
Testing and Validating End User Programmed Calculated Fields
Víctor Braberman
Diego Garbervetsky

Javier Godoy
ICC, UBA/CONICET

Argentina

Sebastian Uchitel
ICC, UBA/CONICET

Argentina
Imperial College London

UK

Guido de Caso
Ignacio Perez
Santiago Perez

Medallia Inc.
USA

ABSTRACT
This paper reports on an approach for systematically generating
test data from production databases for end user calculated field
program via a novel combination of symbolic execution and data-
base queries. We also discuss the opportunities and challenges that
this specific domain poses for symbolic execution and shows how
database queries can help complement some of symbolic execu-
tion’s weaknesses, namely in the treatment of loops and also of
path conditions that exceed SMT solver capabilities.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Theory of computation → Program analysis; • In-
formation systems→ Data management systems;

KEYWORDS
Program Analysis, Symbolic Execution, Query Generation

ACM Reference Format:
Víctor Braberman, Diego Garbervetsky, Javier Godoy, Sebastian Uchitel,
Guido de Caso, Ignacio Perez, and Santiago Perez. 2018. Testing and Val-
idating End User Programmed Calculated Fields. In Proceedings of the
26th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’18), November 4–
9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3236024.3275531

1 INTRODUCTION
End users tend to under-test their programs and be overconfident
about their correctness [4]. The lack of oracles, partly due to the
overhead of producing specifications and also over-reliance on do-
main expertise, pushes end user program testing to the realm of
informal validation rather than verification. In this context, produc-
ing test inputs based on real world, relevant data is perceived as a
way of improving end user validation.

There has been significant effort in validation of end user spread-
sheet programs yet it is acknowledged that there is a large commu-
nity of non-developers that write database related code to support
their jobs [4]. An example of the latter is code that computes values

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3275531

for calculated fields. The value of a calculated field is defined by the
values of other fields using a procedure which can be non-trivial to
write and hence error prone.

In companies providing business intelligence and analytics ser-
vices and products, end-user programs for computing calculated
fields, are commonplace. In this line of business, end user program-
mers have a strong understanding of the domain, talk directly to
customers or may even be customers, and must develop calculated
field programs, test and validate the code and then apply the calcu-
lation to every row of the (potentially very large) database.

Calculated field programs are written in general purpose pro-
gramming languages or Turing complete domain specific program-
ming languages, and are a ripe ground for end user programmer
errors. Consequently, effective automated support for validating
these programs is of critical importance.

To improve the support it provides to its calculated fields pro-
grammers, Medallia Inc. uses a restricted domain specific version
of JavaScript for developing calculated fields and developed infras-
tructure that allows programmers to produce inputs, based on real
database registers, that cover their code. Because it is real data,
these inputs and their corresponding calculated field output can
be more easily validated by business analysts. Furthermore, code
that cannot be covered with existing data is a valuable piece of
information that leads to improved business analysis.

To support rapid, interactive, provision of feedback in early
stages of calculated field program development, code coverage
and output coverage (the return type of calculated field is typically
an enumerated type) is achieved via random selections from the
database. Scanning an entire database of millions of registers for
examples for each possible output is simply too expensive.

This paper reports on a joint effort to improve early provision of real
(database) test data to calculated field program developers via a novel
combination of symbolic execution and database queries. The aim is
to use a symbolic execution engine to produce path conditions that
can be translated into database queries that retrieve from databases
real test data that covers the end user programmed code.

Automated test case generation techniques based on symbolic
execution face significant challenges to be applied in practice [3, 8,
12] due to difficulties in reasoning about loops and recursion, and
complex path conditions (those beyond SMT [3] capabilities). These
difficulties are compounded, in our specific case, by the choice of a
dynamic language, JavaScript, for end user programming.

