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Abstract— This article presents a novel cascade state esti-
mation framework for 3D Center of Mass (CoM) estimation
of walking humanoid robots. The proposed framework, called
SEROW (State Estimation RObot Walking) fuses effectively
joint encoder, inertial, feet pressure and visual odometry
measurements. Initially, we consider the humanoid’s Newton-
Euler dynamics and rigorously derive the non-linear CoM
estimator. The latter accurately estimates the 3D-CoM position,
velocity and external forces acting on the CoM, while directly
considering the presence of uneven terrain and the body’s
angular momentum rate and thus effectively coupling the
frontal with the lateral plane dynamics. Furthermore, we extend
an established floating mass estimator to take into account the
support foot pose, yielding in such a way the mandatory, for
CoM estimation, affine transformations and forming a cascade
state estimation scheme. Subsequently, we quantitatively and
qualitatively assess the proposed scheme by comparing it to
other estimation structures in terms of accuracy and robustness
to disturbances, both in simulation and on an actual NAO robot
walking outdoors over an inclined terrain. To facilitate further
research endeavors, our implementation is offered as an open-
source ROS/C++ package.

I. INTRODUCTION

Generating robust and stable omnidirectional gait for
humanoid robots is a very challenging task. Difficulties
arise due to the large number of degrees of freedom and
the highly non-linear rigid-body dynamics of humanoids,
the under-actuation experienced during the walking cycle,
and the unilateral multi-contacts with the ground. In order
to simplify gait planning and control, the dynamics are
commonly approximated with mass concentrated models.

In early approaches, the Zero-Moment Point (ZMP) was
regulated in order to achieve dynamic stable locomotion with
feedback from the Center of Mass (CoM) [1], [2]. Other ap-
proaches considered step placing utilizing the Capture Point
(CP) [3] [4], defined as a linear combination of CoM position
and velocity, in order to maintain stability. Interestingly,
the latter scheme was extended in three dimensions with
the Divergent Component of Motion (DCM) [5] to allow
for walking on uneven ground [6]. Such approaches proved
robust and yielded a wide variety of omnidirectional walking
gaits when accurate feedback was employed.

To this end, state estimation has a vital role in walking
pattern generation and real-time gait control. Kuindersma et
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Fig. 1: Cascade state estimation scheme consisting of a rigid
body estimator and a CoM estimator.

al. [7] proposed a rigid body estimator based on Newton-
Euler dynamics of a floating mass for estimating the body
position, orientation, and velocity utilizing an IMU, the robot
kinematics, and a LIDAR sensor, yielding very low drift.
This scheme was extended in [8] by considering the visually
obtained terrain landscape, rendering an ATLAS robot able
to walk continuously up and down staircases. A similar
approach was proposed by Bloesch et al. [9] for quadruped
robots, where the IMU and the kinematic measurements were
used to estimate the base motion and the feet position. Subse-
quently, the latter scheme was appropriately adapted in [10]
for humanoids while also considering the feet orientation.

In many popular walking pattern generators and real-time
gait controllers, the 3D-CoM position and velocity is needed.
Hence, Carpintieri et al. [11] used a complimentary filter for
3D-CoM estimation based on consistent dynamics. Rotela et
al. [12] proposed a momentum estimator for 3D-CoM posi-
tion, velocity and external wrench estimation. Nevertheless,
both [11], [12] explicitly assume that 6D-Force/Torque (F/T)
sensors are employed on the robot’s feet.

Stephens [13] demonstrated an approach based on the Lin-
ear Inverted Pendulum Mode (LIPM) dynamics to estimate
the 2D-CoM position and velocity. The latter approach was
also studied in [14] where two Kalman Filters (KFs), one
based on the LIPM dynamics and one on the robot’s planar
dynamics were compared. The planar KF performed more
accurately, since it considered a more precise representation
of the dynamics, but it was robot specific, harder to design,
implement and tune contrasted to the LIPM KF.

