
Accepted Manuscript

Realisability of pomsets

Roberto Guanciale, Emilio Tuosto

PII: S2352-2208(18)30166-4
DOI: https://doi.org/10.1016/j.jlamp.2019.06.003
Reference: JLAMP 470

To appear in: Journal of Logical and Algebraic Methods in Programming

Received date: 15 December 2018
Revised date: 8 May 2019
Accepted date: 19 June 2019

Please cite this article in press as: R. Guanciale, E. Tuosto, Realisability of pomsets, J. Log. Algebraic Methods Program. (2019),
https://doi.org/10.1016/j.jlamp.2019.06.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jlamp.2019.06.003

Realisability of Pomsets�

Roberto Guancialea,∗, Emilio Tuostob,∗∗

aKTH Royal Institute of Technology, Sweden
bGran Sasso Science Institute (IT) and Department of Informatics, University of Leicester (UK)

Abstract

Pomsets are a model of concurrent computations introduced by Pratt. We adopt pomsets

as a syntax-oblivious specification model of distributed systems where coordination

happens via asynchronous message-passing.

In this paper, we study conditions that ensure a specification expressed as a set of

pomsets can be faithfully realised via communicating automata. Our main contributions

are (i) the definition of a realisability condition accounting for termination soundness,

(ii) conditions accounting for “multi-threaded” participants, and (iii) an algorithm to

check our realisability conditions directly over pomsets, (iv) an analysis of the algorithm

and its benchmarking attained with a prototype implementation.

1. Introduction

Problem. Distributed software is notoriously hard to design and implement. The

complexity emerges from several factors. Unlike sequential software, modularisation

helps only partially to tame the complexity of the problem. This is due to the fact that,

no matter how one decomposes the problem at hand, by necessity there are multiple

points of control. Execution and computational states are therefore scattered across

multiple components. This makes it difficult to guarantee invariants of the computation:

on the one hand, such invariants are properties of the global state emerging from the

local states of the components; onye the other hand, design principles suggest to avoid

centralisation points in order to reduce bottlenecks and increase scalability (see [21])

and robustness (limiting single points of failures).

Hence, distributed components have to coordinate with each other in order to “agree”

on a global state to maintain invariants. The equation

distributed software = distributed control + coordination

helps to picture the consequences of this extra layer of complexity: for the satisfaction

of the invariant it is crucial to attain correct information flows through components. One

� Research partly supported by the EU H2020 RISE programme under the Marie Skłodowska-Curie grant

agreement No 778233.

The authors are grateful to the reviewers for the helpful comments.
∗Corresponding author

∗∗Corresponding author

Preprint submitted to Elsevier June 25, 2019

needs to develop components’ coordination so to provide them with the information

necessary to reach local states forming a global one satisfying the invariant. This is the

focus of this paper. In particular we are concerned with the realisability of coordination.

We position ourselves in the context of scenario-based specifications of distributed

software. A paradigmatic languages for scenario-based specifications are message-
sequence charts (MSCs) [25]). In this context, architects specify distributed coordi-

nation of their application by providing a finite set of (finite) MSCs, that is scenarios
that they want the application to guarantee. Basically, scenarios can be seen as global

specifications of the desired coordination. As observed in [1], a source of problems

is that there could be some specifications that are impossible to implement using the

local views in a given communication model. The problem becomes evident when

considering the schism [12, 31] between the design and the implementation level. In

this paper we capitalize on the lesson learned in [31], in particular that by expressing

conditions directly at the semantic level we can identify realizability notions that are

not language specific. As we show in the paper our generalization of [1] can be applied

to different choreographic formalisms. At design level, it is convenient to assume

synchronous communications among components because it makes it easier to reason

about coordination protocols. At the implementation level however, asynchronous

communication is typically assumed. For instance, asynchronous message-passing is

widely adopted in specification languages such as WS-CDL [32]) and programming

languages such as Erlang, Scala, and Go and featured in message-oriented middle-

wares [23]. This communication paradigm is also at the core of several formal models

(e.g. π-calculus [30, 24] and communicating automata [6]), choreography languages

(e.g. global calculus [7].

Contributions. We study the realisability problem of scenario-based specifications

given in terms of partially ordered multisets (pomsets) [28]. We propose pomsets

as an abstract model for global scenarios to analyse their realisability in terms of

asynchronous message-passing. More precisely, we assume asynchronous point-to-

point communications with a notion of realisability that

1. rules out systems where some participants cannot ascertain termination

2. admits multi-threaded participants

3. allows us to define syntax-oblivious conditions

4. can be decided by an analysis of the partial orders of communication events.

These features have several practical advantages. Indeed, by (1), we admit systems

where participants may get stuck on some messages, provided that the specification

accounts for that. The use of multi-threaded participants (2) makes our framework

more expressive than existing ones (see discussion on this point in [31]). Syntax

independent conditions (3) are applicable to different global models. Finally, (4) enables

the identification of design errors in global models rather than in execution traces where

they are harder to analyse.

The pomset framework of this paper and its relations with [1] appeared in [13].

Besides improving the presentation of the results in [13], this paper

• provides a deeper discussion on the merits of our approach,

2

• applies them in a choreographic context,

• gives examples to discuss the realisability of pomsets,

• provides a prototype implementation of our verification conditions discussing its

computational complexity and showing its effectiveness in practical scenarios.

A positive by-product of our approach is the efficiency gain in the verification of the

realisability conditions obtained when restricting to specific classes of choreographies

characterisable in term of behavioural types.

Outline. Section 2 reviews basic definitions while Section 3 presents a language for

global views and its pomset semantics. Section 4 discusses some elucidatory examples.

Section 5 illustrates the problems of realisability and sound termination; there, we also

recall (and adapt to pomsets) the verification conditions of [1]. Section 6 presents the

sufficient conditions for realisability and sound termination that can be checked over

partial orders. Section 7 describes an algorithm to check our realisability conditions, a

prototype implementation, and shows an application to a realistic scenario. Section 8

discusses on the new verification conditions from a software engendering point of view.

Finally, Section 9 discusses related work and Section 10 draws some conclusions.

2. Pomsets and message-sequence charts

We collect the main definitions needed in the rest of the paper. The material of

this section is not an original contribution1 and it is presented only to make the paper

self-contained borrowing and combining definitions and notations from [10, 1, 18, 6].

Definition 1 (Lposets [10]). A labelled partially-ordered set (lposet) is a triple (E ,≤,λ),
with E a set of events, ≤⊆ E ×E a reflexive, anti-symmetric, and transitive relation on
E , and λ : E → L a labelling function mapping events in E to labels in L .

Intuitively, ≤ represents causality; for e �= e′, if e ≤ e′ and both events occur then e′

is caused by e. Note that λ is not required to be injective: for e �= e′ ∈ E , λ(e) = λ(e′)
means that e and e′ model different occurrences of the same action.

Definition 2 (Pomsets [10]). Two lposets (E ,≤,λ) and (E ′,≤′,λ′) are isomorphic if
there is a bijection φ : E → E ′ such that e ≤ e′ ⇐⇒ φ(e) ≤′ φ(e′) and λ = λ′ ◦φ. A
partially-ordered multi-set (of actions), pomset for short, is an isomorphism class of
lposets.

Replacing lposets with pomsets allows us to abstract away from the names of events

in E . In the following, [E ,≤,λ] denotes the isomorphism class of (E ,≤,λ), symbols

r,r′, . . . (resp. R,R′, . . .) range over (resp. sets of) pomsets, and we assume that pomsets

r contain at least one lposet which will possibly be referred to as (Er, ≤r,λr). An event e
is an immediate predecessor of an event e′ (or equivalently e′ is an immediate successor

1Except for the different definition of accepting states of communicating automata.

3

of e) in a pomset r if e �= e′, e ≤r e′, and for all e′′ ∈ Er such that e ≤r e′′ ≤r e′ either

e = e′′ or e′ = e′′.
Hereafter, we consider pomsets labelled by communications representing output

and input actions between a sender and a receiver. This is done by instantiating the set

L of labels as follows.

Let P be a set of participants (ranged over by A, B, etc.), M a set (of types)

of messages (ranged over by m, x, etc.). We take P and M disjoint. Participants

coordinate with each other by exchanging messages over communication channels, that

are elements of the set C = (P ×P)\{(A,A) ∣∣ A ∈ P}. We abbreviate (A,B) ∈ C as

AB. The set of (communication) labels L is defined by

L = L ! ∪L ? where L ! = C ×{!}×M and L ? = C ×{?}×M

The elements of L ! and L ?, outputs and inputs, respectively represent sending and

receiving actions; we shorten (AB, !,m) as AB!m and (AB,?,m) as AB?m and let l, l ′,
. . . range over L . The subject of an action is defined by

sbj
(
AB!m

)
= A (the sender) and sbj

(
AB?m

)
= B (the receiver)

We will represent pomsets as (a variant2 of) Hasse diagrams of the immediate predecessor

relation; for instance, the pomset r(1) = [{e1, . . . ,e4},≤,λ] where λ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e1 → AB!x

e2 → AB?x

e3 → AB!y

e4 → AB?y
and ≤ is the order induced by the immediate-successor represented by the edges in the

following diagram

r(1) =

⎡
⎣ AB!x AB?x

AB!y AB?y

⎤
⎦ (1)

The projection r�A of a pomset r on a participant A ∈ P is obtained by restricting r
to the events having subject A: formally

r�A = [Er,A, ≤r ∩ (Er,A×Er,A), λr|Er,A]

where Er,A = {e ∈ Er

∣∣ sbj
(
λr(e)

)
= A}.

Pomsets are a quite expressive model and encompass MSCs3 which can be defined

as a proper subclass of pomsets.

