
Data-transformer: an example of data-centered tool set

Michael A. Raskin
∗

Moscow Center for Continuous Mathematical Education
119002 Moscow

Bolshoy Vlasyevskiy 11
Russia

raskin@mccme.ru

ABSTRACT
This paper describes the data-transformer library, which
provides various input and output routines for data based
on a unified schema. Currently, the areas of the library’s use
include storage and retrieval of data via CLSQL; processing
CSV and similar tabular files; interaction with user via web
forms. Using the supplied schema, the data-transformer li-
brary can validate the input, process it and prepare it for
output. A data schema may also include channel-specific
details, e.g. one may specify a default HTML textarea size
to use when generating the forms.

DOI: 10.5281/zenodo.3254742

1. INTRODUCTION
Processing medium and large arrays of data often encounters
the problem of the poor data quality. Use of human input
may even lead to incorrect data formats. The same problem
may occur when automated systems written by independent
teams for completely unrelated tasks have to interact. Usage
of wrong data formats may happen completely unexpect-
edly: spreadsheet processors sometimes convert 555-01-55
to 555-01-1955 just in case.

Finding and fixing such mistakes (both in the manually en-
tered data and in the exchange format handling) usually
relies on the automated verification. Of course, verification
is implemented differently depending on the needs of the
application in question.

Many software products use formally defined data schemas
for codifying the structure of the data being handled. We
could name XML Schemas and SQL database schemas among
the examples of such formal schemas. XML schemas are
declarative and SQL schemas are usually understood in a
declarative way; this improves portability but sometimes re-

∗This work was partially supported by RFBR grant
12-01-00864-a

stricts functionality.

The data-transformers library is a library with the oppo-
site approach: it tries to provide consistent handling with
many small features without any hope for portability. Sim-
ple things are defined declaratively, but in many cases pieces
of imperative code are included inside the schema. More-
over, declarative schemas for the separate data exchange
interfaces can be generated out of a single data-transformer
schema.

2. SCOPE
Initially this library has been written to support complex
validations when parsing CSV files. So the focus of this
specific library is on validating simple records one-by-one;
validating hierarchical data sets is not in the scope. Han-
dling of more complex data structures is done by wrappers
which use the data-transformer library functions to handle
each specific level of the hierarchy.

Interface of the data-transformer library supports many var-
ious operations, but all of them are applied to a single record
at a time (although the record fields may contain complex
data types for many of the operations).

3. DATA MODEL
The data transformers are defined by the schemas, usually
written as s-expressions. For actual data processing a data-
transformer class instance is created. It holds the data for-
mat definition, the data entry currently processed, and the
errors found during processing.

The record format is defined as an array of fields; each field
description (instance of the field-description class) holds the
specified parameters from the schema and a cache of the
computed default parameter values. All supported field pa-
rameters and the rules for deducing default values when nec-
essary are defined inside the data-transformer library, al-
though it is easy to add additional field parameters after
loading the main data-transformer library.

The default values for the field parameters usually depend
on the values of the other parameters.

The data held inside a data-transformer instance is an array
of the values (in the same order as the fields); this array
is supposed to contain the current representation of data
according to the current needs of the application. A data-



transformer instance is not meant to store the data for a
long period of time, it only keeps the performed conversions
uniform.

4. INPUT VERIFICATION
Let us consider a typical data flow. The data-transformer li-
brary is used to validate the data in a CSV file and put it into
an SQL database. The process goes as follows. Check that
the text looks like something meaningful, then parse it into
the correct data type, check that this value doesn’t violate
any constraints, check that there are no broken cross-field
constraints, combine the fields when the input requirements
and the storage requirements are different (think of the date
formats), generate an SQL statement to save the data or
pass the list of errors to the UI code.

For example, a birth date is usually split into three columns
in our CSV forms. The text format validation ensures that
the day, the month and the year represent three integer num-
bers; parsing is done by parse-integer; the single-field vali-
dation ensures that year is in a generally reasonable range;
the cross-field validation ensures that such a date exists (i.e.
2013, 04 and 31 are legal values for a year, a month, and a
day number, but 2013-04-31 is not a legal date); and finally
the data is formatted into the YYYY-MM-DD ISO format
for the insertion into the database.

