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Project Description 

Funded by EU H2020 MONOCLE creates sustainable in situ observation solutions 

for Earth Observation (EO) of optical water quality in inland and transitional 

waters. MONOCLE develops essential research and technology to lower the cost 

of acquisition, maintenance, and regular deployment of in situ sensors related to 

optical water quality. The MONOCLE sensor system includes handheld devices, 

smartphone applications, and piloted and autonomous drones, as well as 

automated observation systems for e.g. buoys and shipborne operation. The 

sensors are networked to establish interactive links between operational Earth 

Observation (EO) and essential environmental monitoring in inland and 

transitional water bodies, which are particularly vulnerable to environmental 

change. 
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1. Executive Summary 
This document highlights a number of techniques and approaches that are being tested in MONOCLE 

in order to increase the quality and utility of the data collected by the suite of sensors developed 

and used in the project.  Many of the techniques discussed here could be used for other sensors in 

the field of water quality monitoring. 

The approaches can be split into two categories: 1) techniques/approaches that will optimise data 

processing procedures and 2) those that will allow increased information retrieval from a  given 

dataset or combination of datasets.  Following a discussion of both of these areas, we formulate 

intended tests and demonstrations to be performed within MONOCLE alongside a set of data 

requirements.  

2. Scope 
The aim of this document is to summarize potential value-adding approaches and algorithms for 

single sensor and inter-sensor data processing within the context of the MONOCLE project and 

sensor networks in general. This document serves as an introduction and guide to methodologies 

that can be used with sensor networks (such as those in MONOCLE) to optimise efficiency of data 

collection and improve the utility and value of the data. The document marks the start of integrative 

data analysis in the MONOCLE project and is provided primarily as a reference for project partners to 

implement these techniques, as well as a public document for those interested to follow project 

progress.  

3. Introduction 
Our capacity to generate data has increased exponentially in recent times as the connectivity of data 

networks has increased, the cost and size of computing systems has decreased, and as the 

creation/uptake of data standards has allowed an increase in software and hardware compatibility. 

The volume and diversity of data that can now be collected present both new opportunities and 

challenges to the science community. We can now create smarter networks of sensors with 

increased autonomy, greater levels of cross-communication and higher levels of data resolution and 

accuracy. Increased network connectivity and diversity increases the number of potential data 

formats, number of communication channels and complexity of data quality control.   However, the 

adoption of modern data handling techniques is required to maximise the utility of the data 

provided, avoid excessive data transfer and avoid the contamination of high-quality datasets with 

spurious results. 

In this document we discuss a number of approaches that can be used alongside sensors and sensor 

network usage in order to tackle data handling challenges and maximize their synergistic use. We 

discuss these approaches in the context of aquatic optics and biogeochemical parameters as 

collected by the MONOCLE system, though many of the principles and algorithms are applicable 

across all fields of data driven science. 
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Section 4 of this document deals with techniques for optimising data collection and transmission in 

order to reduce data volumes and improve the quality and utility of the data provided, without 

losing essential information. Section 5 covers techniques for the enhancement of datasets through 

automated processing and multi-variate analysis for the purposes of enhanced information retrieval 

and data quality control.  Individual sensor capabilities are covered in more detail in their respective 

user guides/documentation, while sensor connectivity and system structure are covered in D5.2 

‘System architecture and standards report’. Results presented here are for illustrative purpose only 

and may not reflect the final performance of the MONOCLE sensor system. 

4. Optimised data processing and transfer 
 

Over the last two decades, the characteristics used to describe big data have increased from the 

“Three V’s” of Delany (2001) to six (Ur Rehman et al 2013) or even ten V’s (Khan et al 2018). Of these 

ten V’s (Volume, Velocity, Variety, Value, Variability, Veracity, Validity, Volatility, Viability, and 

Viscosity) the primary points of interest and for this document are Volume, Value, Veracity and 

Validity.  

Some of the first scientists to encounter issues of data volumes too large for transmission were 

astronomers. An illustrative example is the Kepler satellite, capable of recording a 95 megapixel 

image every six seconds but possessing only a 550KBps download speed (Kock 2010).  Here, the 

solution consisted of onboard data reduction by reducing the bandwidth by a factor of 300 through 

temporal averaging, selection of interesting targets and onboard processing of only the relevant 

pixels before transmission. 

In the satellite calibration/validation landscape which MONOCLE developments apply to, similar 

challenges present themselves. In terms of a reduction of operational cost, buffered data storage 

and transmission using long-range radio protocols may benefit from data volume reduction and pre-

processing. At the same time, essential information on the variability of the signal should be 

retained from any given measurement to preserve quality of information.  

A number of approaches will be tested within MONOCLE to reduce the data volumes that are 

transferred from sensor networks to data stores and on to users. These approaches are described in 

the sections below.    

Local (sensor side) vs remote processing and hardware optimisation 

The first potential benefit of sensor side processing to consider is the ability to reduce the volume of 

data to be transmitted.  

(Spectro)radiometers 
Within MONOCLE, Water Insight and Plymouth Marine Laboratory develop methods to extract 

representative reflectance spectra from repeated water-leaving reflectance measurements taken 

with MONOCLE radiometry sensor suite (e.g. Simis and Olsson 2013, Groetsch et al. 2016). This can 

be seen as a two-step procedure in which anomalous/corrupted measurements are first filtered 

from a dataset before further (optional) automated selection of, or statistical generation of, a 
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representative spectrum from multiple measurements. Simple averaging could be used to create 

representative spectra, but other methods, such as spectral weighting while accounting for 

measurement uncertainty, may provide a more robust result (increasing data veracity). 