However, in practice, we have found, that end user programs for
calculated fields have a number of characteristics that provide a
window of opportunity for using symbolic execution. These pro-
grams tend to use simple control features, notably with no loops,
operate over simple data types but exhibit an intricate pattern of

https://doi.org/10.1145/3236024.3275531
https://doi.org/10.1145/3236024.3275531

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Braberman, Garbervetsky, Godoy, Uchitel, de Caso, I. Perez, S. Perez.

conditional statements that hinders human validation. This setting
could be regarded as beneficial for automated test case generation
based on symbolic execution engines.

The setting is not as simple as it seems. End user programs
for calculated fields call non-user-defined functions that can be of
significantly greater complexity, including loops and more complex
data types. Such functions can be either show-stoppers for symbolic
execution engines attempting to produce path conditions and for
translating them into database queries.

A key observation that allows addressing these obstacles is that
end user programs for calculated fields used at Medallia call a re-
duced API that includes only a small set of functions from the
standard JavaScript library and from a set of non-user-defined do-
main specific functions. The latter have been designed in the spirit
of a domain specific language, many of which can be dealt with
efficiently if appropriately translated and embedded in a database
query. Thus, the insight that follows is that the functions that are
complicated to handle for a symbolic execution engine can be hid-
den away and delegated to the database management engine (e.g.,
as SQL-supported constraints or stored-procedures).

Summarising, we report on a joint effort to support end user
validation of JavaScript programs used for calculated fields in data
warehouse applications. We discuss a prototype tool chain that
given an end user JavaScript program for a calculated field generates
a set of unit tests that cover end user code. Each test is created using,
when they exist, real values extracted from a production database.

The main components of the tool chain are the PEX dynamic
symbolic execution engine [1, 10], a path condition to database
query translator to retrieve real test inputs from a production data-
base and a test suite generator to produce unit-tests. We prevent
PEX from analysing complex procedure calls within an end user
program by annotating these calls as uninterpreted functions. As
a result PEX produces path conditions for which the interpreted
portion of the path condition is guaranteed (by construction) to be
feasible, reducing the total number of infeasible paths. The transla-
tor maps procedures marked as uninterpreted into database query
functions that implement them efficiently in the database engine.
The resulting query exploits existing indexes for the feasible part of
the path condition, typically reducing significantly the number of
registers to be analysed, and then scans the rest running the more
complex procedures on each register until it finds a suitable input.

In the remainder of this paper we first provide examples motivat-
ing the difficulties in producing real database test data for calculated
field programs, we then describe the approach and discuss its eval-
uation. Finally we present related work and conclusions.

2 MOTIVATION
In this section we present a series of increasingly complex examples
that illustrate the difficulties in providing real database test data
for calculated field programs. The examples are set in a fictional
company SALES that is analysing the introduction of a reward
program. A SALES analyst becomes end-user-programmer and
develops code for a calculated field that classifies customers into
different tiers (basic, frequent, silver, gold, and platinum).

1 function CF_Points(row) {
2 var points = row.points;
3 if (points == null) return null;
4 if (points > 400000) return 5; // Platinum
5 if (points > 200000) return 4; // Gold
6 if (points > 100000) return 3; // Silver
7 if (points > 50000) return 2; // Frequent
8 return 1; // Basic
9 }

Listing 1: A simple calculated field program

A first basic program might simply classify customer into fields
based on their accumulated points. The function in Listing 1 shows
a possible implementation of this criterion.

To cover all statements in this program it suffices to provide 6
different inputs, one for each return statement. To generate the
input for one specific return statement, an input that satisfies the
chain of conditions determined by the control path to the statement
is required. In other words, an input that satisfies the path condition
for each return statement is needed.

A sequential scan or random picking from the SALES production
database may be used to show the SALES analyst real examples of
customers that fall into each tier. Depending on the distribution of
customers into the 6 return values and the size of the database, this
may be a costly approach.

A symbolic execution engine like PEX [10] or JPF can automati-
cally produce synthetic inputs to cover statements. A by-product
that is sometimes offered is the path condition of the program
under test. Each condition is a predicate on the input parameters
that must hold in order to reach a particular statement. These path
conditions can be used to produce database queries that can find
efficiently by exploiting database engine infrastructure, including
indexes, registers that satisfy each path condition.