Definition 3 (Well-formedness, completeness, and MSCs). A pomset r over L is well-

formed if for every event e ∈ Er

1. if λr(e) = AB!m, there is at most one e′ ∈ Er immediate successor of e in r with
λr(e′) = AB?m (and, if such e′ exists, we say that e and e′ match each other)

2Edges of Hasse diagrams are usually not oriented; here we use arrows so to draw order relations between

events also horizontally.
3Pomsets can also be used to give semantics to the composition of MSCs; see [18].

4

2. if λr(e) = AB?m, there exists exactly one e′ ∈ Er immediate predecessor of e in r
with λr(e′) = AB!m

3. for each e′ ∈Er, if e is an immediate predecessor of e′ and sbj
(
λr(e)

) �= sbj
(
λr(e′)

)
then e and e′ are matching output and input events respectively

4. for each e′ �= e ∈ Er with λr(e) = λr(e′) = AB!m, and for all ē, ē′ ∈ Er immediate
successors in r of e and of e′ respectively if λr(ē) = λr(ē′) = AB?m and e ≤r e′

then ē′ �≤r ē

Pomset r is complete if there is no send event in Er without a matching receive event.
A message-sequence chart is a well-formed and complete pomset r such that ≤r�A is

a total order, for every A ∈ P .

All conditions of Definition 3 are straightforward but condition (4), which requires

that ordered output events with the same label cannot be matched by inputs that have

opposite order.

Well-formed pomsets permit to represent inter-participant concurrency since they

keep independent non matching communication events of different participants. MSCs

are obtained by restricting participants to be single-threaded. The pomset r(1) indeed

corresponds to an MSC. Vertical arrows represent orders on the events of a participant;

for instance, the leftmost vertical arrow of r(1) represents that the output of the message x
of A to B precedes the output of y. (In MSCs’ jargon, this vertical arrow corresponds to

the lifeline of A.) Likewise, the rightmost vertical arrow constrains the order of message

reception. Basically, vertical arrows correspond to the projections of the pomsets on

participants; these projections are obtained by restricting r(1) to the events having the

same subject.

Well-formed pomsets can express intra-participant concurrency (i.e. multi-threaded

participants) since they do not require ≤r�A to be totally ordered. For example

r(2) =

⎡
⎣ AB!x AB?x

AB!y AB?y

⎤
⎦ (2)

is similar to r(1), but for the fact that it allows B to receive messages in any order. Note

that r(2) cannot be expressed with MSCs exactly because the events of B are not totally

ordered.

One may wonder why we use pomsets instead of simple partial orders. As shown in

the next example, sometimes we need to impose order on multiple occurrences of the

same communication events. For instance, in

r(3) =

⎡
⎣ AB!x AB?x

AB!x AB?x

⎤
⎦ (3)

A and B exchange the same message twice in a row.

Distributed choices are modeled via sets of pomsets R, so that each r ∈ R yields the

causal dependencies of the communications in a branch. For instance,

R(4) =

⎧⎨
⎩
⎡
⎣ AB!x

AB?x

⎤
⎦ ,

⎡
⎣ AB!y

AB?y

⎤
⎦
⎫⎬
⎭ (4)

5

represents a choice between exchanging message x or message y. As a further example,

R(5) =

⎧⎨
⎩
⎡
⎣ AB!x AB?x

AB!y AB?y

⎤
⎦ ,

⎡
⎣ AB!x AB?x

AB!y AB?y

⎤
⎦
⎫⎬
⎭ (5)

represents the fact that messages x and y can be exchanged in any order, but outputs and

inputs must have the same order.

A natural question to ask is:

“is it possible to realise R(4) and R(5) with asynchronously communicating

local views? ”

A similar question was answered for MSCs in [1]. Before answering the question

in the more general case of pomsets (cf. Section 5) we review how global views of

choreographies express more conveniently pomset-based scenarios. We remark that the

conditions of Section 5 are oblivious of the coordination language; the model of the next

section helps to illustrate how these can help in the design of distributed applications.

3. A choreographic model

Choreographic approaches have been advocated as suitable methodologies to handle

the complexity of distributed systems [19]. These frameworks envisage two views: a

global specification and a local one. The global view of a choreography is a contract

containing the common ordering conditions and constraints under which messages are

exchanged. The global specification is in turn realised by combination of the local

systems, which defines the behavior of each participant.

Here we model the local systems in terms of communicating automata, which are

formally introduced in Section 3.1. Pomsets can be seen as a model of global views of

choreographies and yield an abstract semantic framework for them [31].

In order to provide a more abstract and convenient framework for the specification

of scenarios closer to languages used in practice such as BPMN [27], Section 3.2

introduces a choreographic model for scenario-based specifications. We use this

choreographic model to give an intuitive presentation of the examples in Section 4,

while in Section 7 we use this model to discuss the effectiveness of our verification

framework in this more practical contexts.

We simplify the framework in [31] by providing a pomset semantics of global

specifications which does not account for their well-formedness. In other words, we

move the verification of realisability from the analysis of the global specifications to the

scenarios that they specify.

3.1. Local views

Local views are often conveniently modelled in terms of communicating automata
of some sort. An A-communicating finite state machine (A-CFSM) M = (Q,q0,F,→) is

a finite-state automaton on the alphabet L such that, q0 ∈ Q is the initial state, F ⊆ Q
are the accepting states, and for each q l−→ q′ holds sbj

(
l
)
= A. A (communicating)

6

system is a map S = (MA)A∈P assigning an A-CFSM MA to each participant A ∈ P . For

all A �= B ∈ P , we shall use an unbounded multiset bAB where MA puts the message to

MB and from which MB consumes the messages from MA.

The semantics of communicating systems is defined in terms of transition relations

between configurations which keep track of the state of each machine and the content

of each bag (i.e. unordered buffer) . Let S = (MA)A∈P be a communicating system.

A configuration of S is a pair s = 〈�q ; �b〉 where �q = (qA)A∈P maps each participant A

to its local state qA ∈ QA and�b = (bAB)AB∈C where the bag bAB : M → N is a map

assigning the number of occurrences of each message; state qA keeps track of the state

of the automaton MA and bag bAB keeps track of the messages sent from A to B. The

initial configuration s0 is the one where, for all A ∈ P , qA is the initial state of the

corresponding CFSM and all bags are empty. Given two configurations s = 〈�q ; �b〉 and

s′ = 〈�q′ ; �b′〉, relation s l=⇒s′ holds if there is a message m ∈ M such that either (1) or (2)

below holds:

1. l = AB!m and qA
l−→A q′A and

a. q′C = qC for all C �= A ∈ P ,

b. b′AB = bAB[m → bAB(m) + 1],

c. b′CD = bCD for all CD �= AB

2. l = AB?m and qB
l−→B q′B and

a. q′C = qC for all C �= B ∈ P ,

b. bAB(m)> 0, b′AB = bAB[m → bAB(m)−1],

c. b′CD = bCD for all CD �= AB

where, f [x → y] is the usual notation for the updating of a function f in a point x of its

domain with a value y. Condition (1) puts m on channel AB, while (2) gets m from

channel AB by simply updating the number of occurrences of m in the bag bAB. In

both cases, any machine or bag not involved in the transition is left unchanged in the

new configuration s′.
The automata model adopted in [1] is a slight variant of communicating-finite state

machines (CFSMs) [6]. The two models have the same definition of automata; they

differ in how communication is attained, but are equivalent up to internal transitions

(which in [1] have been used to simplify proofs). We used the definition of CFSMs

in [6] to encompass accepting states (necessary to define our notion of termination

soundness Definition 6). Another deviation from the definition of CFSMs introduced

in [6] is that bags become multisets in [1] while in [6] they follow a FIFO policy.

In order to avoid representing intra-participant concurrency with explicit interleaving a

more abstract model than CFSMs (such as session types or Petri nets) could have been

used for local views. However, since CFSMs are Turing complete (and therefore they

can express all possible local behaviors in the given communication model), we consider

them as a yardstick for realisability. Moreover, CFSMs feature a communication model

very similar to the ones used in several programming languages or communication

middlewares, like Erlang, Scala, and Akka.

Given a communicating system S, a configuration s = 〈�q ; �b〉 of S is (i) accepting
if all buffers in�b are empty and the local state�q(A) of each participant A is accepting

while (ii) s is a deadlock TODO if no accepting configuration is reachable from s. We

can then define the language of S as the set L(S) ∈ L� of sequences l0 . . . ln−1 such that

s0

l0=⇒ . . .
ln−1
==⇒sn and sn is an accepting configuration.

We adopt the definition of deadlock given in [?]. Notice that this definition is

7

intended to characterize systems that cannot terminate due to coordination problems

and differ with respect to the notion of deadlock in [8], which characterizes systems that

are not live.

3.2. Global views

Since scenario based approaches only consider finite protocols, we adopt the loop-

free fragment of the design language proposed in [9] and extended in [31, 12] where

a pomset semantics is also provided. In our language, dubbed global choreography
(g-choreography for short), interactions are the units of coordination. G-choreographies

are expressed according to the following grammar:

G ::= 0
∣∣ A−→B : m

∣∣ G;G′ ∣∣ G | G′ ∣∣ G + G′

A g-choreography can be empty; a simple interaction that represents the fact that partici-

pant A sends message m to participant B, which is expected to receive m; sequential

and parallel composition of g-choreographies; or the non-deterministic choice between

two g-choreographies. We implicitly assume A �= B in interactions A−→B : m. Each

g-choreography G can be represented as a graph. Akin to BPMN [27] diagrams, the

graphical notation in Fig. 1 yields a visual description of g-choreographies.

