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Abstract—There are thousands of Unicode characters and hence
it can be hard to visually find a particular one. For this reason, we
aimed at developing a tool that allows to handwrite a character
and receive a list of the most similar candidates to that input.
This tool will be integrated in a math editor which handles more
than 5,000 different Unicode characters. Since no public datasets
were found to fit our needs, we crowdsourced the acquisition of
online handwritten data for training purposes. We developed a
neural network combining convolutional layers with shape-based
features to classify online handwritten Unicode characters. To
make the model more robust to input variability, we used data
augmentation in the form of affine transformations. We achieved
a top-20 error rate of 12.64% on validation data and received
positive feedback from users, thus validating that crowdsourcing
is a proper method for online handwriting acquisition. Finally,
we deployed the model wrapped in a JSON-based REST API
and released a public demo using it. This way, we present the
full development cycle of a Unicode character classifier.

Index Terms—crowdsourcing, online, handwriting, Unicode, char-
acter, classification, neural networks

I. INTRODUCTION

Throughout history, humankind has developed a great variety
of writing systems and currently many different scripts and
symbols are used all over the world. Nowadays, Unicode is
the computing dominant standard for internal processing and
storage of those symbols.

If we write a love letter, a keyboard is usually enough to enter
all the necessary Unicode characters. However, if we write a
scientific paper we might need to insert special characters (for
example, mathematical symbols) not available on the keyboard.
This need is normally solved by using a text editor, but even in
that case it can still be hard to find a specific character among
hundreds (or thousands) of options.

A much easier and comfortable approach would be to draw
the character and get a list of the most similar characters from
where we could select the one we want to insert. That is the
goal of this work, to develop a tool that helps users to find a
character by just drawing it. This tool would be used to edit
math and text, targeting more than 5,000 Unicode characters.

The shape of a Unicode character can greatly differ from its
handwritten counterpart due to human handwriting variability
and style. For example, the handwritten version of R could be

, or a could become . Therefore, in order to train a pattern

recognition classifier we need an online handwritten character
dataset labeled with their corresponding Unicode number.

Although many public handwritten character datasets are
available (e.g. CROHME dataset [1] or IAM Handwriting
Database [2]) they do not meet our requirements. For example,
these datasets altogether contain around 100 different classes,
which corresponds roughly to only 2% of the characters that
we intend to account for.

Creating and labeling a dataset can be tedious and time-
consuming. For this reason, we employed crowdsourcing to
collect the required handwriting samples. Although previous
studies have used crowdsourcing to collect data for machine
learning tasks [3], to the best of our knowledge, there is
no previous work that crowdsourced the creation of online
handwriting data. This is one of the contributions of this paper.

Once a collection of training samples was available, we
developed (and evaluated) a model able to provide a list
of candidates for a given handwritten input. Finally, we
explored how to deploy the system in order to be integrated
with the future version of MathType editor.1 Thus, another
contribution of this paper is the presentation of the full
development cycle (from requirements gathering to deployment)
of a handwritten Unicode character recognizer. Experimental
results with quantitative evaluations as well as qualitative
feedback from users validate the proposed approach.

II. RELATED WORK

Unicode 2 is a computing standard for the consistent encoding
of symbols. Currently it contains more than 136K characters
covering 139 scripts (modern and historic) as well as multiple
symbol sets. However, common applications only use a small
subset of this huge set of characters.

In this work we are interested in providing a tool to assist
users to find Unicode characters by drawing them. There are
tools already available that provide this option. For example,
Shapecatcher 3 is a web application that implements a classifier
based on shape contexts similarities [4]. This application
supports the recognition of about 10K Unicode characters.

1Available at: http://www.wiris.com/mathtype/
2Official website at: http://www.unicode.org/versions/Unicode10.0.0/
3Available at: http://shapecatcher.com/
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Moreover, Detexify 4 is a web application that focuses on
LATEX, currently accounting for about 1,000 characters. This
tool uses a nearest-neighbour classifier with dynamic time
warping as distance measure. Finally, Google provides a tool 5

integrated with Google Docs to insert special characters that
accepts handwritten input. Unfortunately, the handled character
set and its underlying engine are unknown.