As an example, the path condition that corresponds to return
value 4 can be used to generate the following database query:
SELECT * FROM row WHERE row.points < 400001 AND 200000 < row.points limit 1;

A further refined and more complex customer classification crite-
rion, possibly elicited after analysing previous criteria, may reward
customers who have been in the program for longer. It could include
calls to standard library functions to calculate differences between
dates as the function Years(Date lastSeen, Date signupDate).

Despite the added complexity and system library calls, a symbolic
engine such as PEX is still able to produce inputs that cover all
statements for that function:
... ∧ (((4611686018427387903uL & (13835058055282163712uL ^row.lastSeen.dateData))
- (4611686018427387903uL & (13835058055282163712uL ^row.signupDate.dateData))) /
864000000000L) / 365 <3

Note that PEX analyses all the code, including that of the library
functions. Thus, the path condition predicates over the internal
.NET representation of dates. We do not need nor want the symbolic
execution engine to delve into the full detail of operations and data
types that can be managed by the database engine.

To tackle this problem we need to tell the symbolic execution
engine to handle some specific calls as uninterpreted, preventing the
engine from reason within these calls. Note that symbolic execution
engines typically do not provide annotation mechanisms for identi-
fying uninterpreted functions. For the prototype reported in this
paper, some tricks that force the symbolic engine to consider some

Testing and Validating End User Programmed Calculated Fields ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

1 function CF_PointPromotion(row) {
2 ...
3 if (relevantDays < 3) return CF_Points(row);
4 if (IsPlatinum(row) == 1) return 5;
5 ...
6 }
7 function IsPlatinum(row){
8 return IsPlatinum(row, CF_ComputePointsReqForCountry(row));
9 }
10 function IsPlatinum(row, pointsForPlatinum) {
11 var points = row.lastPoints.split(';');
12 if (points.Length < row.numDays) return 0;
13 var isPlatinum = true;
14 for(i = 0; i < row.numDays; i++) {
15 var calcPoint = int.Parse(points[i]);
16 isPlatinum = isPlatinum && (calcPoint > pointsForPlatinum);
17 }
18 if (isPlatinum) return 1;
19 return 0;
20 }
21 function CF_ComputePointsReqForCountry(row) {
22 if (row.countryCode==null) return null;
23 if (row.countryCode==1 || row.countryCode==44) return 150000;
24 if (row.countryCode==54 || row.countryCode==55) return 250000;
25 return null;
26 }

Listing 2: Calculated field with a loop

calls as uninterpreted were devised (see Section 3). By declaring
the function Years as uninterpreted the path condition will look
as ... ∧ Years(lastSeen, siдnupDate) < 3.

If uninterpreted functions have straightforward mappings to
functions supported by the database query language, the path con-
dition can then be translated into a database query.

A further refinement of the reward program may be to offer
upgrade to customers that acumulated points above some baseline
for a certain number of days in a row. The required amount of
points varies according to the country of origin. In the code below,
the function IsPlatinum reads a text field containing a semicolon
separated list of points (e.g., lastPoints = "140; 23; 526; ...; 410")
and checks that the first numDays values are above a threshold de-
termined by the country. There are also some extra conditions that
are shown in Listing 2. This calculated field program goes beyond
the capabilities of symbolic execution engines, which cannot pro-
duce an input nor a path condition that covers line 4. One way
to overcome this issue is to postpone the analysis of the complex
method IsPlatinum and leave this job to the database engine. This,
of course can only be done if the database query language supports
an equivalent function. If function IsPlatinum(row, pointsFor-
Platinum) is marked as uninterpreted then PEX is able to obtain a
path condition for line 4:

row.lastPoints , null ∧ row.numDays , null ∧ 1 <row.numDays ∧
row.countryCode , null ∧ row.countryCode = 1 ∧ IsPlatinum(row, 150000) = 1

Execution of queries such as the above will typically include
cutting down the number of records very efficiently. Using the
conditions on countryCode, points and numDays, the database
query would first find a reduced number of candidates records and
then will need to check the condition IsPlatinum on it reduced set
of records. This is a significantly more efficient mechanism than
random picking or sequential scan over the entire database. For a
database with 100 million records a sequential scan (and execution
of a simple function such as the one above on each register) can

be 5 orders of magnitude slower than path condition generation,
translation and query execution.