A−→B : m G G′

|

|

G G′

+

+

G

G′

empty interaction parallel branching sequential

Figure 1: Our graphs: ◦ is the source node, � the sink one

The semantics of a choice-free g-choreography G (i.e. a choreography that does

not contain + terms) can be expressed using a pomset, which represents the causal

dependencies of the communication actions specified by G. Intuitively, the semantics of

G + G′ consists of two (sets of) pomsets, one representing the causal dependencies of

the communication actions of G and the other of those of G′.
In order to define a pomset-based semantics of choreographies, we define two

important constructions to compose pomsets in parallel and sequentially, and corre-

sponding notations. In the following, given a natural number n, n represents the

singleton {n}. Also, we use X �Y to represent the disjoint union of two sets X
and Y : X �Y = (X × 1) ∪ (Y × 2). Finally, given a function f on X , we define

f ⊗ n = {(x,n) → f (x) | x ∈ X} as the function extending f to X ×n; analogously,

for a relation R ⊆ X ×Y , we let R⊗ n = {((x,n),(y,n)) | (x,y) ∈ R} be the relation

extending R to (X ×n)× (Y ×n).

8

Definition 4. Let r = [E ,≤,λ] and r′ = [E ′,≤′,λ′] be two pomsets. The parallel com-

position of r and r′ is:

par(r,r′) = [E �E ′, (≤⊗ 1)∪ (≤′ ⊗ 2), (λ⊗ 1)∪ (λ′ ⊗ 2)]

The sequential composition of r and r′ is:

seq(r,r′) = [E �E ′,≤seq,(λ⊗ 1)∪ (λ′ ⊗ 2)]

where

≤seq =

(
(≤⊗ 1)∪ (≤′ ⊗ 2)∪

⋃

A∈P

((Er,A×1)× (Er′,A×2))

)�

and � is the reflexive-transitive closure.

Both parallel and sequential composition preserve the causal dependencies of its

constituents ≤ and ≤′. However, while there is no new dependency introduced by the

parallel composition, the sequential composition of two pomsets adds to those in ≤
and ≤′ the dependencies among events in r and r′ with the same subject. Basically, a

causal relation is induced whenever a participant performing a communication in r also

performs a communication in r′.
The semantics of a g-choreography is a family of pomsets defined as

[[0]] = {ε}

[[A−→B : m]] = {[({e1,e2},{(e1,e1),(e2,e2),(e1,e2)},λ
)
]} where λ :

{
e1 → AB!m

e2 → AB?m

[[G | G′]] = {par(r,r′) | (r,r′) ∈ [[G]]× [[G′]]}
[[G;G′]] = {seq(r,r′) | (r,r′) ∈ [[G]]× [[G′]]}

[[G + G′]] = [[G]]∪ [[G′]]

The semantics of the empty g-choreography 0 and of interaction A−→B : m are straight-

forward; for the latter, the send part AB!m of the interaction must precede its receive

part AB?m. For the parallel composition G | G′ we take the union of the dependencies

of every possible execution, thus allowing the concurrent occurrence of the events of

each thread. The semantics of sequential composition G;G′ establishes happens-before

relations as computed by seq(r,r′). Finally, the semantics of choice enables all pomsets

of the constituent branches.

4. Realisability problems by examples

We now consider a few examples to discuss and anticipate some of the problems

related to implementing pomset-based scenarios using concurrent agents. In the

examples we use the visual representation of g-choreographies together with the

corresponding pomset semantics.

9

We first turn our attention to non-deterministic g-choreographies. Consider the

simple choice G(4) = A−→B : x + A−→B : y depicted below

A−→B : x A−→B : y

+

+

[[G(4)]] =

⎧⎨
⎩
⎡
⎣ AB!x

AB?x

⎤
⎦ ,

⎡
⎣ AB!y

AB?y

⎤
⎦
⎫⎬
⎭

The semantics [[G(4)]] contains one pomset for each branch. It is easy to realise G(4) since

participant A decides which message (between x and y) is delivered to B.

Another example of choreography that can be implemented by distributed compo-

nents is G(6) = A−→B : x;B−→C : z + A−→C : y;C−→B : w for which we have

A−→B : x

B−→C : z

A−→C : y

C−→B : w

+

+

[[G(6)]] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

AB!x

AB?x

BC!z

BC?z

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

AC!y

AC?y

CB!w

CB?w

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6)

Here, participant A decides which branch is taken and informs either B or C, which

in turn notifies the third participant. Intuitively, participant B can wait for a message

coming from A or C and identify the selected branch accordingly.

The choreography G(7) = A−→B : x + A−→C : x provides an example of problematic

choices. We have

A−→B : x A−→C : x

+

+

[[G(7)]] =

⎧⎨
⎩
⎡
⎣ AB!x

AB?x

⎤
⎦ ,

⎡
⎣ AC!x

AC?x

⎤
⎦
⎫⎬
⎭ (7)

Here A decides to which participant the message x is delivered. The participant not

selected by A has no way to identify if/when the choice has been made.

Consider now G(8) = A−→B : x;
(
0 + A−→B : y;B−→C : z

)
; we have

A−→B : x

0 A−→B : y

B−→C : z

+

+

[[G(8)]] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣ AB!x

AB?x

⎤
⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AB!x

AB?y

AB!x

AB?y

BC!z

BC?z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

10

The choice in G(8) is unsound. In fact, after the interaction A−→B : x, the choreography

can either immediately terminate or continue with interactions A−→B : y and B−→C : z.
This can lead the participants B and C to wait indefinitely.

Another example of incorrect choice is G(9) = A−→B : x + C−→D : x represented

below with its semantics:

A−→B : x C−→D : x

+

+

[[G(9)]] =

⎧⎨
⎩
⎡
⎣ AB!x

AB?x

⎤
⎦ ,

⎡
⎣ CD!x

CD?x

⎤
⎦
⎫⎬
⎭ (9)

Basically, G(9) requires both A and C to commit to a distributed choice without any

communication among them.

The choreography G10 = G + G′, where G = (A−→B : x | C−→B : x);A−→B : z and

G′ = A−→B : y;C−→B : y;A−→B : z, has a similar obstacle for realisability. The graphical

representation and the semantics of G(10) are

A−→B : x C−→B : x

|

|

A−→B : z

A−→B : y

C−→B : y

A−→B : z

+

+

[[G(10)]] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣ AB!x

AB!z

AB?x

AB?z

CB?x CB!x

⎤
⎦,

⎡
⎢⎢⎢⎢⎢⎣

AB!y

AB!z

AB?y

CB?y

AB?z

CB!y

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

Here, participants A and C should both send the message x or both send the message y.

However, A and C do not coordinate to achieve this behaviour; this makes it impossible

for them to distributively commit to a common choice.

Let G(11) =G + G′ where G= (A−→B : m;D−→B : y) | (A−→C : x;D−→C : y) and G′ =
(D−→B : y;A−→B : m) | (D−→C : y;A−→C : x). Pictorially G(11)s is

A−→B : x A−→C : x

D−→B : y D−→C : y

|

|

D−→B : y

A−→B : x

D−→C : y

A−→C : x

|

|

+

+

(11)

11

has two branches that describe different orders of the same set of events; in fact

[[G(11)]] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

AB!x AB?x

DB?y DB!y

AC?xAC!x

DC?y DC!y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

DB?y DB!y

AB?xAB!x

DC!yDC?y

AC?xAC!x

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

The behaviour of A (and D) is the same in both branches: A (resp. D) concurrently

sends message x (resp. y) to B and C. The behaviours of B and C differ: in the left

branch they first receive the message from A then the one from D, in the right branch,

they have the same interactions but in opposite order. This choreography cannot be

realised since, intuitively, it requires B and C to commit on the same order of reception

without communicating with each other.

The presence of concurrent threads can introduce problems as well. The chore-

ography G(12) = G | G′, where G = A−→C : l1;B−→C : l2;A−→B : x;B−→C : l3 and G′ =
A−→C : r1;B−→C : r2;A−→B : x;B−→C : r3, consists of two concurrent choreographies:

A−→C : l1

B−→C : l2

A−→B : x

B−→C : l3

A−→C : r1

B−→C : r2

A−→B : x

B−→C : r3

|

|

[[G(12)]] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AC!l1

BC!l2

AB?xAB!x

BC!l3

AC?l1

BC?l2

BC?l3

AC!r1 AC?r1

BC!r2

AB?xAB!x

BC!r3

BC?r2

BC?r3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

The semantics of this choreography consists of a single pomset, which is equal to the

disjoint union of two pomsets. In this example, the usage of the same message in the

two constituent threads can cause the following problem:

1. the left thread of A executes AC!l1 and AB!x
2. after the output BC!r2, the right thread of B executes the input AB?x, so “stealing”

the message x generated by the left thread of A and meant for the left thread of B
3. the right thread of B executes BC!r3.

This violates the constraint that event AC!r1 must always precede event BC!r3, which

the specification imposes independently of the interleaved execution of the participants’

threads.

Realisability conditions that are syntax-oblivious permit to analyze cases that do not

correspond to g-choreographies.

r13.a =

⎡
⎢⎢⎢⎢⎣

AB!x AB?x

CB?x

AB?yAB!y

CB!x

⎤
⎥⎥⎥⎥⎦ r13.b =

⎡
⎢⎢⎢⎢⎣

AB!z AB?z

CB?z

AB?yAB!y

CB!z

⎤
⎥⎥⎥⎥⎦ (13)

12

In the choreography represented by r13.a, A can send messages in any order, while B
must first receive the message x. The singletons {r13.a} and {r13.b} are easily realisable

using CFSMs. However there is no g-choreography whose semantics is exactly {r13.a} or

{r13.b}, because the participant B would have to be multi-threaded while in the semantics

the events of B are sequentially ordered. Therefore, the set of pomsets R13 = {r13.a,r13.b}
is also not expressible as g-choreography. Note however, that the set R13 is not realisable,

because it requires both A and C to commit to a distributed choice (delivery of message

x or z) without any communication among them.

