
Accessing local variables during debugging

Michael Raskin
CS Dept., Aarhus University

raskin@mccme.ru
∗

Nikita Mamardashvili
Moscow Center for Continuous

Mathematical Education

ABSTRACT
Any reasonably large program has to use local variables. It
is quite common in the Lisp language family to also allow
functions that exist only in a local scope. Scoping rules often
allow compilers to optimize away parts of the local environ-
ment; doing that is good for performance, but sometimes
inconvenient for debugging.

We present a debugging library for Common Lisp that en-
sures access to the local variables during debugging. To pre-
vent the optimisations from removing access to these vari-
ables, we use code-walking macros to store references to the
local variables (and functions) inside global variables.

Keywords
CCS: Software and its engineering. . . Software testing and
debugging; lexical environment, lexical closures

DOI: 10.5281/zenodo.3254726

1. INTRODUCTION
We hope that every program of non-negligible size uses

some local variables. Unfortunately, during debugging these
variables may be inaccessible because of optimisation. For
example, when debugging the following code:

(labels ((f (z) (+ z 1))) (let ((x 2))

(cerror "Continue" "Error invoked") (f x)))

in SBCL[5] 1.3.4 (the freshest available at the time of writing)
neither x nor f were accessible from the debugger with any
combination of safety and debugging declarations.

Lacking access to local variables makes debugging runtime
errors significantly less convenient. Also, using a continuable
error to get a REPL inside the context of a function is sig-
nificantly less useful as a debugging and exploration tool if
the local variables become inaccessible.
CLISP[6] seems to do the right thing from the debugging

point of view, but, unfortunately, many libraries (for exam-
ple, CLSQL) do not fully support CLISP.

Since searching hasn’t revealed a solution to this problem,
we implemented a brute-force solution, which became the
local-variable-debug-wrapper library[1], presented in the
current paper.
∗The author acknowledges support from the Danish Na-
tional Research Foundation and The National Science Foun-
dation of China (under the grant 61361136003) for the Sino-
Danish Center for the Theory of Interactive Computation
and from the Center for Research in Foundations of Elec-
tronic Markets (CFEM), supported by the Danish Strategic
Research Council.

1.1 Feature set
The features of the presented library include:
• Access to local variables and functions from the debugger,
including the lexical contexts lower on the stack
• Altering local variables during debugging
• A reader trick that allows wrapping the contents of the
entire file by adding one line in the beginning

1.2 Example use
The following code illustrates an example file which has

wrapping enabled:

(use-package :local-variable-debug-wrapper)

; Wrapping to the end of file

(wrap-rest-of-input)

; Inspecting local variables in a function

(defun test-w-1 ()

(let ((x 1)) (let ((x 3) (y 2)) (pry) (+ 2 3))))

; Debugging a failure

(defun test-w-2 ()

(let ((x 1)) (let ((x 3) (y 2)) (error "Oops"))))

2. TECHNIQUES USED
Currently, we use hu.dwim.walker[2] to annotate the in-

put code (annotations are represented using CLOS objects).
The forms whose lexical environment differs from that of
their parent form get wrapped in a special call.

At the top level the special call is defined as a local macro
by macrolet. It uses the &environment parameter to access
lexical environment of each form and the hu.dwim.walker

wrapper over implementation-specific lexical environment
objects to obtain the names of local bindings.

For example, we get the following expansion:

(with-local-wrapper (let ((x 1)) x))

-->

(macrolet

((push-lexenv-to-saved-inner (&rest args)

‘(push-lexenv-to-saved ,@args)))

(progn

(let ((x (push-lexenv-to-saved-inner 1)))

(push-lexenv-to-saved-inner x))))

We build an alist of local functions and their correspond-
ing names. For variables, we want to allow the user to mod-
ify local variables and resume execution. This functionality
requires capturing a reference, and we use anonymous func-
tions and lexical closures for that (apparently, there is no
safe alternative).

This is performed by push-lexenv-to-saved. It is a macro
using an &environment parameter. For examples, one of its
calls expands as follows:

(push-lexenv-to-saved-inner x)

-->

(let ((*saved-lexenvs*

(cons (list :variables (list (cons ’x

(lambda (&optional (value nil value-given))

(if value-given (setf x value) x)))))

saved-lexenvs))) x)

To make inspecting a saved lexical environment easier we
provide the pry macro that creates the dynamic variables
with the same names as the lexical local variables in the
environment under consideration. The dynamic extent of
the created variables is limited to the pry call, so they affect
the debugging session but not the semantics of the program
after continuation.