However, when the LIPM dynamics are employed, one
postulates that the dynamics in the x and y axes are indepen-
dent and furthermore, that the CoM lies on a constant height
plane. Presumably this is not the case in real conditions,
and definitely not when the robot walks on uneven ground.
Therefore, in our previous work [15], we presented a non-
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linear extension of the LIPM based KFs, where by utilizing
an Extended Kalman Filter (EKF), the full 3D-CoM position,
velocity and modeling errors can be readily estimated.

In this work, we propose a robust non-linear state es-
timation framework for accurately estimating the 3D-CoM
position, velocity and external forces acting on the CoM
by effectively utilizing joint encoder, Foot Sensitive Resistor
(FSR), and IMU measurements. Starting from the Newton-
Euler humanoid dynamics, we rigorously derive a non-
linear CoM estimator that uses as input the 3D Center of
Pressure (COP), the vertical Ground Reaction Force (GRF),
and the horizontal angular momentum rate. The output of the
estimator is formulated as the 3D-CoM position along with
the 3D-CoM acceleration. To the best of our knowledge, this
is the first time that a CoM estimator explicitly considers
the ground height and the angular momentum rate without
relying on F/T sensors to yield, besides the 3D-CoM position
and velocity, accurate 3D external force estimates. Contrasted
to [15], the modeling errors in the acceleration level in our
formulation represent exactly the external forces acting on
the CoM and, furthermore, the angular momentum rate is
taken into direct account. Thus, it is possible to provide more
accurate estimates, when the motion is highly dynamic and
the angular momentum rate is significant. In addition, this
estimator can cope with cases of walking on uneven terrain,
since the height of the ground is properly considered.

As it is standard practice in CoM estimators, all mea-
surements before fused are transformed from their local
frames to the world frame. Therefore, by extending the
rigid body estimator in [7], we provide the indispensable
transformations that link the robot’s body and support foot
to a world frame, by fusing the onboard joint encoders,
IMU and the pose obtained with visual odometry. Contrasted
to [7], our approach differs in that: (a) the 3D-support
foot position and orientation are properly considered, (b)
kinematically computed 3D-relative support foot position
and orientation are fused, (c) visual odometry measurements
are considered, and (d) the linearizations for the aforemen-
tioned quantities are derived. In addition, contrasted to [10],
the proposed estimator: (a) maintains a robocentric state-
space which improves the linearization accuracy and reduces
drift [16], (b) incorporates visual odometry measurements,
(c) considers only the support foot in the state which reduces
the dimension of the filter by six, and (d) maintains rotational
quantities directly as rotation matrices.

In summary, the proposed estimator comprises a modular,
low-dimension, cascade state estimation scheme (Figure 1),
consisting of two EKFs in tandem. This results in a low
computational complexity and efficient implementation that
is appropriate for onboard execution. Given that the proposed
cascade framework is based on generic dynamics, and thus is
readily amenable to generalization to other humanoids, we
offer our implementation as an open-source ROS package
termed SEROW (State Estimation RObot Walking) [17].

This article is organized as follows: in section II the pro-
posed CoM estimator is mathematically established. Then,
section III presents our extension to the rigid body estimator.

In section IV, the cascade scheme is quantitatively and qual-
itatively assessed. Finally, section V concludes the article.

II. CENTER OF MASS ESTIMATION

In this section, we formally derive a non-linear CoM
state estimator and investigate its observability properties.
In the following all quantities listed are in the world frame
and the x, y, z superscripts indicate the corresponding vector
coordinates. Consider the Newton-Euler equations of motion
for a humanoid robot, where the ground contact forces f i

are explicitly separated from the external forces fe acting
on the CoM:

m(c̈+ g) = fe +
∑
i

f i (1)

mc× (c̈+ g) + L̇ = c× fe +
∑
i

si × f i (2)

where c is the CoM position, c̈ is the CoM acceleration, L̇
is the rate of angular momentum, m is the mass of the robot,
and −g is the gravity vector. Since si are the position of the
contact points, the COP is defined as:
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sz
]

(3)

where we assume that in each foot, contact points are
coplanar with respect to the local foot frame.

