service (CS): Functions

� identi�cation and authentication

� authorization and access control

� auditing

� integrity and con�dentiality protection

� authentication of clients and target objects

� optional non-repudiation

� administration of security policies and related information

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 7

CS: Control Points

ORB

client application
access decision

Client
Object
Target

request

request

client-side invocation access decision

target application
access decision

target-side invocation access decision

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 8

CS: User Authentication

User
CreatePrincipal

Authenticator

User
Sponsor

Attributes

Credentials

Authenticate

ORB

Request

Client

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 9

CS: Access Control Model

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 10

Example for Illustration: Principals

Principal Attributes

p1 a1

p2 a2, a6

p3 a2, a3

p4 a4, a5

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 11

Interface and Operations

I = fi0; i1; :::iKg a set of interface types in a CORBA-based distributed

system S, where

K = j I j is the size of I

M = fm0;m1; :::;mNg a set of all operation names de�ned in S, where

N = j M j is the size of M

IM a set of operations from M uniquely identi�ed by interfaces from I

that they are de�ned on

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 12

Example: Required Rights Matrix

Operations Required Rights Combinator Allowed

i1m1 r1 all Only a principal who is

granted right r1

i1m2 r1, r2 any Any principal who is granted

either r1 or r2

i2m1 r2, r3 all Only a principal who is

granted both r2and r3

i2m2 r2, r3, r4 all Only a principal who is

granted all r2; r3; r4

i3m1 r1, r2, r3, r4 all Any principal who is granted

either of r1; r2; r3; r4

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 13

Example: Granted Rights Matrix

Attributes Granted Rights

Domain

d1 d2

ai1 r1 r2

ai2 - r1

ai3 r2;r3 -

ai4 r3 r1;r4

ai5 r1; r2; r3 r2; r3; r4

ai6 r6 r1

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 14

Example: Granted Rights per Principal

Principal Granted Rights

Domains

d1 d2

p1 r1 r2

p2 r6 r1

p3 r2;r3 r1

p4 r1; r2; r3 r1; r2; r3; r4

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 15

CORBA Protection State Con�guration

Thirteen-tuple (A, IM, O, R, D, C, RRM, DS, IDM, GRM,

e�ective rights, combine, interface operation):

A { the set of privilege attributes.

IM { the set of operations uniquely identi�ed by interfaces.

O { the set of distinguishable interface instances.

R { the set of rights.

D { the set of access policy domains.

C = fall, anyg { the set of rights combinators.

RRM { required rights matrix: [IM, Rights] �R, [IM, Combinator] 2 C .

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 16

CORBA Protection State Con�guration (cont'd.)

DS = fi, dg { the set of delegation states.

IDM { the matrix of domain membership for interface instances.

[D, O] �fT,Fg, [d; o] == T =) o 2 d.

GRM { granted rights matrix. [A, D] �R .

e�ective rights: D� 2A �! 2R, a function mapping a set of privilege

attributes in a domain to a set of e�ective rights.

combine: 2D � 2R �! 2R, a function mapping sets of rights for every

domain to a set of e�ective rights.

interface operation: M�O �! IM , a function mapping an operation

name m and an interface instance o into an interface operation.

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 17

Example: Operations Permitted to Principals

Principal Operations

Domains

d1 d2

p1 i1m1,

i1m2

i1m2

p2 - i1m1,

i1m2

p3 i1m2,

i2m1

i1m1,

i1m2

p4 i1m1,

i1m2,

i2m1

i1m1,

i1m2,

i2m1,

i2m2,

i3m1

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 18

Example: Access Matrix for Domain d2

Subjects Objects

i1 i2 i3

p1 i1m2

p2 i1m1, i1m2

p3 i1m1, i1m2

p4 i1m1, i1m2 i2m1, i2m2 i3m1

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 19

Some Observations

1. Subjects cannot be objects

2. No operations permitted on one object could be permitted on another

object

3. Implementations of the same interface in the same domain are

indistinguishable from the access control point of view

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 20

RBAC0: Base Model

Users in RBAC map to users in CS

Roles are represented by set A of privilege attributes of type role

Permissions are equivalent to the set of rights R in CS

Sessions are equivalent to principals, which are nothing but sets of

security attributes, from CS AC point of view

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 21

Correspondence between RBAC and CORBASEC

Notations

RBAC CS

Meaning Notation Meaning Notation

Users U Users U

Roles R Attributes of type \role" A

Role r Attribute of type \role" a

Permissions P Rights R

permission p Right r

Sessions S Principals P

Session s Principal p

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 22

Original RBAC0 De�nition

� U, R, P, and S (users, roles, permissions and sessions respectively)

