Assessing Negative Carbon Dioxide Emissions from
the Perspective of a National ‘Fair Share’ of the
Remaining Global Carbon Budget

Barry McMULLIN, Paul PRICE, Michael B. JONES, Alwynne H.
McGEEVER

Mitigation and Adaptation Strategies for Global Change
(https://link.springer.com/journal/11027)

Article DOI: 10.1007/s11027-019-09881-6 (https://doi.org/10.1007/s11027-019-09881-6)

Accepted for publication: 01 July 2019

Corresponding Author: Barry McMullin (http://www.eeng.dcu.ie/~mcmullin)

Supplementary material

Licence: This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
(http://creativecommons.org/licenses/by-sa/4.0/).

Acknowledgements: A data product of the |IE-NETs research project (http://ienets.eeng.dcu.ie/), supported
by the Irish Environmental Projection Agency (EPA) (http://epa.ie/) Research Programme 2014-2020 (grant
number 2016-CCRP-MS.36).

Background: "Exponential” pathways

"Exponential mitigation" is a plausible "default" CO2 emissions mitigation pathway: it is characterised by a
constant year-on-year fractional change in the annual emissions rate, typically expressed as a percentage
(here denoted R, and with a negative value indicating exponential decline). It is plausible because earlier
emissions reductions, relative to a large base, are likely to be easier to achieve than later reductions relative
to an already much contracted base (the "low hanging fruit" concept). So, as a first, crude, approximation,
constant fractional reduction corresponds to something like "constant mitigation effort", with some
concession to "inter-generational justice" (as opposed to, for example, linear pathways that would "backload"
greater year-on-year mitigation effort on future generations).

Exponentially declining pathways are also characterised by an asymptotic approach to zero and having finite
cumulative emissions, or cumulative "quota" ("area under the curve") in the limit extended to infinite time.
For any given quota, relative to a given starting emissions level, any alternative pathway (having varying
mitigation rate) would, at some point, require a mitigation rate higher than the constant rate of the
exponential pathway (at least for strictly positive pathways: the situation is different if nett negative emissions
rates are allowed, but we do not explore that case here). That is, for given quota, and starting emissions
level, the (unique) corresponding exponential pathway represents the pathway with the "least maximum"
mitigation rate (in fact, constant mitigation rate), for all possible strictly positive pathways.

This cumulative quota consideration is of particular relevance to COz: as a very long lived gas, its warming
effect is best understood by looking not at the emissions rate in any particular year, but the accumulation in
time; and, to stabilize climate, its emissions rate must indeed fall to (nett) zero (at least), which is not

https://link.springer.com/journal/11027
https://doi.org/10.1007/s11027-019-09881-6
http://www.eeng.dcu.ie/~mcmullin
http://creativecommons.org/licenses/by-sa/4.0/
http://ienets.eeng.dcu.ie/
http://epa.ie/

necessarily true of shorter-lived GHGs.

Exponentially growing pathways are also a common modelling default in various contexts: for example, in a
situation of projected stable economic growth, and in the absence of stringent decoupling of emissions from
such growth, then the default emissions rate pathway would also be growth at a (fixed) year-on-year
fractional increase, or exponential growth. Such pathways are characterised by the same mathematical
form, but now R is positive rather than negative, and the cumulative emissions are now not constrained by
any finite limit. Cumulative quotas can still be calculated up to some fixed time horizon: but because they
would implicitly continue growing beyond that time horizon, they are not associated with any meaningful
global temperature limit.

As a special case, R = 0% represents constant or "flat-lined" emissions.

Mathematical background

Geometric sequence

The discussion so far has been in terms of "exponential" functions which, in a technical mathematical sense
would be functions of a continuous independent variable (time). In practice, GHG inventory reporting is in
terms of a discrete time variable (normally annual emissions). Accordingly, the formal mathematical
treatment is not an exponential function of a continuous variable but rather takes the form of a geometric
sequence where each succeeding element of the sequence is in a fixed proportion to the previous element.