Then, by solving the first two equations of (2) for c̈x and
c̈y while also considering (1), we get:

c̈x =
(cx − px)(m(c̈z + gz) − fz

e ) − L̇y

m(cz − pz)
+

1

m
fx
e (4)

c̈y =
(cy − py)(m(c̈z + gz) − fz

e ) + L̇x

m(cz − pz)
+

1

m
fy
e (5)

Examining the z component of (1) and introducing∑
i f

z
i = fN as the vertical GRF, we get:

c̈z =
1

m
(fN + fz

e ) − gz (6)

By substituting (6) in (4) and (5), we readily obtain the
non-linear dynamics that our CoM estimator is based on:

c̈x =
cx − px

m(cz − pz)
fN − L̇y

m(cz − pz)
+

1

m
fx
e (7)

c̈y =
cy − py

m(cz − pz)
fN +

L̇x

m(cz − pz)
+

1

m
fy
e (8)

c̈z =
1

m
(fN + fz

e ) − gz (9)

A. CoM Estimator Process Model
For deriving the state-space needed in the EKF formula-

tion, we assume a flying-wheel on the body with inertia Ib.
The latter is constantly computed based on the configuration
of the limbs, to approximate the rate of angular momentum:

L̇ = Ib ω̇b + ωb × Ib ωb (10)

where ωb is the gyro rate. Note that the second term
in (10) accounts for the Coriolis and centrifugal effects.
Subsequently, the following state vector is formulated:

xc
t =

[
cx cy cz ċx ċy ċz fx

e fy
e fz

e

]>



where the superscript c denotes the CoM estimator.
Furthermore, let the filter’s input uc

t be the location of
the COP p in the 3D space with respect to the world
frame, along with the vertical GRF fN as measured by the
FSRs. In addition, we compute the gyro acceleration ω̇b

by numerical differentiation of the IMU’s gyro rate. Since
numerical differentiation amplifies noise, we filter the gyro
acceleration with a small window moving average filter to
avoid introducing significant delays and phase shifts.

To this end, the input vector is:

uc
t =

[
px py pz fN L̇x L̇y

]>
(11)

and the process model assumes the standard non-linear form:

ẋc
t = f(xc

t ,u
c
t) +wc

t (12)

where

d

dt
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ċz

cx−px

m(cz−pz)fN − L̇y

m(cz−pz) + 1
mfx

e
cy−py

m(cz−pz)fN + L̇x

m(cz−pz) + 1
mfy

e
1
m (fN + fz
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t (13)

with wc
t the process additive noise. The linearization of

the state-space is straightforward. The state Jacobian of the
dynamics is:

Ft =
∂f

∂x
=

 0 I 0
Gt 0 Mt

0 0 0

 (14)

where

Gt =


fN

m(cz−pz) 0 − (cx−px)fN−L̇y

m(cz−pz)2

0 fN
m(cz−pz) − (cy−py)fN+L̇x

m(cz−pz)2

0 0 0


Mt =

 1
m 0 0
0 1

m 0
0 0 1

m


B. CoM Estimator Measurement Model

The measurements fused in the update step are the kine-
matically computed CoM position cenc and the IMU CoM
acceleration c̈imu, computed as in [18]. This approximation,
as well as the approximation in (10), are valid as long as the
actual CoM is located inside the same rigid link as the IMU,
i.e. the body link.

Accordingly, since the CoM acceleration is not part of the
state, the measurement model is also non-linear:

yc
t = h(xc

t ,u
c
t) + nc

t (15)

with

h(xc
t ,u

c
t) =
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cz

cx−px
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e
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m(cz−pz) + 1
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e
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(16)

and nc
t the additive Gaussian noise. The measurement model

linearization is derived similarly as in section II-A.
Notice, by using (7)-(9) both in the process and in the

measurement model, the disturbance input noise correlates
with the measurement noise. Still this has no effect on the
estimation error itself but rather on the error covariance (see
https://goo.gl/aJwU4v for a mathematical proof).
Moreover, when the cross-correlation is zero, all expressions
reduce to the EKF formulas. In all our walking experiments,
including ones of sufficient duration, we haven’t noticed
any degradation in the estimation accuracy of the error
covariance. Thus, the cross-correlation noise ought to be
insignificantly small.