� PA � P �R, a many-to-many permission to role assignment relation

� UA � U �R, a many-to-many user to role assignment relation

� user : S ! U, a function mapping each session si to the single user

user(si)

� roles : P ! 2R, a function mapping each session si to a set of roles

roles(si) �f r j (user(si), r) 2UAg and session si has the permissionsS
r2roles(si)
f p j (p, r) 2PAg

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 23

RBAC0 De�nition in the Language of CS

� U, A, R, P (users, attributes of type role, rights, and principals,

respectively)

� PA � R�A, a many-to-many assignment of granted rights to security

attributes of type role relation.

� UA � U�A, a many-to-many user to security attributes of type role

assignment relation

� user : P ! U, a function mapping each principal pi to the single user

user(pi), constant for the principal lifetime, and

� roles : P ! 2A, a function mapping each principal pi to a set of

privilege attributes of type role roles(pi) �f a j (user(pi), a) 2Ag and

principal pi has the granted rights
S

a2roles(pi)
fr j (r, a) 2PAg

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 24

To Support RBAC0

1. comply with CS standard

2. provide a means to administrate user-to-role assignment relation UA

3. provide a means for users to select through UserSponsor a set of roles

with which they would like to activate the new principal

4. implement PrincipalAuthenticator which creates principal credentials

containing privilege attributes of type role according to relation UA

5. implement PrincipalAuthenticator which creates principal credentials

containing one and only one privilege attribute of type AccessId

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 25

Original RBAC1 De�nition

� U, R, P, S, PA, UA, and user are unchanged from RBAC0

� RH� R � R is a partial order on R called the role hierarchy or role

dominance relation, also written as �, and

� roles : S ! 2R is modi�ed from RBAC0 to require roles(si) �f r j

(9r0 � r) [(users(si), r
0) 2UA] g (which can change with time) and

session si has the permissions
S

r2roles(si)
f p j (9r00 � r)[(p, r00) 2PA

] g
Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 26

RBAC1 De�ntion in CS Language

RBAC1 is RBAC0 with role hierarchies. RBAC1 implemented in CS is

formally de�ned as follows:

� U, A, R, P, PA, UA and user are unchanged from RBAC0.

� RH � A� A is a partial order on R called the role hierarchy, written

as �. It is the same as in [?].

� roles : P ! 2A is modi�ed from RBAC0 to require roles(pi) �f a

j (9 a0 � a) [(users(pi), a
0) 2UA]g and principal pi has the granted

rights
S

a2roles(pi)
fr j (9 a00 � a) (r, a00) 2PAg

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 27

Implementing RBAC1

� roles implemented and enforced by a Principal Authenticator

{ A user provides a set of roles to UserSponsor

� The PrincipalAuthenticator creates new credentials of the principal

{ Credentials have requested by user roles provided that they satisfy

the de�nition of function roles for RBAC1

� A valid implementation of RBAC1

{ Allows a user to specify any role junior to those the user is a member

of
� an implementation of PrincipalAuthenticator activates all roles

which are junior to the speci�ed

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 28

To Support RBAC1

1. Implement RBAC0

2. Provide a means to administration the role hierarchy relation RH

3. Implement PrincipalAuthenticator which creates principal credentials

containing privilege attributes of type role according to relations UA,

RH as well as function roles

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 29

RBAC2: Constraints

Constraints in RBAC are predicates that apply to UA and PA relations

and the user and roles functions

� Constraints on UA { user administrator tools

� Constraints on functions user and roles { PrincipalAuthenticator

� Constraints on PA { security administrator tools

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 30

To Support RBAC2

1. Implement RBAC0, and

2. Implement support of constraints on UA relation user administrator

tools, and

3. Implement PrincipalAuthenticator with support of constraints on

functions user and roles, and

4. Enable enforcement of constraints on PA relation by security

administration tools.