Additionally, hardware configurations can aid data reduction for some sensors. The utilisation of a 

solar tracking  radiometry platform for commercially available spectroradiometers (SO-RAD by PML) 

will reduce the transmission of unusable or contaminated data. This system uses algorithms to: 

 predict whether solar elevation is above a suitable measurement threshold (nominally 30°) 

from GPS input (time, position). This uses the PyEphem library for python. 

 predict whether suitable azimuth viewing angles can be obtained within sensor rotation 

limits, from any GPS input (time, position) and dual-GPS position logging yielding the ship 

bearing. Bearing is obtained using Vincenty's formulae and has the form: 

θ = arctan(sin(Δlon).cos(lat2) / cos(lat1).sin(lat2) − sin(lat1).cos(lat2).cos(Δlon))  

WISP-M 
The Water Insight WISP-M system currently processes data from Level 0 to Level 2, reducing data 

volume requirements for users. This processing involves changing the wavelength grid and reducing 

the ensemble of measurements.  Much of this processing is currently performed ‘server-side’ but a 

development version of the WISP-M sensor-side processing is under consideration to provide users 

with a direct estimation of water quality parameters in situations where the data transfer speed is 

not optimal.  The WISP-M processing steps (and data file sizes) are given below. 

A WISP-M measurement (as currently performed on the WISPstation instrument) contains 10 

spectral measurements from each of the 8 channels. The internal spectrometer operates 2048 pixels 

covering a wavelength range of 200-1100 nm. So the theoretical sampling interval is about 0.44 nm.  

The instrument is configured to operate as follows: 

1) A channel is opened and the optimal integration time is determined. Then (very rapidly) 10 

consecutive measurements are performed while the integration time remains fixed.  

2) This process is repeated for each of the 8 channels.  

3) The data is packed into a serialised JSON L0 file and send to the WISPcloud server 

L0 data 

The WISPcloud server receives the data as textfile (serialised json) and converts the measurements 

to counts (16 bits unsigned integers) first. 

Estimated volume of the json file:  

Data    =  8 channels * 2048 numbers * 12 bytes * 10 repetitions per channel 

Darkcurrent data  =  8 channels * 18 numbers * 12 bytes * 10 repetitions per channel 

(including metadata)  =  about 2 MB per datafile 

Estimated volume of the data as unsigned integers: 

Data   =  8 channels * 2048 * 2 bytes * 10 repetitions 

Darkcurrent data = 8 channels * 18 numbers * 2 bytes * 10 repetitions per channel 

(including metadata)  =  about 330 KB per datafile 
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Next the data is joined with the wavelength table on the 200-1100 nm grid.  

L0A processing 

At this stage the data is at L0A and some quality checks are applied (the checks are only applied to 

the final working range of 350-900 nm): 

-Error:  The level0A spectrum is NOT a flat line 

-Error:  The level0A spectrum does NOT contain negative values 

-Error:  The level0A spectrum is NOT saturated 

-Warning: The level0A spectrum contains zero values 

-Warning: The Level0A spectrum is NOT underexposed 

 

Next the data is corrected for dark current and the non-linearity correction is applied. At this stage 

the data is at L0B and the datatype changes from 16 bits unsigned integer to 32 bits float. 

L0B processing 

At L0B the following quality checks are first applied (for the working range of 350-900 nm): 

 -Error:  The L0B spectrum is NOT a flat line 

 -Error:  The L0B spectrum does NOT have extreme negative values 

 -Warning: The L0B spectrum contains negative values 

 -Warning: The L0B spectrum contains zero values 

 -Warning: The dark current is high 

 

The data is interpolated to a regular 1 nm grid on a 200-1100 nm range, bringing the data to L1A. 

L1A processing 

At L1A first some standard quality checks are applied again: 

 -Error:  The L1A spectrum is NOT a flat line 

 -Error:  The L1A spectrum does NOT have extreme negative values 

 -Warning: The L1A spectrum contains negative values 

 -Warning: The L1A spectrum contains zero values 

 

The L1A spectrum is corrected for the integration time and the radiometric correction is applied.  

Now each spectrum is reduced (interpolated) to the working grid of 350-900 nm with a fixed interval 

of 1 nm. This is achieved by applying a moving average of 9 pixels including corrections for edge 

pixels. This brings the spectrum to L1B. 

Note 1: L1B spectra are the lowest level spectra that can be extracted from WISPcloud using the API. 

Note 2: Since the instrument only has one spectrometer, all the channels have the same radiometric 

correction 

L1B processing 

Besides the before mentioned quality checks, at this level it is also checked if the integration time is 

within reasonable boundaries, otherwise a warning is given. 
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Standard Level1B processing starts by averaging all L1A spectra from 1 channel within the set of 10 

repetitions that have not been flagged with an error.  

This reduces the data to 2 downwelling irradiance (Ed), 2 downwelling radiance (Ld) and 2 upwelling 

radiance (Lu) spectra per observation at 1 nm resolution over a range of 350-900 nm as 32 bits float 

with a volume of 13.2 Kb. 

L2R processing 

The objective at L2 is to calculate the best above water remote sensing reflectance spectrum, so a 

selection of channels is made. Between the two Ed channels, the one with the highest average value 

is selected. Between the two viewing directions of the instrument, the set of channels with an 

azimuthal difference (sun azimuth – sensor azimuth) closest to the optimal 138 degrees is chosen 

(Mobley 2015).  

For standard processing a fixed rho is used with a value of 0.028.  