5. EXAMPLE DEFINITION
Example piece of a schema:

(defparameter *basic-schema*

‘(((:code-name :captcha-answer)

(:display-name "Task answer")

(:type :int)

(:string-verification-error

"Please enter a number")

(:data-verification-error "Wrong answer")

(:string-export ,(constantly "")))

((:code-name :email)

(:display-name "Email")

(:type :string)

, (matcher "^(.+@.+[.].+|)$")

(:string-verification-error

"Email is specified but it doesn’t

look like a valid email address"))))

(let

((schema (transformer-schema-edit-field

*basic-schema* :captcha-answer

(lambda (x)

(set-> x :data-verification

(lambda (y)

(and y (= y captcha-answer))))))))

; some code using the schema

)

This description (a mangled piece of a registration form) il-
lustrates the following attributes:
1) A code name for generating HTML, SQL and similar field
identifiers and a human readable name used for generating
the labels for HTML forms, CSV tables etc.

2) Types of the individual record fields. In our system the
types are used mainly for generating the SQL table defini-
tions.
3) Verification procedures. For the integer fields checking
against the regular expression ” *[+-]?[0-9]+[.]? *” is the
default text format check, so it is not specified. Although
the default check is used, a custom error message is speci-
fied for use when the format requirements are not met. The
data verification is added to the schema later, right before
the actual use. Note that the second verification step may
rely on the previous ones to ensure that it is passed nil or a
valid number.
4) Data formatting procedure. In this case, if the user en-
tered a wrong CAPTCHA answer, there is no point in show-
ing them their old answer, so we clear the field, instead.

6. CURRENTLY USED INPUT AND OUT-
PUT CHANNELS

Initial scope: CSV and SQL.

The only feature which is mostly specific for the CSV sup-
port is support for specifying a single date field and getting
separate fields for day, month and year with verification and
aggregation specified correctly by default. This is used in
some of our web forms, too.

SQL-specific features are more numerous. A record defi-
nition has to contain the list of the relevant fields in the
database; there is support for adding extra parameters and
specifying the WHERE-conditions and the source tables as
well. To simplify generating the SQL table definitions and
the queries, one may specify the foreign keys as such where
appropriate.

Creating a nice HTML output is quite similar to export-
ing data in the CSV format from the data viewpoint, one
just needs a template. However, validating the web forms
has some specifics. The data-transformer library supports
generating the input fields for web forms, getting the field
values from a Hunchentoot request object, handling the up-
loaded files (they are stored in a separate directory and the
file paths are put into the database), preparing the data for
use by the CL-Emb templates etc. Some of this function-
ality is also used for generating printable PDF documents
(CL-Emb supports generating the TEXcode just as well as
generating HTML).

7. WHAT DOES AND DOESN’T WORK FOR
US

The data-transformer library has been started to avoid a
mismatch between two data format descriptions (the code
that validates the CSV files and the SQL schema) and unify
validation. It grows organically, and therefore it is some-
times inconsistent.

When we started the project that includes the data-transformer
library, we were looking for a good validation library de-
signed to support many data exchange channels and have
not found any that met our needs. I guess I shall look bet-
ter if I have to start next big project from scratch. Or maybe
I will just take this code.



It is nice to have the field definitions always in sync, of
course. Although it is still possible that data storage and
data loading procedures are slightly mismatched, this prob-
lem almost never occurs.

As one can see, we freely use Lisp code inside the data format
definition. This means that we don’t care about portability.
On the bright side, this means that we can easily perform
any needed check. For example, some of our online registra-
tions for various events can check whether there is enough
room for one more participant via a DB query. It is done
inside the verification procedure.

It turned out that the lack of portability means that the
data schemas are tied not only to the Common Lisp lan-
guage itself. The code is also coupled with the tools we use
(Hunchentoot, CLSQL, CL-Emb etc.) as well.

The excessive flexibility helps in an understaffed project.
For example, there is some code for the event registrations.
The main procedures of this code are almost never changed;
the changes are mostly restricted to the page templates and
fields lists, where all the definitions are relatively short.

The main problem is the frequent lack of time to find out
a way to remove small annoyances. Sometimes some code
repeatedly uses the library almost in the same way multiple
times, and it is hard to find a good way to express these
patterns. But it is probably not specific to our library.

Some functionality is still implemented in a wasteful way.
For example, currently validating web form submission it-
erates over the field list and checks whether a validation
procedure is defined for each field. It would be nice to allow
generating a progn with all the verifying code included to
remove the unnecessary branching (and the iteration over
the fields lacking the verification procedures as well).

8. SOURCE
Data-transformer library is a part of the MCCME-helpers
library (which serves as a core of one of our sites). Code
may be found at
http://mtn-host.prjek.net/viewmtn/mccme-helpers/

/branch/changes/ru.mccme.dev.lisp.mccme-helpers