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 31

RBAC3: RBAC1 + RBAC2

To support RBAC3:

1. Implement RBAC1

2. Implement RBAC2.

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 32

Example Role Hierarchy

Production
Engineer 1
(PE1)

Quality

(QE1)
Engineer 1

Production
Engineer 2
(PE2)

Quality
Engineer 2
(QE2)

Director (DIR)

Project Lead 1 (PL2)Project Lead 1 (PL1)

Employee (E)

Engineering Department (ED)

Engineer 2 (E2)Engineer 1 (E1)

Project 2Project 1

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 33

Engineering Project Interface

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 34

Employee Interface

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 35

Hypothetical Access Control Policies

1. Anyone can lookup employee's name and experience.

2. Everyone in the engineering department can get a description of and

report problems regarding any project.

3. Engineers, assigned to projects, can make changes and review changes

related to their project.

4. Quality engineers can inspect the quality of projects they are assigned

to.

5. Production engineers can create new releases.

6. Project leaders can close problems.

7. The director can manage employees (assign them to projects, un-assign

them from projects, add new records to their experience, and �re) and

close engineering projects.

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 36

Additional Assumptions

� e�ective rights() returns a union of granted rights per attribute.

� combine() returns a union of rights granted in each domain.

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 37

Single Access Policy Domain Solution

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 38

Con�guration of System Protection State

A = fe, ed, e1, e2, pe1,pe2, qe1, qe2, pl1, pl2, dirg. All these attributes

have type role.

IM = fEmployee::get name, Employee::assign to project, Employee::unassign fro

Employee::add experience, Employee::get experience, Employee::�re,

EngineeringProject1::inspect quality, EngineeringProject1::make changes,

EngineeringProject1::report problem, EngineeringProject1::review changes,

EngineeringProject1::close, EngineeringProject1::close problem, EngineeringProj

EngineeringProject1::get description, EngineeringProject2::inspect quality,

EngineeringProject2::make changes, EngineeringProject2::report problem,

EngineeringProject2::review changes, EngineeringProject2::close, EngineeringPro

EngineeringProject2::create new release, EngineeringProject2::get descriptiong.

O = fe, ed, e1, e2, pe1,pe2, qe1, qe2, pl1, pl2, dir, prj1, prj2g. prj1

is an instance of EngineeringProject1, and prj2 is an instances of

EngineeringProject2. All other elements of O are instances of interface

Employee.

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 39

Con�guration of System Protection State (cont'd)

R = fgn, atp, ufp, ae, ge, f, mc1, rc1, iq1, rp1, cp1, cnr1, gd1, c1, mc2,

rc2, iq2, rp2, cp2, cnr2, gd2, c2g

D = fd1g

C = fallg { we use only one combinator.

DS = fi, dg

IDM { all interface instances are in members of the only access policy

domain.

e�ective rights (dj, a1; a2; :::al) �
S

ai;1�i�l
f r j r2GRM[ai, dj] g {

union of granted rights per attribute.

combine (r1;d1; r2;d1; :::rl;d1,..., r1;dp; r2;dp; :::rm;dp) � S f r j r 2

fr1;d1:::rm;dpgg { union of rights granted in each domain.

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 40

Required Rights Matrix

Operations Rights

Employee::get name gn

Employee::assign to project atp

Employee::unassign from project ufp

Employee::add experience ae

Employee::get experience ge

Employee::�re f

EngineeringProject1::get description gd1

EngineeringProject1::inspect quality iq1

EngineeringProject1::make changes mc1

EngineeringProject1::review changes rc1

EngineeringProject1::report problem rp1

EngineeringProject1::close problem cp1

EngineeringProject1::create new release cnr1

EngineeringProject1::close c1

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 41

Required Rights Matrix (cont'd)