𝑅𝑟𝑠 =  
𝐿𝑢 − 0.028 ∗ 𝐿𝑑

𝐸𝑑
 

The resulting Rrs has a volume of 2.2 Kb.  These data are now three orders of magnitude smaller 

than the initially transferred json file and are within a data volume range that is  acceptable for many 

end users. 

Experimental L1B to L2R processing in the context of MONOCLE 

Currently the following additional processing options are being investigated: 

1) Changing the fixed rho value to a dynamic value based on the viewing geometry (to conform 

with Mobley 2015). 

2) Correcting for sun glint using the similarity spectrum (Ruddick, 2006) 

3) Correcting for sun glint using the Groetsch et al. approach (2016) 

4) Correcting for sun glint using the Simis and Olsson approach (2013). 

 

We are also looking into eliminating spectra from the set-of-10 by ignoring spectra that are further 

away from the mean than e.g. 3 X the standard deviation.  

Methods suggested by Brando et al, (2016) to select a percentile of the 10 repetitive measurements 

will also be investigated further, although a first glance at the data suggests that this will not have a 

big impact on most measurements. Only during low light conditions with long integration times, the 

Lu spectra may be strongly variable because of wind, waves and sunglint variations. For an example 

of the sets of 10 measurements and resulting Rrs see  

Figure 1. 
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Set of 10 Ed measurements at the Aft sensor Set of 10 Ed measurements at the Fore sensor 

  

Set of 10 Ld measurements at the Starboard sensor Set of 10 Ld measurements at the Portside sensor 

  

Set of 10 Lu measurements at the Starboard sensor Set of 10 Lu measurements at the Portside sensor 
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Above water Remote sensing reflectance based on 4 different calculations: 

Standard fixed rho = 0.028 (red) 

Rho according to the Mobley 2015 LUT (blue) 

NIR adjusted spectrum (fixed rho) using the Ruddick similarity approach (green) 

NIR adjusted spectrum (Mobley rho) using the Ruddick similarity approach (black) 

 

Figure 1: Examples of repeated WISP spectral measurements and calculated Rrs Spectra. 

 

Drone imaging 
Within MONOCLE, Drone-acquired image data are processed by VITO from raw radiance information 

to reflectance and derived products. Most of this processing is performed server-side (between the 

sensor acquisition and provision of products to users) but image acquisition methods can be used to 

reduce the amount of corrupted or contaminated data that are initially acquired. 

The image acquisition protocols, to avoid corrupted or contaminated data, are defined in D3.1 

‘Operational Protocols For Acquisition And Deployment V1’. There are three main considerations in 

the data acquisition phase:  

 Avoid sun glint, i.e. the reflection of direct sun light into the field of view of the sensor, as much 

as possible. Tilt the camera slightly (15°) during flight operations and look away from the sun.  

 Data collected by the GPS/IMU system onboard of the drone is important to perform a 

geometric correction. Since water is a dynamic medium subjected to influence from waves, 

tides, floating and settling particles and more, the typically used georeferencing technique (i.e. 

structure for motion, Westoby et al. 2012) applied over land are not valid here. To know which 

part of the water surface your drone image captures, you fully rely on the Global Positioning 

System (GPS) and Inertial Measurement Unit (IMU) , which collect information on the latitude, 

longitude and flying height of the drone, as well as the roll, pitch and yaw of the camera.  

 Finally, to correct for the incident radiance, either an irradiance sensor or spectral reference 

panels, with known albedo, are required. 
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The raw data collected by airborne drone imagery contains raw information expressed in Digital 

Numbers (DN) and is subjected to distortions from the camera as well as the atmosphere in between 

the target and the sensor. Figure 2 shows an example acquired at Loch Leven (Scotland, UK), an 

enhanced uncorrected true colour image which suffers from vignetting effects (i.e. darkening 

towards the edges of the image), sun glint effects at the bottom of the image and cloud shadow in 

the middle of the image.  

Server-side processing for the drone imagery to convert raw airborne drone data into meaningful 

bio-physical data consists of three main steps.  These are radiometric correction, georeferencing and 

turbidity-algorithm implementation (Raymaekers et al., 2017), as shown in shown in the schematic  

Figure 3. The different steps are discussed more in detail in the next paragraphs. 

 

 
 

Figure 2: Example of an uncorrected true color image captured with the MicaSense RedEdge camera. The image 

shows vignetting effects towards the edges, sun glint effect at the bottom and cloud shadows in the middle of the 

picture 
 

 
 
Figure 3. Schematic overview of the drone image processing chain to convert raw data into meaningful bio-physical 

units and true-color products 

 
The radiometric correction step converts raw drone imagery from digital numbers to water leaving 

reflectance. The latter quantity is of interest because the light has travelled through the water 

column and thus bears information regarding (optical) characteristics like turbidity or chlorophyll-a 
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concentration. The first step performs an anti-vignetting of the image. Vignetting is the darkening of 

the image towards the edges and can be corrected for by normalising with a calibrated reference 

image. Secondly, the radiance signal received by the sensor can be converted into physically 

meaningful water-leaving reflectance through radiative transfer modelling. The at-sensor radiance 

(Lat−sens) is the sum of the atmospheric radiance (Latm), the specular reflection at the water surface 

(Lspec) and the water-leaving radiance (Lw): 

Lat−sens =  Latm + Lspec + Lw 

 
The specular reflection consists of two components: direct reflection of sun light, also called sun 

glint  (Lr,sun), and scattering of the atmosphere to the water surface and reflected into the detector, 

i.e. sky glint (Lr,sky): 

Lspec =  Lr,sun + Lr,sky 

 
When processing drone images, two assumptions are made:  

1. Drones fly at limited height (esp. compared to satellites), so  Latm can be neglected 

2. The camera of the drone is slightly tilted to avoid sun glint and thus the 𝐿𝑟,𝑠𝑢𝑛  component can be 

ignored. This is however a simplification of reality, since (i) the pixels of a frame camera have 

different viewing angles and (ii) waves at the water surface can lead to occurrence of sun glint 

within the image. 