In order to develop an application like those discussed above
two things are needed: labeled data and a model able to account
for it. There are many datasets containing online handwritten
characters (e.g. CROHME dataset [1], CASIA database [5] or
IAM Database [2]) but they only cover specific domains or
scripts which are not enough for our task requirements.

Crowdsourcing is a sourcing model in which goods are obtained
from a large group of Internet users; dividing work between
participants to achieve a cumulative result. Lately, many
research papers have relied on this approach to create data for
different machine learning related tasks [3], such as machine
translation, speech recognition, computer vision, sentiment
analysis or information retrieval.

Regarding handwriting data, several tasks have used crowd-
sourcing to transcribe offline handwritten text [6], i.e. they had
a set of images of handwriting and collected their transcriptions.
On the other hand, Le et al. [7] used crowdsourcing to
create images containing handwriting and their corresponding
transcripts. In that task, they asked users to write down some
text in a piece of paper and then upload a photo or scan
of that paper. In a subsequent task, users had to transcribe
the images previously collected. However, we have not found
any publication that used crowdsourcing to create an online
handwriting dataset.

Once labeled data is available we can use a machine learning
algorithm to learn how to recognize online handwritten
Unicode characters. Many approaches have been presented
in the literature for character recognition [8], such as hidden
Markov Models [9], support vector machines [10] or neural
networks [11]. Converting online patterns into offline patterns
makes possible to apply offline techniques for recognizing
online characters [12]. Moreover, many previous works have
opted for combining both modalities, by fusing them [13]
or by using a representation like path iterated-integral signa-
ture [14] that produces an image where each pixel also encodes
information regarding the input trajectory.

Generally, online systems achieve better performance than
offline systems [15], because they can use more information
from the trajectory of the handwriting. However, offline
methods are less dependent on input order or writing styles such
that in some cases they can produce better results [12]. Current
state-of-the-art approaches to offline recognition make essential
use of Convolutional Neural Networks [16,17] (CNNs). They
have been successfully used for solving many image-based

4Available at: http://detexify.kirelabs.org
5Open a document at Google Docs and ‘Insert > Special characters’.

tasks [18]. In this work, we will explore the application of
CNNs to handwritten Unicode character recognition.

III. CROWDSOURCING DATA

Since there was no available dataset that met our requirements,
we decided to create our own dataset using crowdsourcing to
train a Unicode character classifier.

Amazon Mechanical Turk6 (MTurk) is probably the most well-
known crowdsourcing platform. Employers (or requesters) are
able to post jobs, known as Human Intelligence Tasks (HITs).
Workers can browse among existing jobs and complete them in
exchange for a monetary payment set by the requester. HITs are
commonly short and their reward is as low as $0.01. Requesters
have several HIT templates available at MTurk, but none of
them is suitable to accept handwritten input. We had to design
an external question such that the HIT contains a frame to an
external website. When designing a HIT one has to consider
that workers are probably non-experts in the task and low
payments do not enforce high quality results [3]. A HIT could
also have specific requirements, for instance, being a native
writer or using a touchscreen device.

Crowdsourcing is quite appropriate for collecting handwritten
Unicode characters for our task. The use case we address is
that a user (probably non-expert) wants to find a particular
character so s/he handwrites it using any input device (mouse,
touchscreen, etc.) in any scenario. They could even not know
the symbol because they are copying it from another source.

Figure 1 shows the Graphical User Interface (GUI) displayed
to crowdsourcing workers with simple and clear instructions.
The GUI includes options to clear the canvas and to undo the
last action. In addition to the frontend, we needed to develop a

Fig. 1: GUI displayed to crowdsourcing users for collecting
online handwritten Unicode characters.

6Official website at: https://www.mturk.com/
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backend server in charge of proposing new characters such that
we collect samples from a list of 5,456 Unicode characters.

