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Abstract— The capacity of a system to automatically analyze
and predict the performance of a human in a particular task can
provide important information in Human-Robot Interaction.
Despite its usefulness, the above topic has received rather
limited attention in the literature. In the current work, we
introduce a method for performance prediction and profiling
of human activities. Using little information about a task, our
method is able to extract the characteristic motion patterns
of an agent, analyze them and predict his/her performance
in a given activity. We demonstrate the robustness of the
method in several different activities, that involve both periodic
and oscillatory primitive motions. In addition, we evaluate it
thoroughly on data obtained from public datasets and discuss
its usefulness for contemporary robotic applications.

I. INTRODUCTION

Intelligent robots must be able to analyze human behavior,
in order to handle demanding human-interaction scenarios
[1]. However, this analysis is not always straightforward,
since a person's behavior is highly dependent on context,
environment and prior knowledge. For this reason, a consid-
erable amount of research is devoted to issues that regard
action interpretation [2], looking for methods to integate this
information to models of human behavior. One important
aspect that has not been investigated thoroughly in the
relevant literature, is the ability to analyze and predict the
performance of a human while executing a task. For robotic
applications, this skill can prove invaluable, because it can
furnish robots with the capacity to know when a human needs
assistance, how to adapt their behaviors in order to be more
productive or which human strategies are succesful so that
they can be transferred to the robots.

Currently, performance analysis methods only exist for
domains where the context is well defined and constrained.
One typical example is sports [16][17][18], where recent
research is developing new methods to automatically grade
the performance of athletes. However, due to their task-
dependent assumptions, these models rarely find use outside
their application area. Aiming at more general performance
evaluation approaches, it is important to develop methods
that can quantify how well a human carries out a task without
all the restricting assumptions imposed by a domain expert.
This, however, presents an important challenge because phys-
ical and mental differences, prior experience, and different
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percepts result in across-subject and within-subject behavior
variability. As a result, a standard template for behaviors can
rarely be pre-defined, unless many assumptions are imposed.

In the current paper, we provide solutions to these prob-
lems, by introducing the Performance Prediction and Profil-
ing Methodology (P 3M ), to automatically analyze and pre-
dict the performance of an agent only by observation. P 3M
requires little information about the task being analyzed.
The behavioral analysis part of the methodology is handled
automatically, by identifying and profiling the primitive
motions that are characteristic of an agent’s performance.
As a result, models for new activities can be implemented
easily. This makes the method readily applicable to a wide
range of robotic application areas including:
‚ Domestic robots, allowing them to track the behavioral

preferences and skills of humans over-time.
‚ Industrial setups, giving insights on how humans can

improve their skills and abilities, and whether the use
of robots could improve a certain workflow.

‚ Human-Robot Interaction scenarios, to facilitate produc-
tive cooperation with a human agent.

In the current paper we provide thorough examples on
how to apply the methodology in two real life-activities,
wiping a table, and tidying-up a table. We show how: (i)
P 3M can confront scenarios, involving both discrete and
oscillatory motions, (ii) components of the methodology
can be readily transferred from one activity to another. In
addition, we evaluate the ability of the methodology to
predict the performance of a human, by applying it on a
number of different activities found in public datasets. The
main contributions of the current paper are:
‚ A unified method for performance analysis and predic-

tion, that can be applied to both discrete and oscillatory
motion patterns.

‚ The application of the method to several different
activities, that involve everyday tasks, obtained from
homemade and public datasets.

The rest of the paper is organized as follows. Section
II reviews the relevant literature, while Section III offers a
detailed presentation of P 3M . Section IV provides a detailed
experimental evaluation of the proposed methodology and
Section V concludes the paper and gives directions for future
research.

II. LITERATURE REVIEW

Behavioral analysis is an important topic in human-robot
interaction. One of its main challenges is to create simple



and adaptive models, that can capture the complex nature
of human behavior. Commonly, research is focused on
probabilistic models, because they provide a framework for
representing task uncertainty, dependencies, and temporal
variation.