3 APPROACH
In this section we report on an approach aimed at assisting end user
programmer validation of programs used for computing calculated
fields in data warehouse applications.

In Figure 1 we present a flow chart that sketches how calculated
fields are processed to tests using inputs from real database data.
The prototype consumes a JavaScript program that computes a cal-
culated field and produces i) a set of test inputs taken from database
records that cover statements of the calculated field program, and ii)
a set of synthetic test inputs that cover the statements for which no
input in database exists. Programs are first pre-processed to mark
uninterpreted functions. PEX [1, 10] , a symbolic execution engine,
is then used to produce path conditions to cover all statements.
Path conditions are translated into database queries which are then
run to retrieve real test input data. Finally, the test inputs are used
to produce executable tests. PEX also produces synthetic inputs.
For every path condition that produced a query whose result was
empty, the synthetic input for that path condition generated by
PEX is used to generate additional tests to augment coverage.

3.1 A Domain Specific Language
Before discussing the main procedures of Figure 1 we discuss a
pre-condition of the approach: the existence of a domain specific
language (DSL) for calculated field development. This language
may be de-facto or formally defined and enforced.

In Medallia, the DSL restricts end user programmers to writing
functions that have as an input a database register and output the
value of particular fields (i.e., the calculated field). Programmers are
not allowed to access the database itself, hence calculated fields that
consider aggregation from several rows results are not allowed.

In addition, a library of domain specific functions is provided.
These functions raise the level of abstraction of the database fields,
encapsulate business rules, and can be called by end user programs.
An example of such functions in Section 2 is IsPlatinum.

Finally, the language defines the functions that are to be consid-
ered uninterpreted calls by the symbolic execution engine. These
functions calls will appear verbatim in path conditions and need
to be translatable into expressions that the database engine can
handle in a query. For example Years(lastSeen,signupDate) can
be defined to be the expression date_part(’year’, age(date1,
date2)) while IsPlatinum(row,num) may be implemented di-
rectly as a stored procedure.

The choice of functions to be considered uninterpreted is crucial,
highly domain dependent, and may need to be revised over time. As
the goal is to build database queries directly from path conditions,
it is undesirable to include in path conditions low level constraints
arising from code that is already functionally supported by the
database query engine. Examples of these are math operations
such as round and date operations. Marking these functions as
uninterpreted will make the symbolic execution engine consider
them black boxes, making them appear as symbolic expressions in
the path condition. The uninterpreted manipulation of Years in
Section 2 exemplifies this case.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Braberman, Garbervetsky, Godoy, Uchitel, de Caso, I. Perez, S. Perez.

calculated
field
(Js)

PEX engine
calculated field (C#)

with encoded
uninterpreted functions

(manual systematic)
Translation and
preprocessing

Path
Conditions

TranslatorQueries

DB

Test case
generator

Inputs

Test case
generator

Tests using
DB records

Synthetic
tests

Figure 1: Real Data Test Case Generation

It is also worth considering function calls as uninterpreted when
end-user programs implement stable functionality that has com-
plex control structures or data types that can break the symbolic
execution engine. In these cases it may be preferable to translate
them to expressions that the database query engine can manage.
The uninterpreted manipulation of IsPlatinum in Section 2 is an
example. Another is code that can be efficiently implemented in
terms of optimised access to internal tables.

3.2 Calculated Field Program Preprocessing
Preprocessing involves marking uninterpreted functions calls in
the calculated field program according to the definition of the DSL.
Although conceptually simple, our choice of symbolic execution
engines introduced two accidental challenges: programming lan-
guage translation and forcing symbolic execution to not interpret
marked functions calls.