Once the collecting pipeline was available, we created HITs
that consisted on handwriting 15 characters for a reward of
$0.05. We created 3,638 HITs at MTurk to collect about 10
samples per class for a total of 54,570 samples at the cost of
$0.004 per sample (since Amazon’s fees are 20% of the HIT
reward). Workers completed all HITs in less than 24 hours,
creating a total of 56,487 samples. It should be noted that this
number is greater than expected because some workers left a
HIT before finishing it, but those samples were also collected.

Given that MTurk does not provide any direct quality control
about the task result, we had to assess the correctness of the
collected samples. Initially, we tried to use statistical methods
for outliers detection such as z-score with robust estimators [19],
but this technique did not yield conclusive results given the
low number of samples per class. For this reason, we created
a simple tool to manually validate the data, given that it is
easy to spot a bad sample among samples of the same class.
As a result of this validation, 629 samples were found to be
incorrect, leaving a total of 55,858 correct samples. In this
case, manual validation made sense due to the low complexity
and small size of the task. For bigger tasks, another approach
would be to also use crowdsourcing to validate the collected
data, which is known as iterative tasks [20].

After including samples collected during development and
testing of the data acquisition pipeline, the number of samples
amounted to 57,703. Each class had 10 samples on average,
where the distribution of the classes is not exactly balanced due
to the high number of concurrent requests during collection.

IV. PROPOSED SYSTEM

A. Data Representation

Online samples were represented as raster images enriched
with a set of global features.

1) Rasterization: First, the (x,y)-coordinates of each sample
are normalized in size such that its bounding box has a size of
64× 64. This normalization process provides a representation
robust to scale and translation. Then, coordinates are properly
rasterized into a 64× 64 matrix.

2) Global Features Extraction: Size normalization performed
during rasterization discards information of the original shape
useful to distinguish between symbols that are very small (e.g.
a dot, or ‘◦’ versus ‘0’), or very thin (e.g. ‘ ’, or ‘/’ versus ‘|’).
For this reason, we compute a set of global features in order
to provide additional information about the original input.

Given the original sequence of points with a bounding box of
size ws × hs that was drawn on a canvas of size wc × hc, we
compute the following 8 features:ws
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being the last four values image moments [21], where mpq

and µpq represent the geometric moment and central moment
of order (p+ q), respectively.

B. Neural Network Architecture

We use an architecture inspired by the VGG ConvNet configu-
ration [18], composed of blocks with very small receptive field
convolutions followed by a pooling operation.

Each convolutional block (ConvBlock) contains a 3×3-sized
kernel convolutional layer. Dropout [22] is applied at the input
of the block in order to reduce overfitting. Moreover, Batch
Normalization [23] is used to normalize the nonlinear activation
function inputs. Exponential Linear Units (ELUs) [24] are
employed as activation functions. The output of the activation
is connected to a Pooling Layer with maximum operation
(Maxpool) and nonoverlapping 2×2-sized kernels, in order to
reduce the input size.

The network deals with two different inputs for each sample:
a raster image and a set of global features. Three ConvBlocks
provide an encoded representation of the raster image. This
representation is concatenated with the set of global features
that finally goes through a linear layer with softmax activation
that maps its output to the number of classes to be recognized.
As a summary, Figure 2 shows the chosen network architecture.
Our toolkit was built upon Apache MXNet,7 a well-known
deep learning framework that supports both CPU and GPU
devices.

C. Learning

We trained the network to minimize the cross-entropy objective
function. We performed the optimization with stochastic
gradient descent employing the RMSProp method [25] to
incrementally update the parameters of the network on each
batch of 256 samples. We used a learning rate of 0.001
and training was stopped when the top-20 error rate on the
validation set did not improve for 20 epochs.

In order to reduce overfitting as well as to make the model
robust to rotation and shear variations, we performed data
augmentation on each training sample. We applied affine
transformations (rotation and shearing) dynamically and in-
dependently for each training sample. Thus, the exact same
sample is virtually never observed twice during training. The
parameters controlling the distortions, i.e. rotation and shear
angles, are sampled from a fixed distribution. These parameters
as well as all the hyperparameters of the network were
automatically tuned using Bayesian optimization [26].