Related work on behavior modeling uses temporal models,
such as Hidden Markov Models (HMMs) and Conditional
Random Fields (CRFs), or causal models such as Bayesian
belief networks, to create representative models of human
behavior. HMMs can detect probabilistic regularities across
sequences, and capture the structure of arbitrarily complex
sequences given sufficient numbers of hidden states [3].
Due to the above, several works are employing them to
create context-informed behavior models, including activity
monitoring [4], anomaly detection [5] and multi-agent ob-
servation [6]. CRFs are discriminative latent variable mod-
els that have been shown to successfully learn the hidden
structure of a problem domain [8]. They define a conditional
probability distribution over label sequences, thus lifting
the independence assumptions required by the HMMs [9].
Both models can be discussed as special cases of dynamic
Bayesian networks, i.e. probabilistic networks that represent
a sequence of temporal variables. The Bayesian formulation
provides a more general framework for behavior monitoring
[20], because it can be used as a generic model for handling
both uncertainty and incomplete data.

Supervised activity models, such as the ones above, are
based on the assumption that there exist well-defined and
known a priori behavior classes. However, this is not always
the case in real-life interaction scenarios. For this reason, a
number of techniques have been proposed for unsupervised
learning of behavior, including [7][8]. The benefit of these
methods is that they don’t assume any structure on the
data. In [10] the authors use latent topic models, such as
the Probabilistic Latent Semantic Analysis model to derive
action categories. Jurek at al [11] uses a similar approach
where behaviors are profiled using unsupervised methods and
later rectified through data mining techniques.

All the models discussed focus on profiling behaviors for
the sake of recognition and classification tasks. Currently,
there is very little work to investigate the effect that these be-
haviors have on the activity itself. This type of performance
profiling can only be found in sports, where the activity and
performance measures are well defined. For example in [16]
the authors use a visual feed to score the events of Olympic
sports using spatiotemporal features learned from a 3D
convolutional neural network. Similarly, in [17], they judge
scores to rhythmic gymnastic movements by transforming
movements into specialized spatiotemporal image templates.
In [18] they attempt to generalize the problem domain by
proposing the Segment-based P3D-fused network, that learns
action quality scores from previous datasets. Finally, in [19]
the authors suggest a scoring system to evaluate performance
based on comparisons of different measures.

The aformentiond methods are task specific, and cannot be
applied outside their problem domain. To employ behavior
profiling in Human-Robot interaction, it is important to have

methods that can perform on a broad spectrum of tasks. In
the current paper, we address this need by introducing a
methodology that can derive performance profiles, assuming
only a univariate measure for the task progress. P 3M
automatically finds the behaviors that are characteristic of
a person's performance, while it automatically assigns perfo-
mance indicators for each primitive internally. In addition, its
probabilistic formulation allows predicting the performance
and progress of a human with low computational cost and
robustly. As a result, the method is readily applicable to a
wide range of robotic scenarios.

III. METHODOLOGY FORMULATION

In the current section, we outline the mathematical for-
mulation of P 3M , and also study its application in activities
that involve both oscillatory and discrete actions. There are
three components in the methodology:
‚ Activity Observation used to extract the raw motion and

task progress information, by observation.
‚ Profiler used to create behavioral profiles.
‚ Performance Prediction, that employs the output of the

previous two components and derives predictions for the
user performance and task progress.

Fig. 1: P 3M block diagram highlighting the three compo-
nents of the methodology, and the information they manage.

Figure 1 provides a block diagram of P 3M highlighting
its three main components and inter-connections across them.
In the rest of this section we detail the formulation of the
above three components, using the task of tidying a table
as a running example. In this task, a human operator tidies
up a table by moving objects that are scattered all over the
table surface to their predefined store locations, on the side
of the table. The whole task is being observed by a camera
overlooking the scene.