5. Realisability and termination soundness of pomsets

The notion of realisability and sound termination (cf. Definitions 5 and 6 below)

are given in terms of the relation between the language of the global view and the one

of a system of local views “implementing” it. Our notion of realisability considers

languages over L as sets of traces of the distributed executions of the CFSMs discussed

in Section 3.1, analogously to [1]. Hereafter, we assume all structures, including

languages, words and pomsets, to be finite.

Given a pomset r, a linearization of r is a string in L� obtained by considering a

total ordering of the events Er that is consistent with the partial order ≤r , and then

replacing each event by its label. More precisely, let | Er | be the cardinality of Er, a

word w = λr(e1) . . .λr(e|Er |) is a linearization of a pomset r if e1 . . .e|Er | is a permutation

that totally orders the events in Er so that if ei ≤r e j then i ≤ j. For a pomset r, define

L(r) to be the set of all linearizations of r. A word w over L is well-formed (resp.

complete) if it is the linearization of a well-formed (resp. complete) pomset. Hereafter,

for a word w ∈ L�, w�A denotes the projection of w that retains only those events where

participant A ∈ P is the subject. Operation �A acts element-wise on languages over L .

The language of a set of pomsets R is simply defined as L(R) =
⋃

r∈RL(r).
We can now give the notion of realisability .

Definition 5 (Realisability). A language L ⊆ L� is weakly realisable if there is a
communicating system S such that L = L(S); when S is deadlock-free we say that L is
safely realisable. A set of pomsets R is weakly (resp. safely) realisable if L(R) is weakly
(resp. safely) realisable.

The notion of realisability is meaningful when pomsets are well-formed and com-
plete, namely when they yield a proper match among receive and send events.

In general, safe realisability is not enough to rule out undesirable designs. In fact, it

admits systems where participants cannot ascertain termination and may be left waiting

forever for some messages. This may lead non-terminating participants to unnecessarily

lock resources once the coordination is completed. We explain this considering G(8)

which can be interpreted as follows. Participant A starts a transaction with B by sending

message x. The left branch (i.e. left pomset of [[G(8)]]) represents a scenario where

the transaction was started but neither committed nor aborted. The right branch (i.e.

the right pomset) represents a scenario where the transaction started and eventually

committed. Yet, B is uncertain whether message y is going to be sent or not and hence

B be could locally decide to terminate immediately after receiving x leaving C waiting

13

for message z. However, depending on the application requirements, it may be the case

that termination awareness is important for B and not for C because e.g., either C is not

“wasting” resources or it is immaterial that such resources are left locked. To handle

this limitation we introduce a novel termination condition, which allows to specify the

subset of participants that should be able to identify when no further message can be

exchanged.

The notion of sound termination requires that in accepting configurations some

participants of interest do not have input transitions making them wait while other

participants have terminated.

Definition 6 (Termination soundness). A participant A ∈ P is termination-unaware in
a system S if there exists an accepting configuration 〈�q ; �b〉 reachable in S having a
transition departing from�q(A) that is labelled in L ?.

A set of participants P ′ ⊆ P is termination-aware in a system S if no participant
A ∈ P ′ is termination-unaware in S. A language L over L is termination-sound for
P ′ ⊆ P if L is safely realisable by a system for which P ′ is termination-aware. A set of
pomsets R is termination-sound for P ′ if L(R) is termination-sound for P ′.

Realisability and termination soundness can be established by analyzing verification

conditions of the language. In [1] two closure conditions are introduced that entail weak

and safe realisability. A word w over L is P -feasible for L ⊆ L� if ∀A ∈ P : ∃w′ ∈
L : w �A= w′ �A. In [1], a language L over the alphabet L that enjoys the following

condition

L ⊇ {w ∈ L�
∣∣ w well-formed, complete, and P -feasible for L}

is said4 to be CC2. Intuitively, the closure condition CC2 entails that L is realisable by

the set of participants performing the actions in L : if each participant cannot tell apart a

trace w with one of its expected executions (i.e., those in L) then w must be in L or, in

the terminology of [1], w is implied. Closure condition CC2 characterises the class of

weakly realisable languages over L .

Theorem 1 ([1]). A language L is weakly realisable if, and only if, L contains only
well-formed and complete words and satisfies CC2.

The language L(R(11)) of the set of pomsets R(11) of Eq. (11) is not closed under CC2.

In fact, the well-formed and complete word

AB!x; AB?x; DB!y; DB?y; DC!y; DC?y; AC!x; AC?x (14)

satisfies the conditions of CC2, because the projection of the word (14) on each partici-

pant equals the projection of a linearization of one of the pomsets in R(11) on the same

participant. However, (14) is not in the language L(R(11)), because AC?x must precede

DC?y in all the words obtained by the linearization of the first pomset in R(11), while

in those obtained by a linearization of the other pomset in R(11), DB?y must precede

AB?x.

4We stick with the terminology in [1] where closure conditions are not given specific names.

14

The realisability entailed by condition CC2 is “weak” because it does not rule out

possibly deadlocking systems. Therefore, an additional closure condition, dubbed CC3,

has been identified in [22, 1]. A language L over the alphabet L has the closure condition

CC3 when

pref(L)⊇ {w ∈ L�
∣∣ w well-formed and P -feasible for pref(L)}

where pref(L) is the prefix closure of L. Basically, condition CC3 states that any (partial)

execution that cannot be told apart by any of the participants is a (partial) execution in L.

And now the following result characterises safe realisability.

Theorem 2 ([22, 1]). A language L is safe realisable if, and only if, L contains only
well-formed and complete words and satisfies CC2 and CC3 5.

Once a language L is known to be realisable, we get a system S(L) = (MA)A∈P

realising L by defining, for all A ∈ P

MA = (pref(L�A),ε,L�A,−→) where w l−→ w.l if w.l ∈ pref(L�A)

Then, in [1] the following result is shown.

Theorem 3 ([1]). If L is a weakly realisable language then L(S(L)) = L. Moreover, if
L is safely realisable then S(L) is deadlock-free.

We introduce a new verification condition for termination soundness. A participant

A ∈ P is termination-unaware for the language L over L if there exist w,w′ ∈ L such

that w �A is a prefix of w′ �A and the first symbol in w′ �A after w �A is in L ?. Given a

set of participants P ′ ⊆ P , we say that L is P ′-terminating when there is no A ∈ P ′

termination-unaware for L. The language of the family of pomsets [[G(8)]] is {A}-

terminating. However, such language is not {B}-terminating. In fact, after receiving

the message AB?x, participant B cannot distinguish whether A terminates or will send

AB!y; hence B ends up in a state where it is ready to fire the input AB?y, but no

matching output could arrive from A. And likewise for C.

Theorem 4. For P ′ ⊆P , if L is P ′-terminating and safely realisable then it is termination-
sound for P ′.

Proof. The proof is straightforward. Let S(L) be the system obtained from the construc-

tion of Theorem 3. S(L) is deadlock-free and L = L(S(L)). Let A ∈ P ′, w ∈ L, and s an

accepting configuration reached in a run of S corresponding to w. For each w′ ∈ L such

that w�A is prefix of w′ �A, the first symbol in w′ �A after w�A cannot be an input (since

L is P ′-terminating). Therefore, by construction of S(L), there is no input transition

departing from the local state of A in s.

5The theorem in [1] describes a different condition, CC2’, which is easier to implement and is equivalent

to CC2 when in conjunction with CC3

15

AC!l1

AB!x

AC!r1

AB!x

BC!l2

AB?x

BC!l3

BC!r2

AB?x

BC!r3

BC?l2

AC?l1

AC?l3

BC?r2

AC?r1

AC?r3

Figure 2: Inter-participant closure of pomset of Eq. (12)

6. Pomset-based verification conditions

We introduce a different approach to check realisability and sound termination of

specifications, which does not require to explicitly compute the language of the family

of pomsets. This allows us to avoid the combinatorial explosion due to interleavings.

The main strategy is to provide alternative definitions of closures directly on pomsets

which handle both intra- and inter-participant concurrency. Besides theoretical benefits,

this yields a clear advantage for practitioners. In fact, design errors can be identified

and confined in more abstract models, closer to the global specification than to traces of

execution. Also, our verification conditions require to analyze sets of pomsets; therefore,

they are syntax-oblivious. As discussed in Section 8, our conditions strictly entail the

corresponding ones in Section 5

Definition 7 (Closure). Let ρ be a function from P to pomsets and (rA)A∈P be the
tuple where rA = ρ(A)�A for all A ∈ P . The inter-participant closure �((rA)A∈P)
is the set of all well-formed pomsets [

⋃
A∈P ErA , ≤I ∪⋃

A∈P ≤rA ,
⋃

A∈P λrA] where
≤I⊆ {(eA,eB) ∈ ErA ×ErB ,A,B ∈ P

∣∣ λrA(e
A) = AB!m,λrB(e

B) = AB?m}.

Informally, the inter-participant closure takes one pomset for every participant and

generates all “acceptable” matches between output and input events. We use Eq. (12)

and Fig. 2 to illustrate the inter-participant closure. The singleton [[G(12)]] contains one

pomset that is the composition of two independent pomsets, which intuitively represent

two concurrent “threads”. The first thread, dubbed r(12)a , is made of the eight leftmost

events in Eq. (12) and the second thread, dubbed r(12)b , is made of the eight rightmost

events in Eq. (12). Let rR be the projection of the single pomset in [[G(12)]] for R ∈ P ,

then the inter-participant closure of (rR)R∈P consists of the two well-formed pomsets

of Fig. 2, the one that uses the black and green dependencies, and the one that uses the

black and red dependencies. Notice that the order ≤I in Definition 7 is a subset of the

product of outputs and matching inputs and this the closure to contain only well-formed

pomsets. For example, the closure of [[G(12)]] does not contain the pomset having both

green and red arrows.

Definition 8. A pomset r is less permissive than pomset r′ (or r′ is more permissive

than r, written r � r′) when Er = Er′ , λr = λr′ , and ≤r⊇≤r′ .