As mentioned previously, JavaScript is the language used by
Medallia’s end user programmers. We considered symbolic execu-
tion tools for JavaScript, including Jalangi[9], concluding they were
insufficiently robust. We also considered using Symbolic JPF [7],
which is for Java and supports user defined uninterpreted function
calls. However, the tool does not correctly support conditions over
null values.We finally opted for PEXwhich despite supporting .NET
rather than JavaScript and not supporting user marked uninter-
preted calls, has the advantage of being a well established industrial
strength tool (e.g., [1]) that is available through Visual Studio Suite.
PEX is actually a concolic execution engine: it combines concrete
and symbolic execution to produce inputs covering a determined
set of statements of a given procedure.

Having chosen PEX, the first accidental issue that the prototype’s
preprocessing must address is the translation of JavaScript into C#,
which for calculated field end user programs is straightforward and
can be systematically done manually. Given a end user JavaScript
program and a list of uninterpreted functions, translation starts at
the program entry point and recursively translates each JavaScript
method into a corresponding C# method. This process ends at calls
to uninterpreted functions, which are not translated.

The second issue is that PEX does not support user specification
of calls that are to be treated as uninterpreted. To overcome this lim-
itation, we convert function calls that should be uninterpreted into
C# n-dimensional arrays. The trick behind this encoding is to use
PEX’s ability to handle arrays symbolically. Given an uninterpreted
methoduninterpreted(a1, ...,an), we encode it in an n-dimensional

array of integer types uninterpreted[a1_sel f , . . . ,an_sel f]. The
idea is to use the ghost variables a1_sel f , . . . ,an_sel f of integer
type as proxies of the original arguments of the uninterpreted func-
tion (of arbitrary types). Using this encoding, PEX can produce an
input and a path condition by instantiating the array and ghost
variables with arbitrary values.

3.3 Path Condition Generation
Once the calculated field programs are preprocessed and translated
to C# we are ready to run PEX and produce path conditions. The
interpreted portion of the conditions is guaranteed to be feasible,
reducing the total number of infeasible paths. The uninterpreted
part is evaluated on the database in the next phase.

For instance, the verbatim path condition returned by PEX for
the Years function in the previous section is:
... && Years != (int[,])null && lastSeen_self >= Years.GetLowerBound(0)
&& lastSeen_self < Years.GetLowerBound(0) + Years.GetLength(0)
&& signupDate_self >= Years.GetLowerBound(1)
&& signupDate_self < Years.GetLowerBound(1) + Years.GetLength(1);

The following is a path condition for CF_PointPromotion:
row.lastPoints , null ∧ 1 <row.numDays ∧

((row.countryCode == null ∧ IsPlatinum(row._self, 400000) == 1)
∨ (row.countryCode == 1 ∧ IsPlatinum(row._self, 150000) == 1)
∨ . . . ∨ (row.countryCode , 1 ∧ row.countryCode , 44 ∧

row.countryCode , 54 ∧ row.countryCode , 55 ∧

IsPlatinum(row._self, 400000) == 1)
∨ (row.countryCode == 55 ∧ IsPlatinum(row._self, 250000) == 1))

Note that PEX actually returns multiple path condition that cover
a statement, to account for different paths that reach the statement.
As we choose in this paper statement coverage, we integrate the
path conditions with a disjunction.

3.4 Path Condition to Query Translation
Converting path conditions into database queries requires that all
functions identified in the DSL as uninterpreted have a mapping
mechanism from function calls to equivalent query expressions.

First we reverse from each path condition the encoding for un-
interpreted function calls introduced in the previous section. For
example in the case of array Years[lastSeen_self,lastSeen_-
self], the function call Years(lastSeen, lastSeen) is extracted.
It also applied minor syntax transformations such as replacing
expressions e.hasvalue != false by e! = null and removes
side-effect conditions produced by the encoding for uninterpreted
calls. Note that treatment of null values is different in SQL than in
JavaScript and C#. Finally, uninterpreted calls are replaced by their
equivalent query expressions.