Operations Rights

EngineeringProject2::get description gd2

EngineeringProject2::inspect quality iq2

EngineeringProject2::make changes mc2

EngineeringProject2::review changes rc2

EngineeringProject2::report problem rp2

EngineeringProject2::close problem cp2

EngineeringProject2::create new release cnr2

EngineeringProject2::close c2

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 42

Granted Rights Matrix

Privilege Attribute Rights

e gn, ge

ed gd1, gd2, rp1, rp2

e1 mc1, rc1

pe1 cnr1

qe1 iq1

pl1 cp1

e2 mc2, rc2

pe2 cnr1

qe2 iq1

pl2 cp1

dir atp, ufp, ae, f, c1, c2

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 43

Observations on the Solution

� It works

{ A lead of project 1 with role pl1 activated is able to invoke

� all instances of Employee: get name() and get experience()

� all instances of EngineeringProject1 : all but close() operations

� Signi�cant Administrative Overhead

{ Gratuitous use of a separate interface (EngineeringProject(1,2)) per

project

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 44

Multiple Domain Solution

Company (C)

Engineering Project 1 (EP1) Engineering Project 2 (EP2)

Engineering Department (ED)

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 45

Con�guration of a System Protection State

A, O, C, DS, e�ective rights, combine are the same as in the

single domain solution.

IM = fEmployee::get name, Employee::assign to project, Employee::unassign fro

Employee::add experience, Employee::get experience, Employee::�re,

EngineeringProject::inspect quality, EngineeringProject::make changes,

EngineeringProject::report problem, EngineeringProject::review changes,

EngineeringProject::close, EngineeringProject::close problem, EngineeringProject

EngineeringProject::get descriptiong.

R = fgn, atp, ufp, ae, ge, f, mc, rc, iq, rp, cp, cnr, gd, cg.

D = fC, ED, EP1, EP2g

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 46

Required Rights Matrix (RRM)

Operations Rights

Employee::get name gn

Employee::assign to project atp

Employee::unassign from project ufp

Employee::add experience ae

Employee::get experience ge

Employee::�re f

EngineeringProject::get description gd

EngineeringProject::inspect quality iq

EngineeringProject::make changes mc

EngineeringProject::review changes rc

EngineeringProject::report problem rp

EngineeringProject::close problem cp

EngineeringProject::create new release cnr

EngineeringProject::close c

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 47

Interface Instance Domain Membership

EP2

ED

qe2

e

C EP1

prj1

e1

pl1
pl2

pe2

ed

dir

e2

prj2

qe1

pe1

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 48

Interface Instance Domain Membership Matrix (IDM)

Interface Domains

Instance C ED EP1 EP2

e

p

ed

p p

e1

p p p

pe1

p p p

qe1

p p p

pl1

p p p

e2

p p p

pe2

p p p

qe2

p p p

pl2

p p p

dir

p

prj1

p p p

prj2

p p p

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 49

Granted Rights Matrix (GRM)

Attribute Rights

Domains

C ED EP1 EP2

e gn ge - -

ed - gd, rp - -

e1 - - mc, rc -

pe1 - - cnr -

qe1 - - iq -

pl1 - - cp, ae -

e2 - - - mc, rc

pe2 - - - cnr

qe2 - - - iq

pl2 - - - cp, ae

dir atp, ufp, f, c - - -

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 50

Di�erences

� Allows enforcement of the same policies

� No need in having separate EngineeringProject(1,2) interfaces per

project

� No need in having redundant rights.

� RRM and GRM are more comprehensible == easy to manage

� Can also support more
exible policies:

{ Project leaders can add experience to the records of the employees

working under supervision of the leaders.

{ Only colleges from the same department can lookup employee

experience.

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 51

Conclusions

� Implementations compliant with CS speci�cation can support RBAC0{

RBAC3.

{ Additional functionality non-speci�ed by CS is required.

� RBAC1: Implementations of PrincipalAuthenticator interface and

UserSponsor need to be aware of roles and their hierarchies.

� Support of constraints (RBAC2): a PrincipalAuthenticator has to

enforce corresponding constraints.

� Tools to administer user-to-role and role-to-rights relations are

also required.

� We set up a framework for implementing as well as for assessing

implementations of RBAC models using CS.

{ It provides directions for CS developers to realizing RBAC in their

systems.

{ It gives criteria to users for selecting such CS implementations that

support models from RBAC0-RBAC3 family.

Copyright c
 1999 Konstantin Beznosov. All Rights Reserved. 52