C. Non-Linear Observability Analysis

In this section, we investigate the observability proper-
ties of the proposed CoM estimator in terms of the lo-
cal non-linear observability matrix. Following the approach
in [19], that allows the non-linear observability analysis
to take into account output dynamics that depend explic-
itly on the input u, we define the following coordinates
(h1, ϕ

1
1, h2, ϕ

1
2, h3, ϕ

1
3, h4, h5, h6), on the current operating

point (∗xc
t , ∗uc

t ) where hj is the j−th row of h(∗xc
t ,
∗ uc

t)
and ϕ1

i = Lfhi is the Lie derivative of hi in the direction
of the vector field f(∗xc

t ,
∗ uc

t). Using these coordinates, we
form the map [19]:

Φ(∗xc
t ,
∗ uc

t) =



∗cx
∗ċx
∗cy
∗ċy
∗cz
∗ċz

∗cx−∗px

m(∗cz−∗pz)
∗fN −

∗L̇y

m(∗cz−∗pz) + 1
m
∗fx

e
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m(∗cz−∗pz)
∗fN +

∗L̇x

m(∗cz−∗pz) + 1
m
∗fy

e
1
m (∗fN + ∗fz

e ) − gz


Subsequently, the components are re-ordered for convenience
to form Φ̃. Computing the Jacobian with respect to ∗xt, we
get the local non-linear observability matrix:

O =
∂Φ̃(∗xt,

∗ut)

∂∗xt
=

 I 0 0
0 I 0
∗Gt 0 ∗Mt

 (17)

Ignoring the unrealistic case where cz = pz , meaningly the
CoM lies exactly on the ground, we find that the non-linear
local observability matrix is full rank and cannot drop rank,
since detO = 1

m3 . Thus, the dynamics in (12), (15) are
locally observable in all cases.



D. The need for Rigid Body Estimation

All measurements fused by the CoM estimator must be in
an inertial frame of reference. Still, the latter are typically
obtained in local frames, i.e. the kinematically computed
CoM bcenc is derived in the body frame and the measured by
the FSR COP spfsr is in the support foot frame. Accordingly,
they must be transformed to the world frame as:

wcenc = wrb + wRb
bcenc (18)

wpfsr = wrs + wRs
spfsr (19)

with wrb and wrs the position of the body and support
foot with respect to the world frame, wRb and wRs the
corresponding orientations expressed as rotation matrices. To
this end, having reliable estimates of the body and support
foot transformations is crucial in CoM estimation.

III. RIGID BODY ESTIMATION

In [7] a rigid body state estimator based on Newton-
Euler dynamics of a floating mass was presented. Since, the
transformation linking the support foot to the world frame is
mandatory to use quantities measured in the support foot
frame such as the GRFs and the COP, we appropriately
extend the process and measurement models to be able to
estimate the following state vector:

xr
t =

[
bvb

wRb
wrb

wRs
wrs bω ba

]>
where the superscript r denotes the rigid body estimator,
bvb is the body’s velocity, and bω , bα are the gyro and
accelerometer biases, all expressed in the body local frame.

This EKF provides the necessary for CoM estimation rigid
body transformations and accordingly preserves their affine
properties. Hence, given Gaussian inputs the probability den-
sities of the transformed output quantities remain Gaussians
and thus the formed cascade estimation scheme does not give
rise to inconsistencies during filtering.

A. Rigid Body Estimator Process Model

Let bω̄b = bωimu
b + bω and bᾱb = bαimu

b + bα, represent
the IMU bias-removed gyro rate and linear acceleration,
respectively. Then the non-linear state-space takes the form:

bv̇b = −(bω̄b +wω) × bvb − wR>b g + bᾱb +wa (20)
wṘb = wRb(

bω̄b +wω)[×] (21)
wṙb = wRb

bvb (22)
wṘs = wRsws[×] (23)
wṙs = wrs (24)

ḃω = wbω (25)

ḃα = wbα (26)

where [×] denotes the wedge operation and (23), (24) have
been introduced to model the support foot orientation and
position as random walks, since the foot in contact may or
may not be stationary due to possible slippage. Furthermore,
wω and wα are the IMU noise vectors for the gyro rate
and the linear acceleration, respectively, ws and wrs are the

support foot orientation and position noises and wbω , wbα
are the IMU bias noises.