Testing and Validating End User Programmed Calculated Fields ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

3.5 Test Case Generation
This process produces a unit tests by executing queries against a
database and using the selected records as inputs for unit tests.

Each query, when executed by the database query engine, ex-
ploits existing indexes for the feasible part of the path condition,
typically reducing significantly the number of registers to be anal-
ysed, and then scans the rest running the more complex procedures
on each register until it finds a suitable input.

Should the query result be empty, this means that there are no
database records that satisfy the original path condition. In these
cases, it may be possible to obtain from PEX for a synthetic input
instead. The only potential problem is that the synthetic input is,
by construction, consistent with the interpreted part of the path
condition but may be inconsistent with the uninterpreted function
call expression.

Generated inputs, real or synthetic, are then used to produce the
test cases. The prototype uses Mocha [2] to execute synthesised
tests and measure coverage of calculated field programs.

4 EVALUATION
The purpose of the prototype described above is to understand the
feasibility of applying advanced test case generation techniques
for systematically covering with real data end user calculated field
programs at Medallia.

We used 9 anonymised programs and database consisting of
21000 records extracted from an internal production database. The
aim of the evaluation was to assess to what extent these programs,
considered representative of those developed at Medallia by end
users, could be covered by the prototype.

The programs operate over simple data types such as integer,
floats and strings and outputting enumerated types (in 7 out of 9
cases), integers (1/9) and strings (1/9). They lack loops and recursion
but exhibit intricate patterns (e.g., nested conditional statements,
early program exit with return statements) that hinder human
validation. Other characteristics of the programs include the use of
many checks for null values stored in fields, integer, float and string
manipulation in conditional statements using JavaScript standard
functions such as indexOf(), toUpperCase(), parseInt(), and Round().
In addition, the programs includedmultiple invocations to functions
of a Medallia library some of which essentially encapsulate lookups
on auxiliary tables, others supporting operations such as regular
expression search over strings.

We first developed the list of functions to be treated as uninter-
preted. The list was defined to include all functions in the Medallia
library plus operations over float, string and date types. A mapping
for each one to equivalent database query expressions was devel-
oped. For basic types, the mapping is very straightforward (see
Years in Section 3.1). For Medallia library functions supporting
lookups, for instance, SQL join expressions were used.

Having then translating manually all programs into C#, tests
data was generated. We measure statement and branching coverage
of the calculated field programs.

We report coverage using two different notions of test unit:
each calculated field program can be thought of as a testing unit,
as it is common that end user programmers develop or change
one program leaving the rest unchanged. However, many of these

Table 1: Analysed programs.
Anonynous CF Stms Covered Stms % Tests
CF_1 10 10 100.00 5
CF_2 6 6 100.00 4
CF_3 8 8 100.00 5
CF_4 11 10 90.91 10
CF_5 4 4 100.00 2
CF_6 7 7 100.00 4
CF_7 11 11 100.00 5
CF_8 6 6 100.00 4
CF_9 11 11 100.00 4
Total 74 73 98.65 43

programs actually call other calculated field programs which were
developed by other end user programmers, and in many cases these
programs need to be changed consistently together. Thus we also
consider as a test unit the entire set of calculated field programs.

When considering the set of calculated field programs as a test
unit, we computed coverage achieved by executing all tests gener-
ated for each calculated field program individually. This amounts
to 44 path conditions converted to database queries. All queries
but one returned results, which led to 43 test cases covering 98%
statement coverage. Although we did not aim for branch coverage,
the tests achieved 92%.

We also report (see Table 1) the coverage of test units comprising
only one calculated field program at a time. The tool covered all
statements in each individual calculated field program with the
exception of one statement which could not be covered due to the
non-existence of records in the database satisfying the correspond-
ing query. The symbolic execution engine, however, was able to
produce a synthetic input to cover the statement.