A geometric sequence is characterised in general as:

x(k) = xork

where: k represents the time (year) relative to some arbitrary base year (0); X is the emissions level in
year O; r is the (fixed) geometric ratio between the emissions in any given year and the previous year.
Mitigation is represented by ¥ < 1, and growth by » > 1 (and flatlining by ¥ = 1). The year on year
fractional change, introduced previously, is given by R = (r — 1). (Aside: r can be taken as vaguely
mnemonic for geometric ratio...)

Deriving Q(n) and Q, from xg, R, n

The cumulative emissions over any given number of steps (years), 1, is given by the sum of the series:

k=(n—1) 1 —
am=§jﬂm=m<h¢>

k=0

or, expressed directly in terms of R:

1-(R+1) R+1)"—-1
mm=m< i;)>=m<(+£)

Provided r < 1 (i.e., R < 0) this converges to a finite limitas n — ©o:

X0 X0
1—r —-R

Deriving R from O,

Conversely, we might ask: given a "current" emissions rate (X in the base year, k = 0) and quota (Q)
what is the corresponding exponential mitigation rate (R)?

X0
O =
1—r
Qoo(l_r):xo
Ox — O = Xy
rOs = Qs — X
Qoo_x()
r =
O
X0
r=1—-|—
(22)
and:
X0
R = —1)= ———
(r—1) O

Note that the convention here is that the year 0 emissions are included in the quota.

Deriving R from Xxg, n, X,

In this case we suppose we have two elements of the pathway (geometric series), Xy and x,, (for some
specified) and we want to know the (unique) pathway, characterised by the corresponding R. The
pathway could correspond to growth, flatlining or mitigation respectively, just depending on the two points.

x, = xor"
rn e x_]/[
X0

=

nlog(r) = log< -)
1 n
log(r) = —10g<x—>
n X0
(=55
r =exp| —log| —
n X0
1 X,
R=r-1= exp(—log(—)) -1
n X0

& |

In [1]:

1 # Some generic utility functions, based on the mathematical framework. . .
2 import math

3

4 def rate from quota(x 0, Q):

5 R = -(x 0/Q)

6 return R

7

8 def quota from rate(x 0, R):

9 Q = -(x_0/R)

10 return Q

11

12 def fixed term quota from rate(x 0, R, start year, end year):

13 n = end year - start year + 1 # n is inclusive of both start and end yea
14 if (R == 0.0):

15 Qn=x0%*n# Flatline

16 else:

17 Qn=x0%*(((R+1.0)**n - 1.0)/R)

18 return Q n

19
20 def rate from two points(year 0, x 0, year n, x n):
21 n=year n - year 0 + 1 # n is inclusive of both year O and year n
22 R = math.exp((1.0/n)*math.log(x n/x 0)) - 1.0
23 return R
24
25 # Test

26 print "Test 1: rate from quota()"

27 x 0 = 40.0

28 Q = 1000.0

29 print "In: x 0 = %5.3f" % x 0

30 print "In: Q = %5.2f" % Q

31 R = rate from quota(x 0, Q)

32 print "Out: R = %4.3f%%" % (R*100.0)

34 print "Test 2: quota from rate()"
35 print "In: x 0 = %5.3f" % x 0

36 print "In: R = %4.3f%%" % (R*100.0)
37 Q = quota from rate(x 0, R)

38 print "Out: Q = %5.2f" % Q

40 print "Test 3: fixed term quota from rate()"
41 print "In: x 0 = %5.3f" % x 0

42 print "In: R = %4.3f%%" % (R*100.0)

43 start year = 2015

44 end year = 2035

45 print "In: start year = %4d" % start year

46 print "In: end year = %4d" % end year

47 Q n = fixed term quota from rate(x 0, R, start year, end year)
48 print "Out: Q n = %5.2f" % Q_n

50 print "Test 4: rate from two points()"