To track the body’s and support foot’s orientation uncer-
tainty we consider perturbation rotations in the corresponding
local frames. Thus, if the true body and support rotation
matrices are wRb and wRs, then wRb = wR̂be

χ[×] and
wRs = wR̂se

φ[×] where wR̂b, wR̂s are the estimated
rotation matrices and χ, φ are the corresponding error
exponential coordinates. An illustration of those quantities
is given in Figure 1, where the black frame is the world
frame, the yellow frames indicate the local body and support
foot frames, while green and purple circles represent the
corresponding orientation errors.

Subsequently, the linearization of (20) - (26) is derived as:
bδv̇b = − bω̄b × bδvb −

(
wR>b g

)
× χ

+ bvb × (δbω +wω) + δbα +wα (27)

χ̇ = − bω̄b × χ+ δbω +wω (28)
wδṙb =wRb

bδvb − wRb

(
bvb × χ

)
(29)

φ̇ =ws (30)
δṙs =wrs (31)

δḃω =wbω (32)

δḃα =wbα (33)

B. Rigid Body Estimator Measurement Model

The output model, formulated in [7], consists of the global
body velocity using the robot’s kinematics and the global
body position and orientation using a LIDAR sensor and
a Gaussian particle filter. To obtain the body velocity, the
body position was computed using the filter’s estimated
orientation and the kinematically computed relative position
of the support foot with respect to the body brenc

s and
then it was numerically differentiated. However, when using
the estimated orientation (which is part of the state) for a
measurement, correlation is induced to the filter. In addition,
numerical differentiation commonly amplifies the noise and
further filtering is needed.

Interestingly, it is possible to directly fuse brenc
s since both

the body and support foot position are available in our state.
Moreover, the relative orientation bRenc

s must be also fused
to render the support foot orientation observable:

brenc
s =wR>b (wrs − wrb) + nrs (34)

bRenc
s =wR>wb Rse

nr[×] (35)

with nrs , nr the kinematics measurement noise.
The previous measurements are typically available at a

very fast rate. In this work, we also employ measurements
of the global head position and orientation by mounting an
external camera on the head of the robot and using a visual
odometry algorithm. The latter are then kinematically trans-
formed to obtain the global body position and orientation
and fused as:

wrcam
b =wrb + nrb (36)

wRcam
b =wRbe

nb[×] (37)



Fig. 2: CoM/DCM trajectories in the 3D space, black / black–
dotted lines indicate the ground truth trajectories, blue / blue–
dotted lines the EKF1 estimated trajectories, green / green–
dotted lines the EKF2 estimated trajectories and red / green
the left and right support foot respectively.

where nrb , nb the camera measurement noise. This addition
is essential, since leg odometry tends to drift and become
inaccurate. Interestingly, this is also verified in the outdoors
walking experiments presented in section IV-B.

For the linearization of the output model we consider
the error exponential coordinates ζenc and ψstr related with
bRenc

s and wRcam
b , respectively. To this end, the linearization

of (34) - (37) is given by:

bδrenc
s =wR>b (wδrs − wδrb)

+
(
wR>b (wrs − wrb)

)
× χ+ nrs (38)

ζenc = −
(
wR>ws Rb

)
χ+ φ+ nr (39)

wδrcam
b =wδrb + nrb (40)
ψcam = χ+ nb (41)

IV. RESULTS

The proposed framework has been implemented and ex-
perimentally validated. In the next section we outline quan-
titative, simulation-based results, that demonstrate the accu-
racy and robustness of the proposed estimator in simulated
gaits over uneven terrain. Subsequently, we present results
on a NAO robot, and demonstrate accurate external force
estimation and how drift affects the CoM estimation, high-
lighting the significance of the proposed cascade scheme.
Given that disturbances tend to be sudden and discrete events,
we employ in all experiments high process noise in order to
facilitate fast convergence of the estimated external forces.