D. Deploying to Production

The neural network that was finally deployed to production was
trained using the hyperparameters found during experimentation
and using all data available (both training and validation sets).

7Official website at: https://mxnet.incubator.apache.org/
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Fig. 2: Architecture of the neural network used in this work.
Each ConvBlock displays, from left to right: the kernel size,
the number of filters and the value of dropout applied.

We relied on Model Server for Apache MXNet8 (MMS) to
deal with the deployment of this model. MMS not only accepts
MXNet models but also Open Neural Network Exchange9

(ONNX) models, which is an open format to represent deep
learning models supported by the most popular frameworks
(e.g. PyTorch, MXNet, Tensorflow, Caffe2, Chainer, or CNTK).

MMS wraps a deep learning model inside a JSON-based REST
API to become backend agnostic. This way, we can use any
technology stack to integrate it on websites or native mobile
apps. Our API provides a service that receives a sequence of
points representing a character, as well as the input canvas size
where it was written. The response is a JSON containing a list
of 20 Unicode number candidates for the input provided.

Moreover, we implemented a web application that consumes
the web service as a publicly accessible demo.10

V. EVALUATION

We conducted experiments to evaluate 1) the accuracy of our
recognizer for predicting the label of handwritten Unicode
characters and 2) the utility of the developed tool.

8Official website at: https://github.com/awslabs/mxnet-model-server
9Official website at: https://onnx.ai/

10Available at: https://www.wiris.net/demo/hand/tests/en/test-unicode.html

A. Dataset

We carried out experiments using a private dataset collected
following the procedure described in Section III. This dataset
comprises 5,456 Unicode characters performed by hundreds
of users for a total of 57,703 online handwritten samples.

Each participant was asked to handwrite a Unicode character
that was displayed as a typographic character (see Figure 1).
Figure 3 depicts several Unicode characters performed by users.

Fig. 3: Examples of Unicode characters collected from users.

B. Design and Procedure

We defined a validation set, composed of one sample per class
(5,456 samples in total). In order to evaluate the influence
of the amount of training data, we defined four different
training partitions containing 25%, 50%, 75% and 100% of
the remaining samples (52,247 samples).

For each sample in the validation set, we compared the labels
predicted by the system (described in Section IV) with the true
label using different top-k error rates, where k ∈ {1, 10, 20}.
Top-k error rate considers the prediction incorrect if the ground-
truth label is not in the best k predictions.

C. Results

Figure 4 displays the validation results, where top-1, top-10 and
top-20 error rates are reported for the different train partitions.
The best top-1, top-10 and top-20 error rates are 60.37%,
20.49% and 12.64%, respectively. In all three cases, the best
results are achieved when 100% partition is used. The best
error rate for top-20 was achieved after training for 65 epochs.
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Fig. 4: From left to right: top-1, top-10, top-20 error rates for
the different training partitions.

Moreover, we can observe that all top-k errors decrease
when the amount of training data is bigger. The improvement
achieved by using more data is also reduced when the model
has more samples to properly learn the classes involved.
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D. Informal User Tests

We informally evaluated the tool with 21 users (5 females)
aged 22-41 (M=28.9, SD=4.8). Participants had many different
backgrounds (e.g. Engineering, Compute Science, Humanities
or Mathematics) and most of them had used a math editor
at some point, although nobody had technical background in
handwriting recognition. There was no economic compensation
for the participants.

Each participant had to handwrite ten Unicode characters
extracted from a list chosen at random. No restrictions were
applied to the input device used. After completing the task,
users were asked to score the Unicode character recognition
tool in a 5-point Likert scale in terms of usefulness, accuracy
and efficiency. More precisely, users had to express their level
of agreement/disagreement with the following statements:

• Accuracy: I could find the symbol I was looking for.
• Usefulness: The candidates proposed were visually similar

to my handwritten input.
• Efficiency: I think I could find a symbol faster than with

an editor/toolbar.

The feedback obtained from users is summarized in Table I,
where the mean subjectivity score and the standard deviation
with 95% confidence are displayed. Overall, users expressed a

TABLE I: Mean subjectivity scores (higher is better) of users
testing the Unicode characters recognizer.