51 year 0 = 2015

52 year n = 2050

53 x n=x0* 0.2 # -80% over the pathway

54 print "In: year 0 = %4d" % year 0

55 print "In: x 0 = %5.3f" % x_0

56 print "In: year n = %4d" % year n

57 print "In: x n = %5.3f" % x_n

58 R = rate from two points(year 0, x 0, year n, x n)

59 print "Out: R = %4.3f%%" % (R*100.0)
60

61

Test 1: rate from quota()

In: x 0 = 40.000

In: Q = 1000.00

Out: R = -4.000%
Test 2: quota from rate()

In:
In:

x 0 = 40.000
R = -4.000%

Out: Q = 1000.00
Test 3: fixed term quota from rate()

In:
In:
In:
In:

X 0 = 40.000

R = -4.000%
start year = 2015
end year = 2035

Out: Q. n = 575.68
Test 4: rate from two points()

In:
In:
In:
In:

year 0 = 2015

X 0 = 40.000
year n = 2050
X n = 8.000

Out: R = -4.372%

Input Data/Parameters

Sources:

GCB estimates: IPCC Special Report on Global warming_of 1.5°C (https://www.ipcc.ch/sr15/): Chapter

2, Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development
(https://www.ipcc.ch/site/assets/uploads/sites/2/2019/02/SR15_Chapter2_Low_Res.pdf), Section 2.2.2
(pp. 104-108).

Global population: UN World Population Prospects 2017 (https://esa.un.org/unpd/wpp/DataQuery/)
Global Emissions (2015, 2016, 2017): Global Carbon Project (https://doi.org/10.18160/GCP-2018)
(dataset, .xIsx format)

Irish population: Central Statistics Office of Ireland (CSO)
(https://www.cso.ie/en/media/csoie/releasespublications/documents/population/2017/Chapter_1_Populatis
Irish historical emissions: UNFCCC National Inventory Report (NIR)
(https://unfccc.int/process/transparency-and-reporting/reporting-and-review-under-the-
convention/greenhouse-gas-inventories-annex-i-parties/submissions/national-inventory-submissions-
2017)

Irish emissions projections: Environmental Protection Agency of Ireland (EPA) Ireland's Greenhouse

Gas Emissions Projections 2016-2035
(http://www.epa.ie/pubs/reports/air/airemissions/ghgprojections/Ireland_2017_GHG_Emission_Projection:
2035.xIsx)

Irish National Mitigation Objective (NMO): Government of Ireland (2014) National Policy Position on
Climate Action and Low Carbon Development (https://www.dccae.gov.ie/en-ie/climate-
action/publications/Pages/National-Policy-Position.aspx)

https://www.ipcc.ch/sr15/
https://www.ipcc.ch/site/assets/uploads/sites/2/2019/02/SR15_Chapter2_Low_Res.pdf
https://esa.un.org/unpd/wpp/DataQuery/
https://doi.org/10.18160/GCP-2018
https://www.cso.ie/en/media/csoie/releasespublications/documents/population/2017/Chapter_1_Population_change_and_historical_perspective.pdf
https://unfccc.int/process/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-annex-i-parties/submissions/national-inventory-submissions-2017
http://www.epa.ie/pubs/reports/air/airemissions/ghgprojections/Ireland_2017_GHG_Emission_Projections_2016-2035.xlsx
https://www.dccae.gov.ie/en-ie/climate-action/publications/Pages/National-Policy-Position.aspx

In [2]:

GCB from 2018 to NettZero = {}

GCB _from 2018 to NettZero['mid'] = 1.170E+06
SR15, Table 2.2 (p. 108), <+2C @66%, central estimate, Mt(C02
Cumulative from 2018 to time of nett zero emission rate

GCB _range SR15 = 0.5
SR15 (p. 107) aggregated GCB fractional uncertainty (%)

GCB from 2018 to NettZero['low'] = (GCB from 2018 to NettZero['mid']
* (1.0 - GCB_range SR15))

GCB_from 2018 to NettZero['high'] = (GCB_from 2018 to NettZero['mid']
* (1.0 + GCB range SR15))