Our experimentation was run on an anonymised version of a
production database. To gain insight on the domain relevance of
test cases that the approach can produce, we provided the exper-
imental subjects and database queries to independent end user
programmers at Medallia. They de-anonymised field names in code
and queries and then ran the queries on the production database.
While validating the resulting test cases, the end user programmers
identified one mismatch between informal requirements and the
calculated field program. The mismatch had to that point not been
identified. Furthermore, the mismatch was subtle enough that ini-
tially end users assumed that there was a problem of the prototype
test case generator.

Both the high coverage and the success in producing findings
regarding existing calculated field programs are promising results
that provide preliminary evidence that symbolic execution com-
bined with database queries is a technically feasible solution for
Medallia’s end user calculated field programs.

5 RELATEDWORK
Testing of end user programs has attracted much attention, much
of it addressing spreadsheet programs [4]. We are not aware of
any work supporting testing and validation of end user calculated
fields programs written in general purpose programming languages.
Other kinds of end user programs that are related to databases have

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Braberman, Garbervetsky, Godoy, Uchitel, de Caso, I. Perez, S. Perez.

been studied though, most notably those that include explicit data-
base queries in the code and assume a fixed database state. Those
approaches aim at practical code or query coverage by generating
program inputs [5, 6] or by reducing database state (e.g., [11]).

Although, in some cases, part of their internal workings resemble
ours (e.g., construction of auxiliary queries based on intermediate
information) there are some key differences: firstly, we pursue
detecting database records covering statements of an imperative
program, there is no SQL-query or query-manipulating code in the
programs we target. Secondly, our test-cases retrieval-queries end
up executing user defined code or some equivalent database query
code. Finally, a distinctive aspect of our approach is the identifica-
tion of uninterpreted functions to simplify symbolic analysis and
transfer complexity to the database engine.

6 LESSONS LEARNED
The project has left us with some lessons learned that may be of
use in a more general setting: when coverage needs to be achieved
using test cases based on real inputs taken from large databases, a
viable alternative to sequential scan of the data or random picking
can be to use symbolic execution to generate efficient queries over
the data set.

We identified three main pitfalls when attempting to generating
database queries from path conditions. In some cases the code is
too complex for the symbolic execution engine to output a path
condition (e.g., code with complex iterative or recursive structure).
Alternatively, the path condition may be expressed in terms of low
level constraints that include how types are represented in the
program and which cannot be mapped to the database. Finally, a
path condition may be over-constrained, due to the complexity of
the code, leading to a query that does not retrieve any data.

A viable approach to overcome these limitations is to identify
code blocks that can be declared as uninterpreted predicates over
the data set. Note that, importantly, it must be possible to imple-
ment these predicates efficiently using the database query engine
(e.g, using native SQL operators or developing within the database
engine appropriate user defined functions). Identifying uninter-
preted code facilitates the symbolic engine’s task as it can avoid
complex loops and low level representation issues.

The resulting high level path condition can be translated into a
query to select from the database an appropriate input. Note that
a downside of introducing uninterpreted code blocks is that the
symbolic engine cannot guarantee the feasibility of a resulting path
condition, hence the approach may generate more database queries
than necessary.

7 CONCLUSIONS
We have reported on a project to improve testing and validation of
end user programs that compute values for calculated fields. The
approach is based on symbolic execution to systematically achieve
coverage and database queries to obtain test inputs based on real
data. Identification of calls that should not be interpreted during
symbolic reasoning and resolved by the database engine is a key
part of the approach. The test case generation prototype has shown
that such a tool chain can fully cover statements of real calculated
field end user programs using real data.

Our approach hints that for some domains, the challenge for
symbolic execution engines is not scale, loops, nor SMT support
for more complex theories (all three of which are main thrusts
of the community). In some domains, increased applicability of
symbolic execution may be achieved by providing support for user
defined uninterpreted functions and better supporting more end
user oriented programming languages such as JavaScript.