A. Activity Observation

An activity is analyzed using two streams of information:
Agent and Progress observation.

Agent Observation: The first is responsible for observing
the agent, while performing the activity, and extracting raw
motion information. In the current formulation, we use
mean shift tracking [13], to track the end-effector of the
human performing the activity. The tracking data are stored



Fig. 2: Primitive extraction for the tidy the table task. (a) Primitives extracted by the Agent Observation component; (b)
Segments extracted by the Progress Observation component; (c) Primitives labeled by the Profiler. The x-axis indicates
time-steps of the experiment. The y-axis indicates the 3D distance from the table's bottom-right corner for (a), and the
normalized task progress for (b) and (c). The colored segments in (c) indicate the primitives labeled by the Profiler.

as C “ tcp1, c
p
2, .., c

p
Nu, a set of p dimensional vectors

corresponding to the state variables that characterize the
observed activity. For the tasks we discuss, C includes the
3D coordinates x, y, z of the hand position at time-step i, i.e.
c3i “ txi, yi, ziu.

Progress Observation: This is the only module that must
be set for implementing a new activity. It essentially requires
the definition of a univariate measure for the task progress,
in the form of O : t ÞÑ R, with O “ to1, o2, ..., oNu a
univariate time-series, uniformly sampled at regular intervals.
In the results section we describe potential implementations
of this component for various different tasks.

Segmentation: The last module of the activity observation
component segments the two observation signals densely, in
order to obtain a rich set of activity intervals. It smooths the
signal's first derivative and locates the corresponding zero-
crossings. To grade each local extrema it employs the promi-
nence algorithm [14], which calculates a significance value
for each. We keep the n largest peaks whose significance
value exceeds a certain threshold. Figures 2(a) and 2(b) show
the agent and progress observation signals, for the tidy the
table task, segmented using the above process.

The segmentation process yields a set of n non-regular in-
tervals Ic “ tttcs1 , tce1u, ttcs2 , tce2u, .., ttcsn , tcenuu, where
all values in Ic correspond to the start tcs and end times
tce that the segmented motions are observed in C. Similarly,
an Io “ tttos1 , toe1u, ttos2 , toe2u, .., ttosn , toenuu point set is
obtained for the O progress observation. The two sets are
merged into one dense new set Iu, that contains all time
segments in the activity where a change in activity progress
or human motion is detected.

B. Profiler

The Profiler is responsible for processing the motions
in the dense segments Iu, in order to identify the n-most
frequent behavior patterns of the agent. This occurs in two
steps: (i) labeling the intervals in the Iu set, (ii) processing
the labeled sequence, with a pattern mining algorithm, in
order to find the most frequent patterns.

1) Labeling: To obtain the behavior labels, the profiler
assigns a vector Mpoiq “ tai1, ai2, .., aiv´1u which contains

all motion related information. The n behaviors in Iu are
classified into K clusters, by maximizing the intra-class
variation in the Mpoiq feature vector:

W pCq “ argmax
´

K
ÿ

i“1

n
ÿ

j“1

‖Mpiq ´Mpjq‖
¯

(1)

where W pCq is the intra-class variation. K is set by the
system operator at a low value for rather simple tasks,
and at higher values for more complex tasks. Higher K
values will result in more behaviors being profiled and
additional computational resources. From eq. 1 we obtain
the K different cluster centers tMp1q,Mp2q, ..,MpKqu that
are used as labels for the different primitive actions appearing
in the activity. In the current implementation, eq. 1 is solved
using k-means, but any other clustering method would also
suffice.

After labeling the set Iu, we obtain a sequence of labels
that correspond to the behavioral patterns that were observed
in each segment. The profiler processes these labels with
prefix span [15], a sequential pattern mining algorithm, in
order to look for the n-th most frequent sequences. These are
then assigned new labels, as frequently observed behaviors,
and are used to create the profile of the human. The following
figure illustrates this process (Fig. 3).