A. Simulation Experiments

1) Humanoid Robot Walking over Rough Terrain: In
order to obtain quantitative assessment results, we simulated
a humanoid robot walking over uneven terrain, while our
non-linear CoM estimator is employed for feedback. The
proposed CoM estimator, termed as EKF1, is contrasted to
the non-linear estimator in [15], termed as EKF2, and to a
Linear KF (LKF) variant of [18], which is the only linear
scheme fusing CoM acceleration. The latter estimates a CoM
offset instead of the external forces, thus the offsets are

transformed to forces as:

fx,y
e = m

g

hc
cx,yoffset (42)

where hc is the nomimal CoM height. The selection of EKF2
and LKF schemes for comparison is due to the fact that EKF2
has been shown to be an accurate 3D-CoM estimator [15]
and LKF is broadly utilized in the literature [18].

For all employed filters ideal base/support state estimation
was assumed and the same noise covariances Q and R
are used. The 3D-step positions are computed based on the
terrain’s shape while the motion generation is based on the
DCM ξ with continuous Double Support (DS) phases [6].

In this experiment, illustrated in Figure 2, the robot stands
up, initializes its posture by taking two steps in place and
starts to walk. During the third step and at t = 6s, a
disturbance in the x axis of 2200N is introduced. After
recovering within a step, another push happens in the y
axis with intensity of 1500N . Subsequently, in the following
step the robot is perturbed in both x and y axes with
1800N and 1600N , respectively. Due to this last push,
early swing leg landing occurs causing a disturbance of
approximately 1000N in the vertical axis. Finally, the robot
manages to walk down the terrain unperturbed. Figure 3
shows both the 3D-CoM position (top) and velocity (middle)
as estimated by the employed estimators contrasted to the
ground-truth trajectories. We observe that the proposed CoM
estimator yields more accurate estimates, which is due to
the fact that the ground height in the denominators of (7)
and (8) along with the angular momentum rates translate to
modeling errors, yielding inaccuracies for all the estimated
quantities of EKF2 and LKF, while in the EKF1 case they
are directly considered. This is also evident in Figure 3
(bottom) illustrating the external forces, where as seen strong
pushes, e.g. in x-axis, cause the robot to rotate about the y-
axis, generating angular momentum and false appearing as
external forces for EKF2 and LKF in that axis.

Moreover, EKF1 and EKF2, as expected, yield similar
response in the z-axis since they are both based on (9). On
the other hand, LKF yields no estimates since it assumes that
CoM lies on a constant height plane.

Based on the above, in order to demonstrate the accuracy
of the proposed CoM estimator, we conducted 100.000
simulations of 12 random omnidirectional steps each. In
every run, random disturbances varying in magnitude from
1 − 1.5, 0.5 − 1, and 0.25 − 0.5 times the weight of the
robot in the x, y and z axes respectively, were introduced
at random time instances during the gait. Figure 4 illustrates
the Root Mean Square Error (RMSE) from the ground truth
trajectories during the perturbation periods for each estimator
employed. The external forces are scaled by 10−3 for clarity.
As evident, we gained a significant boost in accuracy for
all quantities of interest in the x and y axes, especially in
external forces, for only 14.32% extra computational cost.

2) Valkyrie Humanoid Walking over Uneven Terrain:
Next, we employ the proposed cascade framework in Gazebo
with NASA’s Valkyrie humanoid using our ROS open-source



Fig. 3: Top 3D-CoM trajectories, Middle 3D-CoM veloci-
ties, Bottom 3D-External forces, light beige regions indicate
the DS phases, black dotted lines indicate the ground truth
trajectories, blue lines, green lines, and orange lines are the
estimated trajectories by EKF1, EKF2, and LKF respectively.