16

Lemma 1. If r � r′ then L(r)⊆ L(r′).

Definition 9 (CC2-POM). A set of pomsets R over L satisfies closure condition CC2-
POM if for all tuples (rA)A∈P of pomsets of R, for every pomset r ∈�((rA�A)A∈P), there
exists r′ ∈ R such that r � r′.

Intuitively, Definition 9 requires that if all the possible executions of a pomset cannot

be distinguished by any of the participants of R, then those executions must be part of

the language of R. Theorem 5 below shows that CC2-POM entails CC2; its proof is

based on “counting” the number of events with a certain label l preceding an event e in

the order ≤r of a pomset r: we write cardr
l (e) for such number (namely, cardr

l (e) is the

cardinality of {e′ ∈ Er

∣∣ e′ ≤r e∧λr(e′) = l}).

Theorem 5. If R satisfies CC2-POM then L(R) satisfies CC2.

Proof. Let w be a well-formed and complete word over L that satisfies hypothesis of

CC2: for every participant A ∈ P there exists wA ∈ L(R) for which w�A= wA �A. Then,

for each A ∈ P , there is a pomset rA ∈ R such that a linearization �A of rA yields wA. We

can hence take the pomset

r =

[
⋃

A∈P

ErA�A , ≤I ∪
⋃

A∈P

≤rA�A ,
⋃

A∈P

λrA�A

]

where

≤I=
⋃

B�=A∈P

{
(eA,eB) ∈ ErA�A ×ErB�B

∣∣ λrA(e
A) = AB!m and λrB(e

B) = AB?m

and card
rA�A
AB!m(eA) = card

�
rB�B
AB?m(eB)

}

The pomset r is in �((rA�A)A∈P), since it is well-formed and complete and ≤I satisfies

conditions of Definition 7. In fact, since w is well-formed and complete, all send and

receive events have corresponding matching events. Also by construction, w ∈ L(r)
and, for every A, r�A� rA�A. Finally, by CC2-POM there exists r′ ∈ R such that r � r′,
therefore w ∈ L(r′) hence w ∈ L(R).

Theorems 5 and 1 demonstrate that CC2-POM is a sufficient condition for weak-

ralisability. The families of pomsets [[G(4)]], [[G(6)]], [[G(7)]], [[G(8)]], [[G(9)]], [[G(10)]], {r13.a},

and R13 of Section 4 satisfy CC2-POM. For the other families of pomsets, we report one

of the pomsets in the inter-participant closure that does meet the closure condition:

• for [[G(11)]] the following pomset captures the case when B and C do not agree on

the order of message reception:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

DB?y DB!y

AB?xAB!x

AC!x AC?x

DC!yDC?y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

17

• for [[G(12)]] the pomset of Fig. 2 that uses the black and red dependencies, which

represents the case when the right thread “steals” the message x generated by the

left thread.

The next condition requires to introduce the concept of prefix of a pomset r, which

is a pomset r′ on a subset of the events of r that preserves the order and labelling of r;

formally (following [18])

Definition 10 (Prefix pomsets). A pomset r′ = [E ′,≤′,λ′] is a prefix of pomset r =
[E ,≤,λ] if there exists a label preserving injection φ : E ′ → E such that φ(≤′) =≤
∩(E ×φ(E ′))

We remark that an arbitrary sub-pomset satisfies the weaker condition φ(≤′) =≤
∩(φ(E ′)×φ(E ′)). Instead, φ(≤′) =≤ ∩(E ×φ(E ′)) prevents events in E \φ(E ′) from

preceding events in φ(E ′) and it is equivalent to say that for all e′ ∈ E ′ if there is

e ≤ φ(e′) then there exists e′′ ∈ E ′ such that φ(e′′) = e and e′′ ≤′ e′.

Lemma 2. Let r be a pomset over L and w be a word in L�, w ∈ pref(L(r)) if, and only
if, there exists a prefix r′ of r such that w ∈ L(r′).

Definition 11 (CC3-POM). A set of pomsets R over L satisfies closure condition CC3-
POM if for all tuples of pomsets (r̄A)A∈P such that r̄A is a prefix of a pomset rA ∈ R for
every A, and for every pomset r̄ ∈�((r̄A�A)A∈P) there is a pomset r′ ∈ R and a prefix r̄′

of r′ such that r̄ � r̄′.

Theorem 6. If R satisfies CC3-POM then L(R) satisfies CC3.

Proof. Let w be a word that satisfies hypothesis of CC3: for every participant A ∈ P ,

there exists a word wA ∈ pref(L(R)) such that w�A= wA �A. Therefore, there is a pomset

r̄A prefix of a pomset rA ∈ R such that wA ∈ L(r̄A) and let �A be one of the linearizations

of r̄A that corresponds to wA. Define

r̄ =

[
⋃

A∈P

Er̄A�A , ≤I ∪
⋃

A∈P

(≤r̄A�A

)
,

⋃

A∈P

λr̄A�A ,

]

where

≤I=
⋃

B�=A∈P

{
(eA,eB) ∈ Er̄A�A ×Er̄B�B

∣∣ λr̄A(e
A) = AB!m and λr̄B(e

B) = AB?m

and card
r̄A�A
AB!m(eA) = card

r̄B�B
AB?m(eB)

}

The pomset r̄ is in �((r̄A�A)A∈P), since it is well-formed and ≤I satisfies conditions of

Definition 7. In fact, since w is well-formed, all receives have matching sends. Also

by construction, w ∈ L(r̄) and, for every A, r̄�A� r̄A�A. Hence, by CC3-POM there

exists r′ ∈ R and a prefix r̄′ of r such that r̄ � r̄′, therefore w ∈ L(r̄′) and therefore

w ∈ pref(L(R)).

From Theorems 2, 5 and 6, it follows that if a set of pomsets R satisfies CC2-POM
and CC3-POM then L(R) is safe realisable (notice that CC3-POM alone is not a sufficient

condition for safe realisability, [22] demonstrates that both CC2 and CC3 are necessary).

18

The families of pomsets [[G(4)]], [[G(6)]], [[G(7)]], [[G(8)]], and {r13.a} of Section 4 satisfy

CC3-POM. Families of pomsets [[G(11)]] and [[G(12)]] are not realisable, since they do not

satisfy CC2-POM. For the other families of pomsets, we report one of the pomsets in

the inter-participant closure of the prefixes that does meet the condition of CC3-POM:

• for [[G(9)]] the pomset
[

AB!x CD!x

]
represents the case when A and D do not

agree on which participant should communicate

• for [[G(10)]] the following pomset represents the case A and C do not agree on the

message to deliver ⎡
⎣ AB!y

AB!z

AB?y CB!x

⎤
⎦

• for R13 the following pomset represents the case A and C do not agree on the

message to deliver [
AB!x AB?x CB!z

]
Like for the closure conditions, we lift the sufficient condition for termination

soundness to pomsets.

Definition 12 (Terminating pomsets). A participant A ∈ P is termination-unaware for
a set of pomsets R if there are r,r′ ∈ R, and a label-preserving injection φ : Er�A → Er′�A
such that ≤= φ(≤r�A)∪ ≤r′�A is a partial order and

min≤(Er′�A)⊆ φ(min≤r�A
(Er�A)) and min≤(Er′�A \φ(Er�A))∩L ? �= /0

Given a set of participants P ′ ⊆ P , we say that R is P ′-terminating when there is no
A ∈ P ′ termination-unaware for R.

Theorem 7. Given P ′ ⊆ P , if R is P ′-terminating then L(R) is P ′-terminating.

Proof. Given a word w ∈ L(R), there is a pomset r ∈ R such that w ∈ L(R). Let A ∈ P ′

and assume that there is w′ ∈ L(R) such that w�A is a prefix of w′ �A. Therefore, there

is a pomset r′ ∈ R such that w′ �A∈ L(r′�A). Let e1, . . . ,en and e′
1, . . . ,e

′
n′ , with n < n′, be

the linearizations of ≤r and ≤r′ respectively for the world w and w′ respectively. Let

φ be the injection that maps ei to e′
i for 1 ≤ i ≤ n, then ≤= φ(≤r�A)∪ ≤r′�A is a partial

order. Therefore min≤(Er′�A \φ(Er�A))∩L ? �= /0 since R is P ′-terminating, thus the first

symbol of w′ after w cannot be an input.

We use Eq. (15) to describe termination awareness. B is termination-unaware for

the set of pomsets [[G(15)]]. In fact, let φ : Er(15)a�B → Er(15)b
�B be the only possible label-

preserving injection, then ≤= φ(≤r(15)a�B)∪≤r(15)b
�B is the partial order in Eq. (15).c, and

min≤(Er(15)b
�B \φ(Er(15)a�B)) = {AB?w} is not disjoint from L ?. Intuitively, ≤ represents

the intersection of the languages of the two pomsets r(15)b�B and r(15)a�B.

19

⎡
⎢⎢⎢⎢⎣

AB!x

AB!y

AB!z

AB?x

AB?y

AB?z

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AB!y

AB!x

AB?y

AB!z

AB!w

AB?x

AB?w

AB?z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AB!x AB?x

AB!y AB?y

AB!z AB?z

AB!w AB?wAB?w

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r(15)a r(15)b ≤r(15)a
∪ ≤r(15)a

(15)

The families of pomsets [[G(4)]], [[G(6)]], [[G(10)]], [[G(11)]], and [[G(12)]] are terminating for

all principals.