GCB NettZero to 2100 = -100.0E+03
SR15, p. 107, additional order-of-magnitude cumulative removals (negat.
from time of nett zero emission rate to 2100 (to stabilize temperature
continuing Earth system feedbacks)

GCP_emissions global FFI Gt = {'2015': 9.68,'2016': 9.74, '2017': 9.87 }
Global Carbon Project, GtC/yr

GCP_emissions global LU Gt = {'2015': 1.62,'2016': 1.30, '2017': 1.39 }
Global Carbon Project, GtC/yr

GtC MtCO02 multiplier = 3.664e3

GCP _emissions global = {} # MtC02/yr
for key in ['2015', '2016', '2017']
GCP_emissions globallkey] = (
GCP_emissions global FFI Gt[key]
+ GCP_emissions global LU Gt[key]) * GtC MtCO2 multiplier

GCP _emissions global 2015 to 2017 = sum(GCP_emissions global.values())

GCB = {}
Global Carbon Budget, 2015-2100 (MtC02, nett FFI+LU)
Combine components for 2015-2017 (historical) + 2018 to time of nett z
emissions + time of nett zero emissions to 2100. Given relatively high
uncertainty, we round to le4 (MtC02)
for key in ['low', 'mid', 'high']

GCB raw = (GCB_from 2018 to NettZero[key] +

GCP_emissions global 2015 to 2017 + GCB NettZero to 2100)

GCB[key] = round(GCB_raw / led) * led

emissions IE = {
'1990': 38.286,
'2015': 42.776,
‘2035 WAM': 46.705,
'2035 WEM': 49.508} # All MtC02/yr, nett FFI+LU

emissions IE share = {'2015': emissions IE['2015']/GCP _emissions global['201!

pop global = {'2015': 7.38E+09} # UNEP

pop_IE = {}
pop IE['2011'] = 4.5883E+06
pop IE['2016'] = 4.7619E+06

pop IE['2015'] pop IE['2011'] + \
(pop IE['2016'] - pop IE['2011'])*((2015.0-2011.0)/(2016.0-2011.0))
Linear interpolation

59

60 pop IE share = {'2015': pop IE['2015']/pop _global['2015"']}
61

62 pathway start year = 2015

63 NMO target year = 2050

64 NMO pathway n = NMO target year - pathway start year + 1
65 BAU target year = 2035

66 BAU pathway n = BAU target year - pathway start year + 1
67

68 print GCB

69

{'high': 1780000.0, 'low': 610000.0, 'mid': 1190000.0}

Output/result dataset container

Basically we creat a single, global, "scenarios" list in which to collect all results in a (somewhat) systematic
format. Each element should a dataset (python dictionary) collecting all the data for one distinct "scenario".
While there is a fixed set of possible keys for all scenarios, all scenarios will not have values for all keys -
according to what makes sense for the particular scenario method; but all scenarios with the same 'method'
value must provide values for the same set of keys. It can be compared to a single table in an SQL
database, allowing that some rows will have null values for some columns (fields). (It would be relatively
straightforward to dump it out to a database and/or a spreadsheet format if one wished...)

Main "extra" here is adopting a class structure so that we can introduce tailored display methods. See:
Custom Display Logic (for iPython notebooks)
(https://github.com/ipython/ipython/blob/master/examples/IPython%20Kernel/Custom%20Display%20Logic.ip)
This is currently tailored to display only a subset of the keys that may be present...

https://github.com/ipython/ipython/blob/master/examples/IPython%20Kernel/Custom%20Display%20Logic.ipynb

In [0]:

1 from IPython.display import (

2 display, display html, display png, display svg
3)

4

5 «class Scenario:

6 def init (self):
7 self.dict = {}
8
9

def repr_(self):

10 slist = []

11 #slist.append('[repr] ')

12 dict = self.dict

13 keys = dict.keys()

14 if 'name' in keys:

15 slist.append(dict['name'])

16 if 'Q 2035' in keys:

17 slist.append(', Q 2035: %.f"' % dict['Q 2035'])
18 if 'Q' in keys:

19 slist.append(', Q: %.f' % dict['Q'])
20 if 'Q per capita' in keys:

21 slist.append(', Q per capita: %.f' % dict['Q per capita'])
22 if 'R' in keys:

23 slist.append(', R: %+3.21%%' % (dict['R']*100.0))
24 return ''.join(slist)

25

26 def repr html (self):

27 slist = ['<tr>"]

28 #slist.append('<p>[repr html] ')
29 dict = self.dict

30 keys = dict.keys()

31 value = "'

32 if 'name' in keys:

33 value = dict['name"']

34 slist.append('<td>%s</td>' % value)

35 value = "'

36 if 'Q 2035' in keys:

37 value = '%.f' % dict['Q 2035"']

38 slist.append('<td>%s</td>' % value)

39 value = "'

40 if 'Q' in keys:

41 value = '%.f' % dict['Q']

42 slist.append('<td>%s</td>' % value)

43 value = "'

44 if 'Q per capita' in keys:

45 value = '%.f' % dict['Q per capita']
46 slist.append('<td>%s</td>' % value)

47 value = "'

48 if 'R' in keys:

49 value = '%+3.21%%' % (dict['R']*100.0)
50 slist.append('<td>%s</td>' % value)

51 slist.append('</tr>")

52 return ''.join(slist)

53

54 class ScenarioSet:

55 def init (self):

56 self.list = []

57

58 def repr (self):

59 slist = []

60 for s in self.list:

61 slist.append(s. repr_())

62 #return ''.join(slist)

63 return 'hello world'

64

65 def repr _html (self):

66 slist = []

67 slist.append('<table>")

68 slist.append('<tr>")

69 slist.append('<th>Scenario</th>")

70 slist.append('<th>Quota [2015,2035]</th>")
71 slist.append('<th>Quota</th>")

72 slist.append('<th>Quota per capita</th>")
73 slist.append('<th>R</th>")

74 slist.append('</tr>")

75 for s in self.list:

76 slist.append(s. repr _html ())

77 slist.append('</table>")

78 return ''.join(slist)

79

80

81 all scenarios = ScenarioSet() # Global container
82

83 def clear all scenarios():

84 all scenarios.list = []

85

M1: Raupach

National COz2 Quota derived from Global Carbon Budget (GCB)

Given the GCB range (from 2015) of Rogeli et al (2016) we calculate the national "CO2 Quota" for Ireland,
based on the allocation methods of Raupach et al (2014); this is also expressed in terms of equivalent per
capita quota, and exponential mitigation pathway rate (R). The fixed term quota for 2015-2035 is also
calculated for later use. Such a dataset (dictionary of key-value pairs) together represents the full results for
one "scenario" for this method. We generate 9 Raupach scenarios in total (3 GCB variants by 3 values for
the "sharing index").

In [4]:

1 def raupach quotas from GCB(GCB value):

2 quotas = {}

3 quotas|['pop'] = pop IE share['2015'] * GCB value

4 quotas|['inertia'] = emissions IE share['2015'] * GCB value

5 blend w = 0.5

6 quotas|['blend'] = (quotas['pop'] * blend w) + (quotas['inertia'] * (1-bl¢
7 return quotas

8

9

def raupach scenarios():

10 scenarios = ScenarioSet()

11 for GCB name in ('low', 'mid', 'high'):

12 GCB _value = GCB[GCB name]

13 quotas = raupach quotas from GCB(GCB value)

14 for sharing in ('pop', 'blend', 'inertia'):

15 s=Scenario()

16 d=s.dict

17 d['method'] = 'raupach'

18 d['GCB name'] = GCB name

19 d['GCB value'] = GCB value

20 d['sharing'] = sharing

21 d['name'] = d['method'] + '-' + GCB name + 'GCB-' + sharing
22 d['Q'] = quotas[sharing]

23 d['Q per capita']l = (d['Q"']/pop IE['2015']) * 1le6 # Convert from
24 d['R'] = rate from quota(emissions IE['2015'], d['Q'])