implementation running in real-time every 2ms, where also
the parameters used for this experiment are listed in the
Valkyrie configuration file [17]. For walking over the un-
even terrain we utilized the control framework in [4]. The
IMU measurments are available at 1kHz while the joint
encoders and FSR measurements are obtained at 500Hz.
Furthermore, to compute the visual pose fused in our filter,
we used the Semi-Direct Visual Odometry (SVO) [20] with
the multisense stereo running at 40Hz. In Figure 5 the
3D-Body position and velocity are illustrated. Notice the
kinematically computed trajectories inevitably drift as the
robot continuously walks, whereas, our rigid-body estimator,
termed as EKF1, yielded accurate estimates for all quantities
with respect to the ground-truth trajectories. Specifically, the
RMSE for the body position were 0.0034m, 0.0036m and
0.001m, and for the body velocity 0.0139m/s, 0.0159m/s
and 0.0128m/s for the x, y and z axes, respectively.

(𝒎) (𝒎/𝒔) (𝒎) (𝒎/𝒔) (𝟏𝟎−𝟑𝑵)

Fig. 4: RMSE for CoM, DCM, and external forces during
perturbation periods for 100.000 simulations; blue bars in-
dicate the EKF1s error, green bars the EKF2s error, orange
bars the LKFs error, and black lines the standard deviation
from the corresponding mean values.

Fig. 5: Top 3D-Body trajectories, Bottom 3D-Body veloci-
ties, light beige regions indicate the DS phases, black dotted
lines the ground truth trajectories, blue lines the estimated
trajectories by EKF1 and black lines the leg odometry.

Since Valkyrie is employed with 6D-F/T sensors in the
feet (as opposed to the simulated robot in section IV-A.1
and NAO in Section IV-B), we compare the proposed CoM
estimator (termed as EKF1 for simplicity) to the Momentum
Estimator (ME) with external wrenches [12]. For both filters
the same base/support information and noise covariances for
the measurements in common are used, whereas the torque
and external torque covariances were fine tuned in the ME
case. Figure 6 illustrates the 3D-CoM position and velocities
as estimated by each method. As evident, for the 3D-CoM



Fig. 6: Top 3D-CoM trajectories, Bottom 3D-CoM veloc-
ities, light beige regions indicate the DS phases, blue and
green lines are the estimated trajectories by EKF1 and ME.

position both estimators yielded the same response, while
small differences arose in the estimated 3D-CoM velocities.
Table I summarizes the RMSE of all estimated quantities for
both filters. In this static, low pace gait, Valkyrie experienced
mostly co-planar contacts, thus the proposed CoM estimator
yielded very accurate estimates. Nevertheless, we expect ME
to provide more accurate estimates in the general case where
the robot exhibits non co-planar contacts, but at the cost of
employing 6D-F/T sensors at the robot’s end-effectors.

TABLE I: RMSE of Estimated Quantities.

cx(m) cy(m) cz(m) ċx(
m
s
) ċy(

m
s
) ċz(

m
s
)

EKF1 0.0036 0.0037 0.0011 0.0179 0.0174 0.0123
ME 0.0036 0.0037 0.0011 0.0205 0.0212 0.0099

B. Real Robot Experiments

The proposed cascade framework was further implemented
on a NAO v4.0 humanoid robot, running in real-time every
10ms. The joint encoder, IMU and FSRs measurements
needed by the scheme are available at a 100Hz rate. For
obtaining the pose, we used SVO with a ZED stereo camera,
running on an Nvidia Jetson TX2 module, communicating
with NAO through ethernet with a TCP/IP server. The
latter was available to NAO at an average rate of 40Hz.
The estimation parameters used can be found in the NAO
configuration file in [17].