Fig. 3: Merging and synthesizing the segmentation intervals
by the profiler. C indicates the intervals obtained by the Agent
Observation component. O indicates the intervals obtained
by the Progress Observation module. The merged intervals
are marked with grey, while the re-synthesized intervals of
the n-most frequent patterns are shown in last row.

This process effectively allows us to profile both discrete



and oscillatory behaviors. In both cases it will merge motions
in order to find the most frequent patterns of the agent. This
is evident from Fig. 2(c), which shows the motions selected
for an activity that involves both discrerte and oscillatory
motions.

The next step of the profiler is to assign performance
indicators for the primitives identified. Three quantities are
calculated for each primitive: (1) the effect that it has on the
task progress, (2), its frequency of occurrence within C, and
(3), its duration. The latter is trivially obtained by subtracting
the start time from the end time of each interval in the Ic and
Io sets. Below we describe how the former two are derived.

Effect of each primitive: To describe how each primitive
affects the activity progress, the profiler assigns a function
fMpiq

ptq to each Mpiq, for which it holds:

Optpeq “ Optpsq`

ż tpe

tps

fMpiq
ptqdt, @ttps, tpeuεI

Mpiq (2)

i.e. the change in task progress during the interval ttps, tpeu,
where primitive Mpiq is observed, can be determined by
the integral of the function fMpiq

for that time period.
P 3M approximates the function fMpiq

automatically using
the output of the function Optq, provided by each task
implementation.

Frequency of occurrence: To calculate the probability pri,
the profiler uses Kernel Density Estimation (KDE). Given a
sample set of n values from an identically distributed variable
l, the Density estimator p around a point l0 is:

ppl0q “
1

n

ÿ

n

Gh

´ l ´ l0
dl

¯

“
1

nh

ÿ

n

G
´ l ´ l0
hdl

¯

(3)

where Gpz, σq “ 1?
2πσ

e´
z2

2σ2 is the Gaussian kernel, and
h is the Kernel bandwidth, which acts as a smoothing
parameter. For the task examined in this paper, KDE suffices
for representing task complexity. In cases where one would
like to analyze a task with structural hierarchy, this step could
be replaced with temporal probabilistic approaches such as
HMM.

C. Performance prediction

To predict the performance indicators, the method uses a
finite mixture approach to approximate a function f : C, t ÞÑ
R, that describes how each behavior affects the progress of
the activity:

Optq “ fpC, tq “
ξ
ÿ

i“1

piφipC, tq (4)

where pi are the mixing components, that satisfy pi ě
0@iεξ and

řξ
i“1 pi “ 1, φi are the local basis functions

as described below. To obtain φi we use the new set of
intervals described in section D, through which we obtain
the tMp1q,Mp2q, ..,MpKqu Ñ tfMp1q

, fMp2q
, .., fMpKq

u, that
describe how each primitive changes the task progress. Using
equations 3, 4 one can derive useful information about the
activity: Given the probability ppiq@iεk for all primitives one

can estimate, using eq. 4, how the task progress will change
from t to tk:

Fig. 4: Predicting the performance using the profiler.

Opt` tkq “ Optq `
k
ÿ

i“1

˜

ppiq ˚

ż t`di

t

fMpiq
ptqdt

¸

(5)

Eq. 5 provides an estimate of the activity progress for-
ward in time, using the fMpiq

as basis functions. tk is the
expected duration for all primitives, i.e. the duration of
a primitive, scaled by its probability, and is calculated as
tk “

řk
i“1 pppiq ˚ diq, where di is the average duration for

a certain primitive, and ppiq is its probability.
Finally, the method can also take advantage of stored user

profiles, in cases where this information is available. When
a profile contains primitives that are not frequent, P 3M can
search stored profiles and replace them with behaviors from
a similar profile for the same task. To find the most similar
profile, P 3M looks at the intra-class distance ‖Mpiq ´Mpjq‖
for each stored primitive. The most frequent behaviors from
the matched profile are used to replace the rarely observed
primitives in the Finite Mixture Model. This is illustrated
in Fig. 4, where two of the least observed primitives are
replaced with ones from a profile database.