• [[G(7)]] is not terminating for B, since the projection of the right pomset on B is

the empty pomset, this is a prefix of the projection of the left pomset on B, and

the first non-common event for B is the input AB?x

• [[G(8)]] is not terminating for B (and C), since the projection of the left pomset on

B is a prefix of the projection of the right pomset on B, and the first non-common

event for B is the input AB?y (the input BC?z for C)

7. Verifying our closure conditions

Checking CC2-POM and CC3-POM is decidable since we assume R to be a finite

set of finite pomsets and P to be finite. For CC2-POM, there are finite tuples (rA)A∈P of

pomsets of R and for each tuple the inter-participant closure is a finite set of finite pom-

sets. For CC3-POM, the number of prefixes of pomsets in R is also finite. Sections 7.1

and 7.2 describe the algorithms6. Section 7.3 benchmarks our prototype on some of

the examples in Section 4, while Section 7.4 evaluates how it performs on a simple yet

realistic scenario.

7.1. Auxiliary operations
The key algorithm in the pseudo-code in Fig. 3 is the one at lines 9-19. Basically,

inter_participant_closure computes the inter-participant closure assuming that

the input tuple t = (rA)A∈P consists of pomsets such that A is the subject of all the events

in rA. Before commenting on inter_participant_closure, we focus on the other

two algorithms in Fig. 3.

Given a (DAG representing a) pomset and two disjoint lists of nodes, the function

connect_linearizations (lines 1-2 in Fig. 3) extends the order of the pomset adding

the relations between the i-th event of �e1 and �e2. This function is used to add the

dependencies constraining the outputs �e1 to precede the corresponding inputs in �e2.

6Our prototype implementation is available at https://bitbucket.org/guancio/chosem-tools.

20

1 c o n n e c t l i n e a r i z a t i o n s ([E ,≤,λ],�e1,�e2)
2 r e t u r n

(
E , (≤ ∪i∈0..min(|�e1|,|�e2|)−1 (�e1[i],�e2[i])

)�
, λ)

3

4 a l l g r a p h s f o r i n p u t (r,AB?m) :
5 Ls = lin(r�AB!m)
6 Lr = lin(r�AB?m)
7 r e t u r n

⋃
�e1,�e2∈Ls×Lr

c o n n e c t l i n e a r i z a t i o n s (r,�e1,�e2)
8

9 i n t e r p a r t i c i p a n t c l o s u r e (t) :
10 r = ∪A∈P t(A)
11 i f ∃l ∈ L?.#(r,AB?m)> #(r,AB!m)
12 r e t u r n /0
13 R = {r}
14 f o r AB?m ∈ L? :
15 R′ = /0
16 f o r r ∈ R :
17 R′+= a l l g r a p h s f o r i n p u t (r,AB?m)
18 R = R′
19 r e t u r n R

Figure 3: Implementation of inter-participant closure for one tuple of pomsets

Note that the result is a pomset when�e1 ∪�e2 is a list of events of E both not containing

duplicated events and such that�e2[i] �≤�e1[i] for every 0 ≤ i < min(|�e1|, |�e2|).
Given a pomset r, the function all_graphs_for_input (lines 4-7 in Fig. 3) com-

putes all possible ways the events labeled with output AB!m can be connected to a

corresponding input event while preserving the dependencies of participant A and B. In

fact, when computing the inter-participant closure, if the same message is exchanged

multiple times then there can be multiple ways to obtain a well-formed pomset. For

example, in the pomset⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

AB!m

e1 e2

AB!m AB!m

e3 e4

AB?m

e5 e6

AB?m

AB?m

e7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

there are four possible ways to order events labelled with AB!m with those labelled

with AB?m. The function computes all possible linearizations of the outputs, all

linearizations of the inputs (which therefore respect the dependencies of the sender

and receiver), and generates a new pomset for each pair of linearizations by using

connect_linearizations.

We return now to the key algorithm of Fig. 3. The inter-participant closure is obtained

by iterating the all_graphs_for_input procedure on each input label. Notice that the

21

function inter_participant_closure returns an empty set of pomsets if there exists

an input label that occurs more often than the corresponding output label. This and the

use of linearizations ensure that the resulting set contains only well-formed pomsets.

Computing the inter-participant closure is in general expensive due to the combi-

natorial explosion of the possible linearizations of matching events. This is due to the

presence of multiple and independent instances of the same action.

Definition 13. Let r be a pomset over L . Two events e1,e2 ∈ Er are concurrent repeti-

tions if

• λr(e1) = λr(e2)

• neither e1 ≤r e2 nor e2 ≤r e1

• for all predecessors e ≤r e1, events e,e2 are not concurrent repetitions

• for all predecessors e ≤r e2, events e1,e are not concurrent repetitions

We use ∼ to identify the largest equivalence relation that ensures if e1 ∼ e2 than either
e1 = e2 or e1 and e2 are concurrent repetitions. An action l ∈ L concurrently repeats in

r if there exist e �= e′ such that λr(e) = λr(e′) = l and e1 ∼ e2 .

Since r is acyclic, then the equivalence classes of Er/∼ that have the same label

are totally ordered. For a tuple t, let r = ∪A∈P t(A) be the union of the participant’s

branches, the number of pomsets in the inter-participant closure is proportional to

∏E∈Er/∼
2card(E). Therefore, if there are few concurrently repeating actions then the size

of the inter-participant closure is small (e.g., there is at most one pomset in the closure

of a pomset with no concurrently repeating actions).

In practice, the presence of actions that concurrently repeat is limited. The sce-

nario in Section 7.4 illustrates this point. Some specification formalisms even impose

conditions that syntactically avoid this issue (e.g. see well-forkedness of [31] or the

even more restrictive conditions of e.g., [17]). In fact, sending the same message in

two independent threads may “confuse” receivers making it hard (or impossible) to

decide which receiving thread should consume the message and possibly leading to

coordination problems.

7.2. Checking pomset-based closures
The pseudo-code in Fig. 4 checks condition CC2-POM for a set of pomsets R. To

do this, CC2-POM uses the function

1 g e t a l l b r a n c h e s (R) :
2 f o r A ∈ P :
3 branches[A] = /0
4 f o r r ∈ R :
5 i f not ex is t more permiss ive (r�A , branches [A]) :
6 branches[A]+ = r�A
7 r e t u r n branches

that retrieves all branches of every participant. This function filters out the branches of

participants by using

22

1 CC2−POM(R) :
2 branches = g e t a l l b r a n c h e s (R)
3 t up les = branches [A1] × . . . × branches [An]
4 i pc = ∪t∈tuples i n t e r p r o c e s s c l o s u r e (t)
5 f o r r ∈ i pc :
6 i f not ex is t more permiss ive (r , R) :
7 r e t u r n f a l s e
8 r e t u r n t rue

Figure 4: Verification of CC2-POM

1 ex is t more permiss ive (r , R) :
2 r e t u r n ∃r′ ∈ R | subgraph is isomorph ic (r′ , r)

that avoids adding duplicate pomsets and to reduce the number of pomsets used for the

inter-participant closure. For example, participants A and D have the same behavior in

both the pomsets of [[G(11)]].
The cartesian product (line 3 of Fig. 4) of the principal branches returns a set whose

each element is a tuple that has one pomset per principal.

Similarly to the case of inter-participant closure, the cost of checking CC2 de-

pends on the presence of concurrently repeated actions. The complexity of finding a

label-preserving graph isomorphism (subgraph_is_isomorphic) is exponential in the

number of events. More precisely, let e1 ≈ e2 be the equivalence relation λr(e1) = λr(e2),
and let Er/≈ be the corresponding equivalence classes. The complexity of finding a

label-preserving isomorphism is ∏E∈Er≈ 2card(E). However, since the graphs are acyclic,

the complexity can be bound to the number of concurrently-repeated actions. In fact, the

classes of Er/∼ that have the same label are totally ordered. Therefore for every label l,
a graph isomorphism between r and r′ can map events in the i-th equivalence class of

Er/∼ having label l only to events in the i-th equivalence class of Er′ /∼ having label l.
For this reason the complexity of finding a label-preserving isomorphism is exponential

in ∏E∈Er/∼
2card(E). For this reason, if there are no concurrently repeated actions in R

then checking CC2-POM can be done in polynomial time with respect to the number of

events.

Finally, algorithm in Fig. 5 checks condition CC3-POM for a set of pomsets R. The

function get_all_prefixes returns all prefixes of a pomset by simply iterating all

possible subsets of events that satisfies the dependencies.

7.3. Benchmarking our algorithms

To assess how our algorithms perform we implemented a prototype tool. Our tool

is written in Python and relies on the NetworkX package for graph operations. In fact,

pomsets are represented as direct labelled acyclic graphs to implement the algorithms

presented in Sections 7.1 and 7.2. The main NetworkX’s primitive used in the prototype

is subgraph_is_ismorphic(r1,r2), which returns true iff r1 and r2 have the same

23

1 g e t a l l p r e f i x e s (E ,≤,λ) :
2 E ′ = E
3 to process = { /0}
4 p r e f i x e s = /0
5 whi le (to process �= /0) :
6 p r e f i x = to process . pop ()
7 f o r e ∈ E ′\p r e f i x :
8 i f {e′ | e′ ≤ e}\p r e f i x = /0 :
9 to process +=p r e f i x∪{e}

10 p r e f i x e s += [pre f ix,≤,λ]
11 r e t u r n p r e f i x e s
12

13

14 CC3−POM(R) :
15 branches = g e t a l l b r a n c h e s (R)
16 f o r A ∈ P :
17 p r e f i x e s [A] = ∪r∈branches[A] g e t a l l p r e f i x e s (r)

18 t up les = p r e f i x e s [A1] × . . . × p r e f i x e s [An]
19 i pc = ∪t∈tuples i n t e r p r o c e s s c l o s u r e (t)
20 R′ = ∪r∈R g e t a l l p r e f i x e s (r)
21 f o r r ∈ i pc :
22 i f not ex is t more permiss ive (r , R′) :
23 r e t u r n f a l s e
24 r e t u r n t rue

Figure 5: Verification of CC3-POM

24

CC2-POM CC3-POM CC3 (DS)

B N I E T B N I E T M T

[[G(4)]] 4 4 2 0 1 6 9 5 0 2 2 0

[[G(6)]] 6 8 2 0 3 11 48 9 0 11 2 0

[[G(7)]] 6 8 2 0 1 7 12 5 0 2 0 0

[[G(8)]] 6 8 2 0 2 14 64 27 0 46 12 1

[[G(9)]] 8 16 4 1 3 8 16 9 4 5 0 0

[[G(10)]] 6 8 2 0 3 16 120 38 10 64 3 0

[[G(11)]] 6 4 4 2 9 18 400 100 18 340 8 1

[[G(12)]] 3 1 4 2 16 0 2304 668 258 9297 2400 13978

Table 1: Benchmarks: B: average distinct branches per principal; N: number of tuples; I: number of pomets

in the inter-participant closure; E: number of pomsets that do not satisfy the condition; T: total time in

milliseconds; M: number of Equivalent MSCs; T CC3: milliseconds to initialize the algorithm to check CC3
on MS Cs

number of nodes and r1 is isomorphic to a subgraph of r2. If two graphs represent

pomsets then the predicates holds iff r2 � r1.