A first result regards estimation of the external forces,
where the robot was disturbed and the pushes were accurately
measured with an Alluris force gauge. The NAO robot was
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Fig. 7: 3D-External forces, light beige regions correspond
to the DS phases, blue lines indicate the estimated external
forces by the proposed CoM estimator, orange is the vertical
resultant force fz

e + fN , green is the FSR measured vertical
GRF fN , and black are the measured external force peaks.

commanded to stand up, initialize its posture by making two
steps, and then stand still. As we can see in Figure 7, from
6s to 13s where the NAO robot is unperturbed in the z-
axis the external force counter balance the false measurement
from the FSR for the total weight so that the resultant force
(fN+fz

e ) yields the mass of the robot which is approximately
5.19kg. Moreover, a disturbance in the x-axis is performed
at 13s and settles at 16.6s. This disturbance was measured
to have a peak magnitude of 5.96N , as also estimated by fx

e .
Finally, a constant lateral disturbance was enforced at 21.4s
until 25.3s with peak at 11.64N making NAO tilt; again our
estimator yielded an accurate estimate fy

e .
To fair contrast the proposed cascade scheme, we con-

structed another serial state estimation scheme, based on the
rigid body estimator of [7] and EKF2; for simplicity this is
termed EKF2 in the sequel. Since a LIDAR sensor was not
available, we used the camera pose for the global body po-
sition and orientation measurement. Furthermore, to remove
the correlation explained in section III-B, we computed the
body velocity in the world frame using kinematics.

In addition, the transformation of the support foot with
respect to the world frame was computed using the kinematic
relative transformation from the body to the support and the
estimated body to world transformation, since it cannot be
estimated directly, as in our approach.

Subsequently, we let our robot walk outdoors on a chal-
lenging inclined terrain where the slope in the forward and
in the lateral directions was 16◦ and 5◦, respectively. To
accurately measure the final pose, since in outdoor envi-
ronments ground truth data are not available, we used both
conventional measuring tools and digital laser rangefinders to
measure the final position and orientation (termed as Ground-
Truth) at the end of the gait.

In order to observe the drift and how drift can affect
CoM estimation, we ordered NAO to walk straight up the
inclined road. Figure 8 (top) shows the 2D body pose as
estimated by the employed schemes and as computed using
the kinematics. Both estimators yielded pretty similar results



Fig. 8: Top 2D-Body pose trajectory, Bottom 2D-CoM
trajectory, light beige regions indicate the DS phases, × the
ground truth positions, blue lines and green lines are the
estimated trajectories with EKF1 and EKF2 respectively, and
black lines are the kinematically computed trajectories.

while walking straight where the drift was negligible. Small
differences arise from the fact that in the proposed cascade
scheme the support foot dynamics also work as constraints
for respecting the robot kinematic chains. Nevertheless, when
the robot started to drift, EKF2 accuracy started to degrade,
since the kinematically computed body velocity in the world
frame is fused. EKF2 final pose error was 7.56cm and
8.43cm in the x and y-axes and 10.06◦ for the body yaw
angle, while for the EKF1 it was 3.06cm and 2.88cm in
the x and y-axes and 2.81◦ in the yaw angle. Notice, the
kinematically computed odometry was completely off, since
it shows that the robot had actually performed a straight
gait. Accordingly, Figure 8 (bottom) shows that the same
degradation in accuracy is inevitably inherited in the CoM
estimation, demonstrating one more time that accurate rigid
body estimation is vital to CoM estimation. In addition,
we note that EKF1 yields a more oscillatory response,
which is expected since when walking over inclined terrains
early swing leg landing commonly occurs causing the robot
to rotate and producing angular momentum, which is not
considered in EKF2. All the presented experiments can be vi-
sualized in high resolution at https://goo.gl/7kbcuf.

V. CONCLUSIONS

In this paper we proposed a novel cascade estimation
scheme that fuses IMU, joint encoders, FSR and visual input
to provide with accurate estimates of important quantities in
humanoid planning and control.

After implementing the proposed scheme both in simula-
tion and on a real NAO robot, we demonstrated its accuracy,
robustness to disturbances and efficacy in realistic scenarios.
Given that the proposed cascade scheme is based on generic

dynamics, it is readily amenable to generalization to other
humanoids. To this end, we released SEROW [17], an open-
source ROS package to reinforce robotic research endeavors.

In future work we aim at investigating whether considering
the swing foot dynamics improves the estimation accuracy.
In addition, we plan to extend our planning and control
schemes, to allow for more dynamic and agile motions
effectively utilizing the accurate estimates.
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