This function is named after the Pry REPL[3] for Ruby,
seeing as how not only is it aimed towards the same use case,
but the original inquiry that motivated the development was
finding a Common Lisp equivalent for that very library.

We also provide lower-level functions for accessing the
saved environments, and some other convenience helpers.

To make wrapping all the forms in a file easier, we pro-
vide (wrap-rest-of-input) functionality: wrap-rest-of-

input clones the readtable and makes (a macro-character.
The corresponding reader function immediately reverts to
the previous readtable, calls unread-char on the opening
parenthesis, and reads a form; afterwards the form is put
inside the with-local-wrapper.

3. EVALUATION
To test a bad case, we used a very inefficient Fibonacci

number calculation:

(defparameter *pry-on-bottom* nil)

(defun fib-uw (n)

(if (<= n 1)

(progn (when *pry-on-bottom* (pry)) 1)

(+ (fib-uw (- n 1)) (fib-uw (- n 2)))))

We ran the same code wrapped and unwrapped, recording
time and memory. The tests were run on a 4-core i7-4770R.

On SBCL, each function call consed 16 bytes when un-
wrapped and 128 bytes when wrapped. For large parame-
ter values the wrapped version was approximately 4 times
slower than the unwrapped one.

CCL ran the unwrapped test slightly faster than SBCL,
but the wrapped version was slower than on SBCL. For large
parameter values the slowdown was slightly below 9 times.

CLISP does provide full access to local variables on its
own in most cases, but this implementation is not currently
supported by hu.dwim.walker. The unwrapped version runs
80 times slower than on CCL .

An example run for n = 40 gave the following results
(values in parenthesis are relative to the unwrapped code on
the same implementation):

time, s slower
than CCL

bytes consed
per call

CCL 3.18 16
SBCL 3.50 1.10× 16
CLISP 259.90 81.68× 0
CCL w/w 28.29 (8.89×) 8.89× 160 (+144)
SBCL w/w 13.95 (3.98×) 4.38× 128 (+112)

3.1 Known limitations
To modify the bindings used outside the pry session one

has to use the low-level local-variable macro.
The library currently doesn’t provide access to local macros.
The limitations of wrapping a piece of code in progn ap-

ply (note that wrap-rest-of-input wraps each form sepa-
rately).

Macro definitions can’t be wrapped. This is due to limi-
tations of hu.dwim.walker. If all the macro definitions are
top-level defmacro forms wrap-rest-of-input will do the
right thing.

Portability is limited by the hu.dwim.walker package. Cur-
rently the library is known to be usable on SBCL and CCL
and broken on ECL and CLISP.

3.2 Conclusion
Our testing shows that the wrapper provides reliable ac-

cess to local variables.
We think that this library can make debugging easier in

many cases. Impossibility to enforce local variable availabil-
ity seems surprising (and confusing) to newcomers; we hope
that our work can make Lisp slightly more accessible for
programmers coming from other languages.

We plan to fix some of the limitations in future. We will be
grateful for pointing out corner cases that we have missed.

4. ACKNOWLEDGEMENTS
We thank an anonymous reviewer who provided a lot of

valuable advice for improving the present article.

5. REFERENCES
[1] local-variable-debug-wrapper homepage. Retrieved on

22 April 2016. https://gitlab.common-lisp.net/
mraskin/\\local-variable-debug-wrapper

[2] hu.dwim.walker package. Retrieved on 15 April 2016.
http://dwim.hu/darcsweb/darcsweb.cgi?\\r=LIVE\
%20hu.dwim.walker;a=summary

[3] PRY REPL for Ruby. Retrieved on 15 April 2016.
http://pryrepl.org/

[4] ANSI Common Lisp Specification, ANSI/X3.226-1994.
American National Standards Institute, 1994.

[5] Steel Bank Common Lisp homepage. Retrieved on 15
April 2016. http://www.sbcl.org/

[6] GNU CLISP homepage. Retrieved on 15 April 2016.
http://www.clisp.org/