25 d['Q 2035'] = fixed term quota from rate(

26 emissions IE['2015'], d['R"'], 2015, 2035)

27 scenarios.list.append(s)

28 return scenarios

29

30 clear _all scenarios()
31 r_scenarios = raupach scenarios()
32 display html(r scenarios)

34 all scenarios.list.extend(r_scenarios.list)
35 #display html(all scenarios)

Scenario Quota [2015,2035] Quota Quota per capita R
raupach-lowGCB-pop 356 391 83 -10.95%
raupach-lowGCB-blend 429 510 108 -8.38%
raupach-lowGCB-inertia 486 630 133 -6.79%
raupach-midGCB-pop 536 762 161 -5.61%
raupach-midGCB-blend 600 996 211 -4.30%
raupach-midGCB-inertia 645 1229 260 -3.48%
raupach-highGCB-pop 629 1140 241 -3.75%
raupach-highGCB-blend 682 1490 315 -2.87%
raupach-highGCB-inertia 717 1839 389 -2.33%

M2: "Policy™

Based on "interpretations"/"extrapolations" of the NMO for EGBET CO2, "reduce by at least 80% relative to
1990 by 2050".

» NMO 2050 target applied to all CO2 (FFI+LU: not just EGBET)
« Geometric pathway, extrapolated indefinitely (beyond 2050 NMO target point)
» Start in 2015 (Paris!)
e Two "ambition" variants:

= low: -80% by 2050

= high: -95% by 2050
» Given two points (2015, 2050), fit a pathway (calculate R)
+ From there calc:

= Q

= Q_2035

= Q_per_capita

In [5]:

1 def policy scenarios():

2 scenarios = ScenarioSet()

3 year 0 = 2015

4 X 0 = emissions IE['2015']

5 year n = 2050

6 target = {'low': -0.8, 'high': -0.95}

7 for ambition name in ('high', 'low'):

8 s=Scenario()

9 d=s.dict

10 d['method'] = 'policy'

11 d['ambition name'] = ambition name

12 d['name'] = d['method'] + '-' + ambition name + '-ambition'
13 d['ambition target'] = target[ambition name]

14 X n = emissions IE['1990'] * (1.0 + d['ambition target'])
15 d['R'] = rate from two points(year 0, x 0, year n, x n)

16 d['Q'] = quota from rate(x 0, d['R'])

17 d['Q per capita'l = (d['Q']/pop IE['2015"']) * 1le6 # Convert from MtCl
18 d['Q 2035'] = fixed term quota from rate(

19 emissions IE['2015'], d['R"'], 2015, 2035)
20 scenarios.list.append(s)
21 return scenarios

23 #clear all scenarios()
24 pol scenarios = policy scenarios()
25 display html(pol scenarios)

27 all scenarios.list.extend(pol scenarios.list)
28 #display html(all scenarios)

29
Scenario Quota [2015,2035] Quota Quota per capita R
policy-high-ambition 433 517 109 -8.27%
policy-low-ambition 581 917 194 -4.67%

M3: "Projections” (BAU)
Based on most recent (2017) EPA projections, extending to 2035:

» Two EPA-defined variants (recorded under "ambition" key, though none are "ambitious™!):
= WEM: With Existing Measures

= WAM: With Additional Measures
» One added "baseline" variant:
= FLAT: flatlining emissions at 2015 level
« We co-erce into geometric pathways, based on 2035 projected emissions. This discards additional
pathway detail in the projections; but allows extraction of "comparable" R-values.
« As R =0 in all three cases, none have a finite O ,, and thus no Q_per_capita value either.
« We do not extrapolate between 2035 at all, but, for comparison purposes, we do calculate Q_2035.
» Calculated Q_2035 values will not precisely match cumulative EPA projections because the EPA
pathways are not simply geometric; but they would not match anyway because we are looking at
FFI+LU, whereas EPA is, at best, FFI.