One of the advantages of checking CC�-POM instead of CC� is that the former does

not require the explicit computation of the language of the family of pomsets, which

can lead to combinatorial explosion due to interleavings. For example, [[G(12)]] contains

one pomset and has two actions that occur concurrently: AB!x and AB?x . Therefore

the inter-participant closure has two pomsets (see Fig. 2). Checking the relation �
between these pomsets and the pomset in [[G(12)]], requires to iterate over all possible

label preserving isomorphisms. However, since all actions except AB!x and AB?x do

not occur concurrently, there are only two of such isomorphisms. Checking CC� can

be more expensive. The left and right subpomsets of Eq. (12), which represent the two

threads, have 32 different linearizations, each one consisting of 8 events. Therefore

the language of [[G(12)]] consists of 32 ∗ 32 ∗ 28 = 218 words. For this reason, directly

analyzing the inter-participant closure in Fig. 2 is more efficient than generating the

languages.

We collected some measurements on the performance of our prototype in Table 1.

The experiments have been executed on a Intel 2.2 Ghz i7 with 16 GB of RAM. The table

reports the outcome for the evaluation of CC�-POM for some of the examples presented

earlier. The prototype identifies several errors for scenarios that are not safely realisable,

reporting the pomsets that do not meet the closure conditions as counterexamples. As

shown in Table 1, the evaluation of closure conditions is pretty fast for simple examples.

However, the number of prefixes to check in CC3-POM can be large when participants

have several concurrent threads. It is worth noticing that for [[G(11)]] and [[G(12)]] the

realisability check can terminate before checking CC3-POM since these examples do

not satisfy CC2-POM. The last two columns of the table report metrics to compare

our approach with respect to checking CC3 using an implementation that we devised

following the algorithm described in [1]. For this algorithm, the set of pomsets must be

expressed via MSCs, whose participant’s projections are totally ordered pomsets. For

this reason, the number of MSCs that must be analyzed (column “M”) is large when the

25

C−→A : auth

A−→B : authReq

B−→A : denied

A−→C : authFail

B−→A : granted

+

C−→A : checkBalanceC−→A : quit C−→A : withdraw

A−→B : authWithdrawal

B−→A : allow B−→A : deny

A−→C : byeA−→C : money

+

+

+

A−→C : advert

G1

A−→C : advert

G0

B−→A : getBalance

G2

|

|

|

|

A−→C : balance

+

+

Figure 6: The ATM choreography

original pomsets have intra-participant concurrency. We implemented only the part of

the algorithm in [1] for the generation of the data structures (DS) necessary to check

CC3, for this reason the time reported in the last column represents only the time needed

to generate the MSCs and to prepare the indexing tables used by the algorithm, and it

does not account for the actual time needed to check the closure condition. As shown in

Table 1, the time to generate the DS for [[G(12)]] (the last row of Table 1) is higher than

the time our prototype takes to check CC3-POM (by a factor of 1.5).

7.4. Applying our prototype

In this section we test how our prototype implementation behaves on a simple,

yet realistic, scenario where indeed there is a small number of concurrently repeating

actions. We consider an application involving three components, a user C (after Carol),

an ATM A, and a bank B. The application can be described by the global graph in Fig. 6.

Notice that two advertises are delivered concurrently from the ATM to Carol, therefore

the actions AC!advert and AC?advert are concurrently repeating. Moreover, we use

G0, G1, and G2 as placeholders for different sub-choreographies used to benchmark our

implementation.

26

CC2-POM CC3-POM CC3
|Gi| B N I E T B N I E T M T

0 5 125 8 0 89 13 1760 102 16 2026 16 4

1 5 125 8 0 109 13 1760 102 16 2262 16 7

2 5 125 8 0 135 23 7296 436 26 19770 2704 21532

Table 2: Benchmarks: |Gi|: number of interactions in G0, G1, and G2; B: average distinct branches per

principal; N: number of tuples; I: number of pomets in the inter-participant closure; E: number of pomsets

that do not satisfy the condition; T: total time in milliseconds; M: number of Equivalent MSCs; T CC3:

milliseconds to initialize the algorithm to check CC3 on MSCs

The workflow is pretty standard but for the two (intentional) design glitches de-

scribed below. Initially, Carol provides her card and credentials to the ATM (message

auth) which requires the authentication to the bank (message authReq). The back

decides whether to deny or authorise7 the use of the card; in the former case A informs

C that the authorisation has been denied and the process terminates. The branch where

the access is granted (message granted) yields the first glitch due to the fact that B’s de-

cision is not properly propagated to Carol, which could send the message checkBalance
even if the access is denied. This prevents the example to satisfy CC3-POM. Basically,

the architect forgot to specify that, after the granted message is received from the bank,

the options for Carol should be displayed. The second glitch is due to the fact that the

bank is not informed when Carol opts to quit the session with the ATM. This can lead

the bank to wait indefinitely for a message when the authorization is granted and Carol

quits. Therefore this example is not {B}-terminating.

Table 2 reports the benchmarks for checking CC2-POM and CC3-POM for this

example using our prototype Python tool and the time needed to initialize the algorithm

to check CC3 from [1]. The workflow is parameterised with respect to the three sub-

choreographies G0, G1, and G2 in order to vary the number of prefixes the algorithm has

to check. More precisely, the sub-choreographies have been instantiated with sequential

composition of zero, one, and two interactions, where each interaction uses a unique

message.

8. Discussion on the pomset based conditions

Section 7.3 shown that checking the verification conditions using pomsets can be

more efficient than explicitely generating the languages. Moreover, if a pomset is

thought of as the specification of a possible scenario of a system, a further practical

advantage of using the conditions of Section 6 is that problems can be discovered at

design-time. This permits to easily isolate the problematic scenarios of a specification

even if they share multiple traces with non-problematic scenarios.

The fact that CC�-POM are syntax oblivious allows us to analyse realisability of

scenarios independently of the expressiveness of the choreography language. For in-

7We assume that all the choices are non-deterministic in order to abstract away from the actual conditions

used locally by participants.

27

AC!l1

AB!x

AC!r1

AB!x

BC!l2

AB?x

BC!l3

BC!r2

AB?x

BC!r3

BC?l2

AC?l1

AC?l3

BC?r2

AC?r1

AC?r3

(a) r(7)a

AC!l1

AB!x

AC!r1

AB!x

BC!l2

AB?x

BC!l3

BC!r2

AB?x

BC!r3

BC?l2

AC?l1

AC?l3

BC?r2

AC?r1

AC?r3

(b) r(7)b

Figure 7: A set of pomsets language-equivalent to the pomset with red and black dependencies of Fig. 2, but

explicitly interleaves the events BC!l2 and BC!r2 (cyan dependencies)

stance we can conclude that the scenario {r2} is realisable even if it cannot be expressed

using the choreographic model of Section 3.2. Also, our conditions allow to establish

realisability of the following singleton set of pomsets, which is usually not accepted by

specification formalisms because their syntactic driven constrains prevent sending the

same message in two independent threads.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AB!x AB?x

AB!y AB?y

AB!x AB?x

AB!z AB?z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

As discussed in Section 8, our conditions strictly entail the corresponding ones in

Section 5 pomset with green dependencies of Fig. 2. Then, R(2) satisfies CC2-POM,

since it contains all pomsets that satisfy hypothesis of the closure condition, therefore

by Theorem 5 its language satisfies CC2. Consider the set R(7) = {r(7)a ,r(7)b ,r(2)green},

where r(7)a and r(7)b are the two pomsets of Fig. 7. Notice that r(7)a and r(7)b are equivalent

to r(2)red , with the exception of the dependency between BC!l2 and BC!r2. Since r(7)a

and r(7)b have opposite orders between these two events, the union of their languages is

equal to the language of r(2)red . Therefore the language of R(7) is equal to the language

of R(2), hence it also satisfies CC2. However, R(7) does not satisfy CC2-POM. In fact,

the pomset r(2)red satisfies hypothesis of CC2-POM, but there is not pomset in R(7) that is

more permissive than r(2)red .

9. Related work

The surge of message-passing applications in industry is revamping the interest

for software engineering methodologies supporting designers and developers called

to realise communication-centred software. In this context, realisability of global

specifications is of concern for both practical and theoretical reasons. Our approach can

support choreography languages (e.g. the global graphs used in [31] that allow multi-

threaded participants and complex distributed choices). These specifications yield at the

28

same time (i) concrete support to scenario-based development, (ii) rigorous semantics

in terms of partial order of communication events that enable the use of algorithms

and tools to reason about and verify communicating applications, and (iii) a simple

graphical syntax that supports the intuition and makes it easy to practitioners to master

the specification without needing to delve into the underlying theory.