The simplified radiative transfer formula is:  

Lat−sens =  Lr,sky + Lw 

 
The sky glint contribution is modelled with the iCOR image processing tool (De Keukelaere et al., 

2018) adapted for drone imagery. iCOR is an image-based atmospheric correction tool which relies 

on Moderate-Resolution Atmospheric Radiance and Transmittance Model – version 5 (MODTRAN5) 

(Berk et al., 2006) Look-Up-Tables (LUTs) to solve the radiative transfer equation based on a set of 

input parameters. The input parameters are: height, solar and viewing angles and simulated cloud 

type and coverage (open sky, cumulus, stratus, etc.). 

The quality of interest is water leaving reflectance (ρw), which is an optical property of water and 

can be related to bio-physical parameters. ρw is expressed as: 

ρw =  
Lw

Ed
 π 

 
with Ed the downwelling irradiance. The value for downwelling irradiance can be obtained from 

either spectral reference targets present in the field or an irradiance sensor mounted on the drone. 

An irradiance sensor allows continuous monitoring of changing light conditions, but is very sensitive 

to viewing angle and is not straightforward to process due to difficulties in the separation of direct 

and diffuse sun light on the sensor. This separation is not measured in situ but calculated in post-

processing. Due to strong dependence of this separation on cloud cover, sensor orientation and time 
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of the day a post-processing approach is not ideal, but is currently the nest option available.  Future 

advances, such as reduction in the weight and capability of irradiance sensors, are expected in the 

years to come and these would allow the separation of direct and diffuse irradiance to be measured 

in-situ. Another solution to measure irradiance is the use of spectral reference panels, which have a 

known and calibrated reflectance value (albedo) over the complete panel and can be fixed on a boat 

or at the shore-side. The drone has to fly over these panels, and only the light conditions at the 

moment of the overpass are captured. When the measured radiance from the camera can be 

coupled with the known reflectance value, other measured radiance values can be translated into 

reflectance through interpolation. This method has satisfactory results in conditions with uniform 

cloud but it is less appropriate under strong variations in cloud cover.  

 
 
Figure 4: Two types of spectral reference panels placed at the shore-side (left) and fixed on a boat (right), with known 

spectral behaviour. The light target has an albedo of 36%, while the albedo of the darker target is 12% 
 

Images are subsequently georeferenced (a geometric correction is applied). Time-synchronized 

triggering between the camera and auxiliary sensors is of utmost importance, since the drone 

location or attitude may alter within a fraction of a second. Each spectral band of the camera is 

aligned before the images are projected based on position, altitude and orientation of the drone and 

camera, which are recorded by the GPS/IMU. In contrast to land application, no fixed recognizable 

features are present in water bodies, precluding use of structure-for motion techniques (Westoby et 

al. 2012). The precision of the drone auxiliary sensors determines the geometric accuracy of the final 

product which is projected through the so-called direct georeferencing technique. A GPS system 

provides information on latitude, longitude and height of the camera, while an IMU sensor captures 

the roll, pitch and yaw of the camera. Application of translation, rotation, projection on a flat surface 

(water) and image warping, results in an image that is georeferenced in space.  

Figure 5 summarises the geometric correction step.  
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Figure 5: Schematic overview of the geometric correction 
From water leaving reflectance we can create a suite of derived products, including a true-colour 

mosaic, turbidity, total suspended matter or chlorophyll maps.  Images are captured in high 

resolution, centimetre spatial scales, however for most applications such high granular resolution 

over water bodies is not necessary. Therefore, the data can be reduced by down sampling the 

images to a coarser spatial resolution. Currently this down sampling is performed in the final stage of 

the server-side processing, before upload to the MONOCLE back-end.  

iSPEX 
The iSPEX system developed by the University of Leiden utilises the local processing capability of 

mobile devices (smartphones) in order to provide sensor calibration and process RAW images (very 

large files) into products for transmission. The local calibration process includes dark current and 

read noise, flat-fielding, and spectral calibration.  RAW images can be up to 32 MB each, depending 

on camera resolution and bit depth. While the full measurement protocol for iSPEX has not been 

developed yet, it will likely require the user to take multiple images for calibration purposes and to 

reduce noise, for example due to waves on the water. Multiple exposures would then be averaged 

and calibration images subtracted on-board the smartphone to prevent transferring gigabytes of 

files. The observed spectrum would be cut out of the image and reduced in dimension by averaging 

over multiple pixel rows to further reduce the data size. The goal is to have data files smaller than 1 

MB per iSPEX observation. 

KdUSTICK 
The latest version of KdUINO is referred to as KdUSTICK and applies the same concept as the original 

version, but with measurements in 3 different bands (with 3 colour light-frequency converters) as 

shown in Figure 6.  
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Figure 6 Estimated wavelength sensitivity for the 3 sensors used in KdUSTICK 

 

The KdUSTICK can record time series of downwelling light attenuation (Kd) measurements and save it 

in local storage or send it in real time using Internet of Things technologies (Sigfox currently being 

tested). As with the reflectance sensor processing, it is possible for the sensor system to derive a 

statistical representation of the timeseries and transmit that at a reduced data volume, rather than 

the complete time series. An example of such statistics are the mean value and the variance 

obtained from a Kd histogram over a representative time interval. The complete time series could be 

provided following a request to the sensor if the bandwidth and a scientific justification is available.  