In [6]:

1 def projections scenarios():

2 scenarios = ScenarioSet()

3 year 0 = 2015

4 X 0 = emissions IE['2015']

5 year n = 2035

6 X _projected = {'FLAT': emissions IE['2015'], 'WAM': emissions IE['2035 Wi
7 for ambition name in ('FLAT', 'WAM', 'WEM'):

8 s=Scenario()

9 d=s.dict

10 d['method'] = 'projections'

11 d['ambition name'] = ambition name

12 d['name'] = d['method'] + '-' + ambition name

13 d['emissions 2035'] = x _projected[ambition name]
14 x n = d['emissions 2035"]

15 d['R'] = rate from two points(year 0, x 0, year n, x n)
16 d['Q 2035'] = fixed term quota from rate(

17 emissions IE['2015'], d['R"'], 2015, 2035)

18 scenarios.list.append(s)

19 return scenarios

20

21 #clear all scenarios()
22 prj_scenarios = projections scenarios()
23 display html(prj scenarios)

25 all scenarios.list.extend(prj scenarios.list)
26 #display html(all scenarios)

27
>
Scenario Quota [2015,2035] Quota Quota per capita R
projections-FLAT 898 +0.00%
projections-WAM 937 +0.42%
projections-WEM 964 +0.70%

Display all accumulated scenarios

In [7]:
1 display html(all scenarios)

Scenario Quota [2015,2035] Quota Quota per capita R
raupach-lowGCB-pop 356 391 83 -10.95%
raupach-lowGCB-blend 429 510 108 -8.38%
raupach-lowGCB-inertia 486 630 133 -6.79%
raupach-midGCB-pop 536 762 161 -5.61%
raupach-midGCB-blend 600 996 211 -4.30%
raupach-midGCB-inertia 645 1229 260 -3.48%
raupach-highGCB-pop 629 1140 241 -3.75%
raupach-highGCB-blend 682 1490 315 -2.87%
raupach-highGCB-inertia 717 1839 389 -2.33%
policy-high-ambition 433 517 109 -8.27%
policy-low-ambition 581 917 194 -467%
projections-FLAT 898 +0.00%
projections-WAM 937 +0.42%
projections-WEM 964 +0.70%

Extract Selected Summary Data

Extract a subset of the key-value entries for a subset of the scenarios. (In fact, the subsetting of the keys
here is redundant for the moment, as Scenario. repr_ () is already limiting the displayed output...)

(To copy/paste the table output, see bookmarklet technique in How can | copy to the clipboard the output of
a cell in a Jupyter notebook? (https://stackoverflow.com/questions/44229820/how-can-i-copy-to-the-
clipboard-the-output-of-a-cell-in-a-jupyter-notebook))

https://stackoverflow.com/questions/44229820/how-can-i-copy-to-the-clipboard-the-output-of-a-cell-in-a-jupyter-notebook

In [8]:

1 def select key values(s in):
2 selected keys = ['name', 'Q 2035', 'Q', 'Q per capita', 'R']

3 s out = Scenario()

4 s out.dict = {k : v for (k, v) in s in.dict.items() if (k in selected ke
5 return s _out
6
7
8

selected names = ['raupach-lowGCB-pop', 'raupach-midGCB-blend’,
‘raupach-highGCB-inertia',

9 'policy-high-ambition', 'policy-low-ambition',
10 'projections-FLAT', 'projections-WAM', 'projections-WEM']
11

12 selected scenarios = ScenarioSet()
13 selected scenarios.list = [select key values(s) for s in all scenarios.list

14 if (s.dict['name'] in selected names)]
15
16 display(selected scenarios)
17
Scenario Quota [2015,2035] Quota Quota per capita R
raupach-lowGCB-pop 356 391 83 -10.95%
raupach-midGCB-blend 600 996 211 -4.30%
raupach-highGCB-inertia 717 1839 389 -2.33%
policy-high-ambition 433 517 109 -8.27%
policy-low-ambition 581 917 194 -4.67%
projections-FLAT 898 +0.00%
projections-WAM 937 +0.42%
projections-WEM 964 +0.70%
In [0]:

1