A paradigmatic class of such formalisms are message-sequence charts (MSCs) [25,

11, 26, 16, 14, 15, 2]. A mechanism to statically detect realisability in MSCs is proposed

in [3]. The notions of non-local choices and of termination considered in [3] are less

than our verification conditions since intra-participant concurrency is not allowed and

termination awareness (Definition 6) is not enforced. In the context of choreographies,

several works (e.g., [4, 7, 17]) defined constraints to guarantee the soundness of the

projections of global specifications. These approaches address the problem for specific

languages, thus these conditions often use information on the syntactical structure of

the specification. Instead, conditions presented in Section 6 are syntax-oblivious and

they make minimal assumptions on the communication model. Therefore, our results

can be applied to a wide range of languages.

The closure conditions reviewed in Section 5 have been initially introduced in

[1] to study realisability of MSC. The replacement in the framework of MSC with

pomsets is technically straightforward and yields more general results, since it enables

multi-threaded participants. In Section 5, to avoid systems where participants can get

stuck due to the termination of some partners, we introduce the notion of termination

soundness and demonstrate sufficient conditions that guarantee it. Then, we introduce

new verification conditions for the distributed realisability of pomsets, which can tame

the combinatorial explosion due to the interleaving of communication events.

A problem related to realisability is satisfiability of logical formulae. Model checkers

use temporal logic, i.e. LTL, to formalize system specifications. A general problem

that must be faced is that formal specifications can be wrong as their implementations.

For instance, if a formula is unsatisfiable, then the specification is probably incorrect.

Similarly to realisability, the problem of satisfiability of a temporal formula [29] allows

to demonstrate that there exists an implementation that meets the specification.

10. Concluding remarks

There are some open questions to address. Pomset semantics of recursive processes

is infinite, which precludes to directly use these results for global specifications that

have loops. In [5] pomsets were used in combination with proved transition systems to

give an non-interleaving semantics of CCS; basically, given a sequence of transitions

p
α1−→ ·· · αn−→ q between two CCS processes p and q, a pomset r can be derived from a

proved transition system so that r represents the equivalence class of traces between p
and q “compatible” with traces labelled α1, . . . ,αn. This work can help us to generalise

our results to infinite computations.

Realisability of high-level MSCs has been addressed in [22], but the verification

conditions are not syntax-oblivious. The conditions of Section 6 are sufficient but not

necessary conditions for realisability. This is due to the fact that the same semantics (i.e.,

set of traces) can be expressed using different sets of pomsets by exploring different

29

interleavings. We do not know if a notion of normal forms for families of pomsets can

be used to guarantee that our conditions are necessary. We conjecture that our semantics

could be applied to other coordination paradigms such as order-preserving asynchronous

message-passing (as the original semantics of CFSMs), synchronous communications,

or tuple based coordination. We leave the exploration of the robustness of our framework

as future work.

Our experiments are rather preliminary, but show that our approach outperforms

the algorithm in [1]. We plan to complete the implementation of the algorithm in [1]

and make a more thorough comparison with our algorithm. The optimisation of our

prototype is left as future work. We plan to integrate our prototype into ChorGram [20],

a tool we are currently developing, to implement our theoretical framework and apply

it to the analysis of global specifications. As discussed in Section 7.4, the execution

time grows exponentially in presence of concurrently repeated actions. However, we

remark that (1) many choreographic framework restrict the parallel composition of

choreographies so that concurrently repeated actions are not allowed and (2) the analysis

is done on compact models that may correspond to large pieces of code. For instance,

the ATM choreography in Section 7.4 can be compiled in Erlang8 and the generated

code is a few hundred lines long.

8ChorGram can generate Erlang executable code from global graphs.

30

References

[1] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Inference of Message

Sequence Charts. IEEE Trans. Software Eng., 29(7):623–633, 2003.

[2] Rajeev Alur, Gerard J. Holzmann, and Doron Peled. An analyzer for message

sequence charts. In Tiziana Margaria and Bernhard Steffen, editors, Tools and Al-
gorithms for the Construction and Analysis of Systems, Lecture Notes in Computer

Science, pages 35–48. Springer, 1996.

[3] Hanêne Ben-Abdallah and Stefan Leue. Syntactic detection of process divergence

and non-local choice in message sequence charts. In Ed Brinksma, editor, Tools
and Algorithms for the Construction and Analysis of Systems, pages 259–274.

Springer, 1997.

[4] Laura Bocchi, Hernán C. Melgratti, and Emilio Tuosto. Resolving non-

determinism in choreographies. In Zhong Shao, editor, European Symposium
on Programming, Lecture Notes in Computer Science, pages 493–512. Springer,

2014.

[5] Gérard Boudol and Ilaria Castellani. Permutation of transitions: an event struc-

ture semantics for CCS and SCCS. In J.W. de Bakker, W.-P. de Roever, and

G. Rozenberg, editors, Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency, volume 354 of Lecture Notes in Computer Science,

pages 411–427. Springer, 1988.

[6] Daniel Brand and Pitro Zafiropulo. On Communicating Finite-State Machines.

Journal of the ACM, 30(2):323–342, 1983.

[7] Marco Carbone, Kohei Honda, and Nobuko Yoshida. A Calculus of Global

Interaction based on Session Types. Electronic Notes in Theoretical Computer
Science, 171(3):127 – 151, 2007.

[8] Gérard Cécé and Alain Finkel. Verification of programs with half-duplex commu-

nication. I&C, 202(2):166–190, 2005.

[9] Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty Session Types Meet

Communicating Automata. In Helmut Seidl, editor, European Symposium on
Programming, Lecture Notes in Computer Science, pages 194–213. Springer,

2012.

[10] Haim Gaifman and Vaughan R Pratt. Partial order models of concurrency and the

computation of functions. In Symposium on Logic in Computer Science, pages

72–85, 1987.

[11] Emmanuel Gaudin and Eric Brunel. Property Verification with MSC. In Ferhat

Khendek, Maria Toeroe, Abdelouahed Gherbi, and Rick Reed, editors, SDL 2013,

Lecture Notes in Computer Science. Springer, 2013.

31

[12] Roberto Guanciale and Emilio Tuosto. An abstract semantics of the global view

of choreographies. In Massimo Bartoletti, Ludovic Henrio, Sophia Knight, and

Hugo Torres Vieira, editors, Proceedings 9th Interaction and Concurrency Experi-
ence, ICE 2016, Heraklion, Greece, 8-9 June 2016., pages 67–82, 2016.

[13] Roberto Guanciale and Emilio Tuosto. Realisability of pomsets via communicating

automata. CoRR, abs/1810.02469, 2018.

[14] Elsa L. Gunter, Anca Muscholl, and Doron A. Peled. Compositional Message

Sequence Charts. In Tools and Algorithms for the Construction and Analysis of
Systems, Lecture Notes in Computer Science, pages 496–511. Springer, 2001.

[15] Elsa L. Gunter, Anca Muscholl, and Doron A. Peled. Compositional message

sequence charts. International Journal on Software Tools for Technology Transfer,

5(1):78–89, Nov 2003.

[16] David Harel and Rami Marelly. Come, let’s play: scenario-based programming
using LSCs and the play-engine. Springer, 2003.

[17] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous

session types. Journal of the ACM, 63(1):9:1–9:67, 2016. Extended version of a

paper presented at POPL08.

[18] Joost-Pieter Katoen and Lennard Lambert. Pomsets for message sequence charts.

Formale Beschreibungstechniken für Verteilte Systeme, pages 197–208, 1998.

[19] Susheel Kumar. 7 Reasons Why Organizations Struggle with Microser-

vices Adoption. https://blogs.perficient.com/integrate/2017/06/26/
7-reasons-why-organization-struggle-with-microservices-adoption/,

2017.

[20] Julien Lange and Emilio Tuosto. ChorGram. https://bitbucket.org/emlio_
tuosto/chorgram/wiki/Home.

[21] James Lewis and Martin Fowler. Microservices: a definition of this new archi-

tectural term. http://martinfowler.com/articles/microservices.html,

2014.

[22] Markus Lohrey. Safe Realizability of High-Level Message Sequence Charts.

In Luboš Brim, Mojmı́r Křetı́nský, Antonı́n Kučera, and Petr Jančar, editors,

CONCUR, Lecture Notes in Computer Science, pages 177–192. Springer, 2002.

[23] Qusay Mahmoud. Middleware for Communications. John Wiley & Sons, 2005.

[24] Robin Milner. Communicating and mobile systems - the Pi-calculus. Cambridge

University Press, 1999.

[25] Formal description techniques (FDT) - Message Sequence Chart (MSC). Rec-

ommendation ITU-T Z.120, 2011. Available at http://www.itu.int/rec/
T-REC-Z.120-201102-I/en.

32

[26] Anca Muscholl and Doron Peled. Deciding Properties of Message Sequence

Charts. In Stefan Leue and Tarja Johanna Systä, editors, Scenarios: Models,
Transformations and Tools, pages 43–65. Springer, 2005.

[27] Object Management Group. Business Process Model and Notation. http://www.
bpmn.org.

[28] Vaughan Pratt. Modeling concurrency with partial orders. International Journal
of Parallel Programming, 15(1):33–71, 1986.

[29] Kristin Y Rozier and Moshe Y Vardi. LTL satisfiability checking. In Dra-

gan Bošnački and Stefan Edelkamp, editors, International SPIN Workshop on
Model Checking of Software, Lecture Notes in Computer Science, pages 149–167.

Springer, 2007.

[30] Davide Sangiorgi and David Walker. The π-Calculus: a Theory of Mobile Pro-
cesses. Cambridge University Press, 2001.

[31] Emilio Tuosto and Roberto Guanciale. Semantics of global view of choreographies.

Journal of Logic and Algebraic Methods in Programming, 95:17 – 40, 2018.

[32] Web services choreography description language version 1.0. https://www.w3.
org/TR/ws-cdl-10/, 2005.

33