Additionally, the KdUSTICK obtains irradiance measures (Ed) from the red, green, blue and clear light 

sensing elements. This means that multiple Kd products (Kd(red), Kd(green), Kd(blue) and Kd(clear)) 

can be derived as well as the coefficient of determination corresponding to each of them. Unless 

explicitly requested, the intention is to transmit only Kd(clear) and corresponding coefficient of 

determination in near real-time. 

Variable sampling rates and signal to noise ratio (SNR) optimisation 

By building on the Sensor Planning Service of the Open Geospatial Consortium, there is the 

possibility of sending requests to sensors for a change in data provision. Thus, it is also possible that 

requests could be sent through the sensor network for changes in the sampling/sensing protocol in 

response to user requirements. Alternatively, the sampling strategy could include automated 

adaptation to local conditions or satellite coincidence. Instruments within the MONOCLE system that 

are candidates for this approach include Kduino/ KdUSTICK, WISP-M, SO-RAD and CLAM devices.  

Increasing integration times for sensing can increase the SNR but it is not the only option. Due to the 

nature of the sensors contained in the MONOCLE system, we can consider both hardware and 

software (processing) approaches to optimise SNR.  
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KdUSTICK 
The KdUSTICK can perform sampling at a variety of rates using both different integration times in the 

colour sensor (per measurement) and also specifying how long we want to take measurements for 

(total time series lengths). This means that sampling rates could be increased at times of increased 

variability in the local environment (such as rainfall events). As described in Darecki et al. (2011), it is 

possible to resolve high-amplitude, short-duration light flashes caused by wave focusing at near-

surface depths in sunny conditions (Figure 7). This requires sampling rates of up to 1 kHz, much 

higher than those required for the routine estimation of Kd. Therefore, it is sensible to have short 

bursts of high frequency measurement in order to check for wave focusing alongside longer 

measurement periods designed to maximise the SNR for the Kd estimates.  

 
Figure 7 Example from Darecki et al. (2011) of near-surface light fluctuations. Measurements in the open ocean 

waters (south of the Hawaiian Islands) September 3, 2009 at 10:20 AM local time illustrating variable sky conditions 

with intermittent cloud cover. 

 
The light sensors currently used within the KdUSTICK, which use pulse frequencies (i.e. light-to-

frequency converter), have approximately 20% deviation error in their measurement. This error is 

only significant for calculation of Kd in very transparent waters (Kd < 1 m-1) but in these cases it might 

be required to increase the SNR, if possible. Also, long time integrations in light sensors are 

important to mitigate light variability in the water column caused by the surface wave effect and to 

correctly estimate the water transparency. We can minimize wave-induced light fluctuations by 

averaging pulses per unit time, see Figure 8. The optimal time for integration of the light sensor 

measurement has not yet been determined but the current settings control the sensor integration 

time to cycles of one minute. 

 

 
Figure 8 Schematic diagram of how we obtain averaged pulses. 
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WISP 
The WISP device firmware features the ability to vary sampling rates. This is currently accessible 

through direct interaction with the sensor or by remote access. The maximum frequency of sampling 

is bounded by the duration of the measurement itself and the time it takes to send the data.  

Currently a safe margin is implemented to allow the instrument to switch from 1 channel to the 

next, combined with a time margin to allow the sending of the data to the database over 3g/4g. 

Variable properties are the duration of the measurement itself (depending on the ambient light 

conditions) and the speed of data transfer. Practical experience indicates that a safe interval 

between two consecutive measurements is between 2 and 3 minutes.  This is a short enough 

window that for many applications, such as matching measurements to satellite overpass times, it 

should be possible to take a measurement with minimal time offset. 

In the design of a spectrometer system, there is always a trade-off between the speed of 

measurement and the quality (in terms of signal to noise ratio) are interlinked. For the WISP-M we 

have chosen a spectrometer configuration with an enhanced sensitivity (Signal/Noise = 300:1) and a 

slit of 100 um. The system is using smart software (programmed in C) to quickly optimise the 

integration time to obtain a signal level that is just below saturation level.   

Radiometers 
The SO-RAD platform will adopt the Sensor Planning Service to ensure maximum data rates during 

satellite overpasses or periods of special interest (e.g. nearby citizen science measurements). This is 

not in the scope of data or signal optimization but part of synergy between in situ and satellite 

observations demonstrated in WP7. Depending on the sensor system mounted on the SO-RAD, 

optimization of the SNR is possible through optimized integration times. In current tests, TriOS 

RAMSES sensors are used with automated integration time. Data which use < 10 % (under-saturated) 

or the full (over-saturated) dynamic range are discarded. The TriOS sensors do not support high-

frequency (multiple sub-second exposures) due to limitations in data transfer rate.  

CLAM 
The primary use of variable sampling rates for the CLAM sensor would be to increase the signal to 

noise ratio by integrating measurements over a longer sampling interval. There are hardware 

configuration changes that will optimise the SNR between clear and turbid waters (primarily changes 

to the pathlength of the sensor). 