IV. RESULTS

In the current section, we present evaluation results of
P 3M , when applied to a number of tasks obtained from
homemade and public datasets. The results fall into two
categories. The extraction of performance indicators for each
activity and the predictions regarding this performance.

A. Application on two household activities

1) Wipe the table: This task refers to wiping the surface
of a table using a sponge. The Activity Observation tracks
the percent of the surface of the table that has been wiped.
To extract the surface of the table, we employ a model-based
method, which detects the table surface and its boundaries.
Then, the activity progress is determined by tracking the
position of the sponge used in the task, and estimating the
percent of the table that has been wiped, e.g. oN “ 30 means
that the table has been wiped by 30% at time toi .



2) Tidy the table: This task refers to tidying a table, i.e.
storing the objects clutered on a table to their designated
locations. The progress is determined by the sum of the
distances of all objects to their store location. To determine
it, we use mean-shift tracking to track the position of all
objects and measure their relevant Euclidean distances.

We evaluated P 3M by using it to profile the performance
of 10 different people over 100 trials. First we assesed
whether it can predict the progress of the task, in different
time-steps of the experiment. Table I summarizes the predic-
tion accuracy for 100 trials of the two tasks, performed by
10 users.

TABLE I: Evaluation of P 3M on two activities: (i) Wipe
the table and (ii) Tidy the table. P 3M was used to predict
the task progress at different time-steps (300, 500 and 800
time-steps).

Task P 3MP 3MP 3M Progress Actual Progress Error
Wipe the table

at time-step 300 54 % 43% 9%
at time-step 500 65% 58% 7%
at time-step 800 96% 100% 4%

Tidy the table
at time-step 300 45% 52% 9%
at time-step 500 56% 72% 8%
at time-step 800 84% 89% 5%

As Table I demonstrates, the methodology can predict
the progress that a human will have on a task, with high
accuracy. Results reported for different time-steps of the
experiment have errors less than 10%. Predictions are more
accurate after observing the activity for a while, (e.g. at time-
step 800), because sufficient information has been gathered
by the method.

For the first task, the method identified 12 most frequent
primitives used by the agent, and reported their correspond-
ing performance metrics, as shown in Fig. 5.

Fig. 5: Performance information collected for the 12 most
frequent primitives, identified for the wipe the table experi-
ment.

For each of the observed patterns the method was able to
estimate its probability, duration and performance. Based on
this information P 3M was also able to estimate the overall
efficiency of a human in the task. For each primitive, this
measure is calculated as the fraction of the performance
divided by duration and scaled by its probability. The overall
task efficiency is normalized in the [100-0] range across all
primitives (Fig. 6).

Fig. 6: Efficiency for the wipe the table experiment, nor-
malized in the [100-0] range, recorded at 13 different time
instants of the activity. The x-axis indicates the time-steps
of the experiment.

As can be seen from the figure, the task efficiency for
the wipe the table experiment, starts with a high value and
later reduces over time. Lower efficiency values indicate that
primitives have reduced performance and larger durations.
This is expected for the wipe the table task because at
later stages of the experiment, large parts of the surface
have already been wiped. When the sponge runs over those
regions, the activity progresses slower.
P 3M was also able to provide predictions on the user’s

future performance, using the equations described in Section
III-C. Results are shown in Fig. 7, where it is evident
that P 3M can predict the progress of the task with high
accuracy. In the initial steps, where only a few data have

Fig. 7: Predictions for the future task progress in three time-
steps during the wipe the table experiment: At time-step 500
(pink circles), at time-step 725 (red circles) and at time-step
870 (blue circles). The actual task progress is shown with a
dashed ciel line. The x-axis indicates the experiment time-
step, while the y-axis the % of the task progress.

been obtained, the quality of these predictions was rather low.
However, as more primitives were observed and analyzed,
the methodology was able to predict more accurately the
task progress.