Perception Mean Subjectivity Score (± SD)

Usefulness 4.76± 0.18
Accuracy 4.76± 0.22
Efficiency 4.57± 0.41

Overall 4.70± 0.17

very positive perception of the tool developed. The Unicode
character candidates are visually similar to the provided input
and the method would represent an efficient way to insert
special characters with respect to a traditional toolbar.

VI. DISCUSSION

In this section we discuss several topics found during the
development of this work, and we point out some limitations,
but also opportunities for future work.

Manual verification of data and experimental results validate
crowdsourcing as a good resource for collecting this type of
data. Nevertheless, we would like to remark some aspects to
take into account for future online handwriting acquisitions.

Crowdsourcing workers are in general non-experts and one
of the effects we noticed is that when they are confronted
with unknown characters they tend to reproduce them exactly
as requested. Figure 5 shows some examples of requested
characters and their collected samples, were we can see the
difference of variability for different characters (some of them
more common than others).

R
c∑
,

Fig. 5: Examples of Unicode characters (leftmost) and some
handwritten samples collected from users.

Bad samples can be produced due to unintentional (user makes
a mistake) or intentional (users tries to cheat on the task) errors.
It is recommended to include some automatic metrics to assess
whether the task has been properly completed. For instance, if
we wanted to crowdsource more samples, we could compute
the top-20 error rate of each new sample and reject them based
on a preset (conservative) threshold. If we detect a worker
intentionally producing bad samples, MTurk provides a way
for rejecting a user task (such that they are not paid) or even
for blocking that particular worker (such that they will not be
able to see our future tasks).

Moreover, one could argue that there is a directly proportional
relationship between the amount of compensation for a task
and the quality of the obtained samples. However, (counter-
intuitively) this does not seem to be true [27] and in some
cases there could even be an inverse relationship since it is
more tempting to cheat on tasks with higher rewards. The
interested reader may refer to Callison et al. [3] for more
recommendations on crowdsourcing quality control.

Although the scenario we target provides online information and
the dataset we collected contains online samples, we decided
to use mainly their offline representation for recognition. We
made this decision given that characters can be potentially
written in many ways and we were collecting just 10 samples
per class (we targeted 5,500 classes). The network combines
an offline representation with global features extracted from
the online information. The choice for this architecture along
with data augmentation applied to train data, yield a system
robust to affine transformations.

We selected the top-20 error rate as our main evaluation metric
because it seems a good number of samples to display to the
user (in a 4×5 matrix). Furthermore, many Unicode characters
are very similar or even their handwritten version is virtually
identical (see Figure 6). This is why top-1 error rate is high,
but top-10 and top-20 present a much better performance. Also,
given the system’s performance tendency when train data is
increased, it seems worth collecting more data for further
developing the tool. Another interesting option would be to
explore the generation of synthetic human-like samples [28].



U00041 U00391 U00410 U1D756 U01D00

U1D790 U1D608 U1D5A0 U1D6E2 U1D400

U1D670 U1D5D4 U1D468 U1D6A8 U1D434

U00467 U00466 U01FBA U01D2C U1D538

Fig. 6: Example of the tool displaying very similar Unicode
characters for a given handwritten input.

Moreover, we would like to add that, even if the crowdsourced
data contained some errors, deep learning models have proved
to successfully learn with noisy training data [29].

Finally, comparative user tests with other similar tools (see Sec-
tion II) were discarded given that comparison would not have
been fair since systems did not use the same training data and
none of them target the same set of characters.

VII. CONCLUSION

In this work we have presented the full development cycle
of a tool for inserting Unicode characters by drawing them.
After analyzing the problem and gathering the requirements,
we crowdsourced the creation of a dataset with 57,703 online
handwritten Unicode characters distributed in 5,456 classes.
Using these data, we developed a machine learning model able
to classify handwritten Unicode characters. Experimentation
with both data and users validate the proposed approach. In
order to enhance future developments in this field, we discussed
the results obtained regarding the data collected and the system
accuracy on validation data. Finally we deployed the trained
model and published an online demo.
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