Drone imaging 
Drone based sensing provides the capability to perform mapping flights as well as hover in a (nearly) 

fixed position. When flying in mapping mode, the drone covers a larger spatial area but each image 

captures a different scene. You can define a percentage of overlap for the two directions (x- and y-

direction). For land applications, typically an overlap > 80% is chosen to allow stereoscopy. Since 

water can, in general, be considered as a flat surface, this percentage can be lowered without losing 

information. Setting a region of overlap for water monitoring is nevertheless useful, since it allows 

the exclusion of bad pixels, which are for example affected by sun glint. Out of these images one 

mosaic can be generated.  
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Performing a full flight mission in hovering mode is mainly of interest in highly dynamic 

environments, e.g. when a sediment plume is entering a harbour. But hovering also allows the 

aggregation of consecutive images which increases the SNR and the variability of pixels of short 

timescales may also provide information on the data uncertainty. When spectral reference targets 

are used to account for the irradiance (see sensor-side processing), it is recommended to hover for 

several minutes over these reference panels to increase the SNR. 

Dimensionality reduction 

Dimensionality reduction is the process of reducing the number of variables to a set of ‘principle’ 

variables. This aims to capture a high proportion of the variance in the dataset in a reduced 

dimensional space. Consider a set of hyperspectral reflectance measurements, for many applications 

the full n-dimensional space (where n is the number of wavelengths measured) is not required. 

Additionally, there is likely to be strong covariance of reflectance values in close wavelength 

proximity as the absorption peaks of common absorbing components (such as photosynthetic or 

photoprotective pigments) can be anywhere from 10-100 nm across (Bricaud, 2004). This is one of 

the reasons that it is possible to estimate chlorophyll-a concentrations from remote sensing data 

using information from just 2-5 wavebands. 

Principle component analysis (PCA) is the process of identifying the spatial axes that contain the 

majority of the multidimensional variance. Some data loss is unavoidable but ideally this is minimal if 

sufficient variance is captured.  In addition, computing and other power requirements may limit the 

implementation of sensor-side dimensionality reduction.  

PCA might be possible for the KdUSTICK data as measurements are performed for at least 3 

wavebands. An example of using PCA to classify water masses is shown in Figure 9. In the example 

given, 3 waterbodies can be distinguished when compared on the 2 principle component axes.  This 

means that only those two PCA axes values would be required to assign a measurement to a 

waterbody or water type. 
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Figure 9 Example of the requirements evaluation for the new version of KdUINO using the outputs from numerical 

modelling. The simulations provide the data for classifying different water bodies based on the PCA analysis of the 

Kd measurements obtained. 

 

Data Compression, standardised formats and access/sub-setting methods 

Modern instruments have the capacity to generate enormous volumes of data at high spatial and/or 

temporal resolutions. This can place an unwelcome burden on networks and a cost to users to 

transfer and store data.  Consider the case of a user who might wish to know the weekly, mean 

concentration of chlorophyll-a in a lake over the course of a year, it is much easier for them to 

download a summary time series than download all the data for the lake to their own machine and 

then perform operations upon it. This principle is one of the driving principles behind the move to 

cloud storage and cloud processing systems.  

Sensor side processing of data is one method for reducing the pressure on sensor network 

transmission, but a number of other strategies at the system level can help with data transfer loads. 

These include suitable file compression, standardised file and data formatting, and methods for 

sending data subset requests to the network.  This is covered in more detail in D5.2 ‘System 

architecture and standards report’. 

Though the WISP-M sends raw data directly to an online database where local processing and 

quality control is performed, an API allows users to extract either L2 reflectance data or L1B data.  

WI intends to publish a dedicated Python library to extract sets of L1B data and process the spectra 
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to L2 reflectance using various processing schemes for subset selection (from the ensembles) and 

glint correction.   

CSIC will send data from KdUSTICK to a processing and storage server using Internet of Things 

technologies. Two different ways of communication are being considered: LoRa (by The Things 

Network) and Sigfox. Each method has associated limitations on the volume of data that can be 

transmitted as illustrated in Table 1. 

 
Table 1 Differences between Sigfox and TTN 

 Sigfox TTN 
Type of Technology Private ($1 per device / yr) Open and Free 
Back-end 1 year 7 days 
Uplink 
Downlink 

140 messages @ 12bytes 
4 messages @ 8 bytes 

30 seconds / day 
10 messages / day 

Bytes per day (Uplink) 1680 bytes >6000 bytes 
Max message size 12 bytes 5 seconds on air or 222 bytes 
 

During the Lake Balaton field campaign, Sigfox technology will be tested as there is currently Sigfox 

coverage in most of the relevant area. Once data are received by the data server, CSIC will pre-

process these and forward them using the Sensor Observation Service protocol to the MONOCLE 

back-end.  

5. Enhanced information retrieval 
 

All the approaches discussed below are designed to increase the quality, and utility of the retrieved 

data. Within the MONOCLE programme we are testing the approaches relating to two main goals; 

automated processing in order to flag anomalous data and, automated feature detection that might 

trigger changes to the sampling schemes etc.  

It is worth noting that some sensors or sensor platforms perform automated checks on recorded 

data in order to filter out ‘bad’ data (such as negative reflectance values). This sort of filtering or 

correction should not be confused with the ‘anomaly detection’ discussed below, which is intended 

to inspect the data considered ‘good’ for unexpected anomalies in comparison to the rest of the 

datasets, rather than compared to some fixed thresholds. An example of this automated checking 

utilised within MONOCLE is the Simis and Olsson (2013) algorithm i.e. a fingerprint technique which 

attempts removal of atmospheric influence from the Rrs spectrum measured by sensors such as 

TriOS. Filters are also applied to eliminate spectra contaminated by sun glare, poor signal-to-noise, 

or non-water reflectance.  