For the second task, tidy the table, 10 most frequent prim-
itives where observed, as shown in Fig. 8. These primitives
were used to predict the task progress, based on the human’s
performance, as shown in Fig. 9. As the figure shows, P 3M 's
prediction is accurate despite the fact that a large fraction
of the primitives observed had low repeatability. Using this
information P 3M can track the performance of a human
over multiple trials (Fig. 10), providing a useful insight on
how one's skills evolve over time.



TABLE II: Evaluation of the methodology on activities found in public datasets.

Task P 3MP 3MP 3M Progress Actual Progress Error Progress model
Empty dishwasher (P19-emptydishwasher-ch0) [22] 63% 72% 9% # of utencils removed
Clean the floor (P23-sweep-ch0) [22] 45% 53% 8% % of the floor that has been wiped
Setup the table (P16-settable-ch0) [22] 87% 96% 9% # of utencils placed on the table
Cut three ingredients (s10-d02-cam-002) [21] 56% 63% 9% cm of each ingredient cut
Garniture pizza (s15-d07-cam-002) [21] 82% 89% 7% # of tomatoe slices placed
Chope vegetables (cut cucumber core) [23] 53% 42% 9% cm of vegetables choped

Fig. 8: Performance information collected for the 10 most
frequent primitives, identified for the tidy the table experi-
ment.

Fig. 9: Predictions for the future task progress in three time-
steps during the tidy the table experiment: At time-step 600
(pink circles), at time-step 820 (red circles) and at time-step
950 (blue circles). The actual task progress is shown with a
dashed ciel line. The x-axis indicates the experiment time-
step, while the y-axis the % of the task progress.

Fig. 10: Performance information for 9 different trials of a
user, showing how his/her average duration (orange line) and
performance (blue line) evolve over consecutive trials.

B. Evaluation on public datasets

We further evaluate P 3M using six different activities,
obtained from the following public datasets: (i) MPII cooking
dataset [21], (ii) The KIT Robo-Kitchen Activity Data Set
[22], and the (iii) 50 salads dataset [23]. The videos selected
focus on household activities, and cover a broad spectrum
of tasks, ranging from floor cleaning to vegetable cutting

(Fig. 11). For each task, we implemented a progress model,
which is summarized in Table II, right most column.

Fig. 11: Six Daily activities, found in public datasets, used
to evaluate the methodology. From left, top: (i) chopping
vegetables, (ii) cleaning the floor, (iii) setting up a table,
(iv) cutting three ingredients, (v) emptying a dishwasher, (vi)
putting garniture on a pizza.

As Table II indicates, the methodology can predict the
progress of a human on all the selected tasks with high ac-
curacy. Performance indicators could be extracted relatively
easy for each task, using a simple definition for the progress
observation model of each activity.

V. CONCLUSIONS
In the current work, we address an important capacity of

rorbotic systems, by introducing a performance prediction
and profiling methodology for everyday Human-Robot inter-
action scenarios. P 3M is fast, and can be easily implemented
for a number of different activities. Extensive experimenta-
tion in real scenarios shows that P 3M can extract accurate
measures of the user’s performance.

Various robotic disciplines can be benefited from the pro-
posed methodology, including service and industrial robots.
For example, P 3M could inform a robot when a human
needs assistance, or whether a robot can be useful in a
certain scenario. In more complex activities P 3M could even
be used by a robot to provide specialized assistance, by
helping a human only where he lacks the skills to perform
an activity. In the future, we plan to extend the methodology
with methods that automate the task of defining the progress
of the activity. To this end, we will investigate how Deep
Learning methods can be used to automatically extract task
representations.
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