This work has led us to an additional observation that may
inform research in test case generation based on dynamic symbolic
execution: in some domains, rather than trying to produce and
solve difficult path conditions, an efficient search over real values
in a database may not only allow covering code that otherwise
remains uncovered but also can provide tests that use real data,
aiding test comprehension and validation. In other words, theremay
be benefits to produce a more abstract path conditions, avoiding
the interpretation of functions, that can be handled by a database
engine. If the database is sufficiently populated to always have at
least one record that satisfies each query and sufficiently efficient
to process queries, a method for systematically constructing test
cases that use realistic data for end user programs can be deployed.

Future work aimed at the construction of a fully automated test
case generator for Medallia will include incorporating and improv-
ing JavaScript symbolic execution tools of the likes of Jalangi[9],
including the addition of support for user defined uninterpreted
functions. More generally we believe there are opportunities in
investigating the use of database engines to replace limitations of
SMT solvers for test case generation.

ACKNOWLEDGEMENTS
This work was partially supported by ANPCYT PICT 2014-1656,
2015-3638, 2015-1718, CONICET PIP 2015-0931CO, 2014-0688CO.
Research partly supported by the European Unions Horizon 2020
research and innovation programme under the Marie Skodowska-
Curie grant agreement No 778233.

REFERENCES
[1] Visual Studio Intellitest. https://docs.microsoft.com/en-us/visualstudio/test/

intellitest-manual/.
[2] Mocha javascript test framework, 2017. https://mochajs.org/.
[3] C. Cadar and K. Sen. Symbolic execution for software testing: Three decades

later. Commun. ACM, 56(2):82–90, Feb. 2013.
[4] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig, C. Scaffidi,

J. Lawrance, H. Lieberman, B. Myers, M. B. Rosson, G. Rothermel, M. Shaw, and
S. Wiedenbeck. The state of the art in end-user software engineering. ACM
Comput. Surv., 43(3):21:1–21:44, Apr. 2011.

[5] C. Li and C. Csallner. Dynamic symbolic database application testing. In Pro-
ceedings of the Third International Workshop on Testing Database Systems, DBTest
’10, pages 7:1–7:6, New York, NY, USA, 2010. ACM.

[6] K. Pan, X. Wu, and T. Xie. Program-input generation for testing database appli-
cations using existing database states. Automated Software Engg., 22(4):439–473,
Dec. 2015.

[7] C. S. Păsăreanu and N. Rungta. Symbolic pathfinder: Symbolic execution of java
bytecode. ASE ’10, pages 179–180, New York, NY, USA, 2010. ACM.

[8] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been
afraid to ask). In 31st IEEE Symposium on Security and Privacy, S&P 2010, 16-19
May 2010, USA, pages 317–331. IEEE CS, 2010.

[9] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs. Jalangi: a tool framework for concolic
testing, selective record-replay, and dynamic analysis of javascript. In ESEC/FSE
2013, pages 615–618. ACM, 2013.

[10] N. Tillmann and J. De Halleux. Pex–white box test generation for. net. Tests and
Proofs, pages 134–153, 2008.

[11] J. Tuya, C. d. l. Riva, M. J. Suarez-Cabal, and R. Blanco. Coverage-aware test
database reduction. IEEE Trans. Softw. Eng., 42(10):941–959, Oct. 2016.

https://docs.microsoft.com/en-us/visualstudio/test/intellitest-manual/
https://docs.microsoft.com/en-us/visualstudio/test/intellitest-manual/
https://mochajs.org/

Testing and Validating End User Programmed Calculated Fields ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

[12] X. Xiao, S. Li, T. Xie, and N. Tillmann. Characteristic studies of loop problems
for structural test generation via symbolic execution. In E. Denney, T. Bultan,
and A. Zeller, editors, 2013 28th IEEE/ACM, ASE 2013, Silicon Valley, CA, USA,
November 11-15, 2013, pages 246–256. IEEE, 2013.

	Abstract
	1 Introduction
	2 Motivation
	3 Approach
	3.1 A Domain Specific Language
	3.2 Calculated Field Program Preprocessing
	3.3 Path Condition Generation
	3.4 Path Condition to Query Translation
	3.5 Test Case Generation

	4 Evaluation
	5 Related Work
	6 Lessons Learned
	7 Conclusions
	References