Anomaly detection 

A number of statistical tests exist for the identification of outliers; in the context of MONOCLE we 

will focus on those that are most applicable to time series datasets and image data. 
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Statistical tests such as Grubbs test, Dixon’s test, Hampel’s test and quartile methods are candidates 

for identifying outliers in a given dataset but these methods are not necessarily suitable for use with 

time series data. Dixon’s test for example can become hard to implement with a very large dataset 

and requires lookup tables. A Grubbs test requires the data to conform to a normal distribution, a 

fair assumption for some, but not all, datasets from natural waters. Additionally, Grubbs test 

requires the expected number of outliers to be predefined. The Hampel’s test is theoretically more 

resistant to factors such as the volume of the dataset and the magnitude of an outlier. The 

robustness of the Hampel test is due to using the median to estimate the valid data ‘centre’ and 

median absolute deviation (MAD) to estimate the data standard deviation. Recent attempts to 

improve the capability of the Hampel test include the addition of Jacknife methodology (Lasisi and 

Shangodouin, 2014).  

Alternatively, Seasonal and Trend decomposition using Loess (STL) is a robust method for 

decomposing time series through non-linear relationships. The STL method was developed 

by Cleveland et al. (1990). STL fundamentally decomposes a time series into a trend, a cyclical 

component and a residual as shown in 

 

 

Figure 10.   Both the trend and residuals can then be analysed for anomalies or significant trends 

that are worthy of note.  

The Seasonal Hybrid Extreme Studentized Deviate (S-H-ESD) builds upon the Generalized ESD test for 

detecting anomalies. S-H-ESD has been shown to detect both global and local anomalies, where 

global anomalies are generally more apparent in the raw data streams while local anomalies tend to 

be visible only in the residual. The performance of S-H-ESD is achieved by employing time series 

decomposition and using robust statistical metrics, such as median (as in the Hampel test), together 

with ESD. For extended time series (e.g. 250,000 measurements), the algorithm can be implemented 

with a piecewise approximation. The piecewise approximation is used as a long time series can 

contain sufficient anomalies to interfere with the initial trend detection (Vallis et al 2014). An 

example of this approach is shown in Figure 11. 
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These techniques will be applied to data streams from the Kduino, CLAM, PAR and Radiometer 

sensors. 

 

 
 

Figure 10: examples of STL decomposition for strongly cyclical data from a MONOCLE sensor. Left plots show 

decomposition with no trend permitted; right plots include a trend component. Top rows show input data, 2nd rows 

show cyclical component, 3rd row is trend and 4th is residual. 

 

 
Figure 11: Example of anomaly detection in a time series using S-H-ESD approach. 

 

Separating sensor degradation, drift and fouling 

A key procedure to assure the quality of observations from reference sensors is to subject them to 

periodic calibration. This, however, is a prominent operational cost which causes significant 

disturbance to operational data gathering, particularly in remote locations.  
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For radiometry solutions, MONOCLE aims to combine sensor data with models as well as data filters 

to establish the degree of calibration drift vs sensor degradation and fouling, based on the following 

principles: 

- Radiometric measurements contain information about illumination conditions, even when 

sensor drift has occurred 

- The nature of downwelling solar (ir)radiance is such that cyclical patterns (day/night) and 

variable light intensity (according to sun angles and cloud cover) will be observed over time.  

- Models can predict for a given location and time what the idealized sky radiance will look 

like.  

- Over time, radiometric measurements will increasingly deviate from idealized sky radiance. 

This deviation is associated with sensor drift and/or fouling.  

- Fouling can occur suddenly (detected as an anomaly with lasting impact) or gradually. 

- In-field calibration of sensors against characterized targets, or other sensors, can help 

determine the nature of gradual sensor drift. 

- Satellite overpasses provide an independent measure of the spectral nature of the up and 

downwelling light fields, albeit with their own uncertainties 

Within MONOCLE, we will explore whether a decision-tree approach to quantifying the elements of 

sensor drift is a feasible way to establish the most strategic calibration intervals. This work is due to 

start when autonomous sensors are deployed at mature test sites, expected from summer 2019.  

Automated Feature detection 

Feature detection is more complicated than anomaly detection as here one is looking for coherent 

structures within datasets rather than point anomalies or step/phase changes. Feature detection 

analyses can be performed on time series in order to determine phenological metrics. Fitting of 

Gaussian peaks to annual time-series for example can be used to determine the features of algal 

growth cycles (Platt et al. 2009, Racault et al. 2016).  

Feature detection on image data is particularly interesting as this can be used to elucidate the 

dynamics of water masses in an automated manner.  Feature tracking in water bodies using 

observations such as drone images is possible but difficult.  Three common assumptions in feature 

tracking methods are ‘Brightness consistency’, ‘Spatial coherence’ and ‘Temporal persistence’, all of 

which could be broken in some form by simple advection of waters upwards from below, or 

downwards beneath, the optical depth visible to the sensor. 

Cross system information 

In this context, ‘cross system information’ refers to the utilisation of data from one sensor in order 

to validate, compliment or enhance data from another sensor. This includes the communication of 

in-field calibration results and the utilisation of in situ sensor data attachment to relevant drone 

images. There are number of cases of this principle that will be tested within the MONOCLE 

programme.  
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A prime example of cross system information for complimentary data streams is the synergy 

between the HSP-1 (pyranometer), SO-RAD Rrs (using TriOS RAMSES) observations and use of the 

iSPEX along ship transects. Among other aspects, the combination would allow the modelling 

component (Gregg and Carder 1990) of the 3C approach (Groetsch et al. 2017) to be replaced with 

observations. As a first test we will use in situ measurements taken by the HSP-1 to take a ratio of 

the hyperspectral direct vs diffuse irradiance. We will then compare these values with modelled 

values calculated using the Gregg and Carder (1990) approach. There is also the possibility that 

photovoltaic panels (for example, the charge level registered by the solar charging controller 

onboard the TriOS platform) can be used as a proxy for Ed. 

An example of cross system validation is the co-deployment of high and low cost sensors.  MONOCLE 

provides the opportunity to examine concurrent data from the KdUSTICK alongside high cost 

estimates of absorption and scattering from the Wetlabs AC-S instrument.  We can compare the low 

cost estimates of Kd with those we would expect given the IOPs measured by the ACS package. 

Additionally, in situ measurements will be made of phytoplankton pigment concentrations that can 

be compared to estimates from the AC-S and from remote sensors. 

The HSP-1 collected data can also be used for the processing of drone imagery, as the direct vs 

diffuse radiance is important in the modelling of sky glint effects. Ultimately, drone data can be used 

in support of other sensors: e.g. when the WISP of KdUINO detect a sudden change in the water 

properties, they can send a trigger to a drone and conduct a drone flight to monitor a larger extent 

and detects where the anomaly comes from. In situ measurements are used to validate the drone 

products.  

We will also use in situ measurements taken using existing in situ Rrs AERONET-OC instrumentation 

(5 years of historical data) to study the effect of using diffuse sky radiance as opposed to diffuse 

irradiance in that ratio. Using sky radiance distribution models, the intensity offset for a given 

viewing geometry may be correctable for clear sky conditions. 

6. Exploitation and Dissemination 
The information in this deliverable can be used in WP8 for dissemination and exploitation of the 

results from the field campaigns and to act as an initial reference point for testing and flagging of 

data streams from MONOCLE sensors. Protocols for use with the instruments following the field 

campaigns will be available, including sensor/platform details and documented test results from the 

field campaigns (e.g. complementary data streams and anomaly detection in sensor time series).  

We will also provide test examples of the anomaly detection techniques alongside this data made 

available from WP5. This will be an ongoing process throughout sensor development after each 

planned field campaign. 
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7. Future activities/recommendations 
Below is a summary table of the intended tests and required datasets to be acquired during 

MONOCLE programme in order to allow the investigation and refinement of the processing 

techniques discussed in the document above. 

Use/test to perform Required Dataset Additional notes 

‘Representative’ spectra generation 

from WISP-M measurements (averaging, 

deviant spectra exclusions and 

percentile filtering tests). 

Database of WISP-M 

measurements at L1A. 

 

Performance estimates of WISP-M L1b 

to L2R processing options. 

Independent in situ validation 

measurements taken 

alongside WISP-M L1B data in 

order to assess performance 

of each option. 

 

Demonstration of SNR improvement as 

a function of hovering time for drone 

imagery. 

Repeated drone 

measurements over extended 

hovering period (perhaps up 

to 5 minutes) with reference 

panels and in-situ sampling 

location within field of view. 

 

Demonstration of increased KdUSTICK 

sampling rate at times of increased 

variability in the local environment (such 

as rainfall events).  

KdUSTICK data at differing 

sampling rates during known 

‘event’ (rainfall, introduction 

of sediment plume, etc)  

It may be necessary to ‘induce’ 

an anomaly under lab 

conditions so that the exact 

timing and expected impact 

are known. 

Resolving of resolve high-amplitude, 

short-duration light flashes caused by 

wave focusing using KdUSTICK 

measurements. 

This requires sampling rates 

of up to 1 kHz, much higher 

required than for the routine 

estimation of Kd. 

Ideally, these measurements 

would be taken under 

conditions of a regular and 

smooth swell of known period. 

Demonstration of CLAM pathlength and 

integration time impact on SNR. 

CLAM dataset in high and low 

turbidity waters with differing 

pathlengths and integration 

times.  

Ideally this would be alongside 

independant estimates of Chl-a 

from either hplc, or extracted 

chl-a fluorometry, or using 

absorption standards. 

Testing PCA based identification of 

water bodies from KdUINO/KdUSTICK 

data from environmental samples rather 

than modelling simulations.  

KdUINO/KdUSTICK data 

across a known gradient (or 

transition) in water body 

proerties. 

 

Anomaly detection using multiple Timeseries from KdUNIO, Anomalies can be induced, e.g. 
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metrics for KdUNIO, CLAM, PAR and 

Radiometer sensor timeseries. 

CLAM, PAR and Radiometer 

sensors with associated data 

on any known or induced 

‘anomaly’ times. 

producing bubbles, partially 

blocking sensor view, etc. 

Trial feature detection and tracking from 

drone imagery. 

Drone images of known 

transient feature such as river 

plume or drifting target. 

The feature does not have to 

be naturally occurring as this is 

simply a test of tracking 

approaches, rather than 

tracking a particular class of 

feature. 

Comparison of in situ data from (HSP-1, 

iSPEX, SO-RAD) and modelled irradiance 

values calculated using the Gregg and 

Carder (1990) approach in order to 

improve the 3C approach. 

Co-incident measurements 

from suite of 3 sensors. 

 

Comparison of Kd estimates from 

KdUINO/KdSTICK with AC-S derived 

estimates. 

Co-incident measurements 

from KdUINO and AC-S 

instruments. 
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