
Writing a best-effort portable code walker in Common Lisp

Michael Raskin∗

LaBRI, University of Bordeaux
raskin@mccme.ru

ABSTRACT

One of the powerful features of the Lisp language family is
possibility to extend the language using macros. Some of
possible extensions would benefit from a code walker, i.e. a
library for processing code that keeps track of the status
of different part of code, for their implementation. But in
practice code walking is generally avoided.

In this paper, we study facilities useful to code walkers
provided by “Common Lisp: the Language” (2nd edition)
and the Common Lisp standard. We will show that the
features described in the standard are not sufficient to write
a fully portable code walker.

One of the problems is related to a powerful but rarely
discussed feature. The macrolet special form allows a macro
function to pass information easily to other macro invocations
inside the lexical scope of the expansion.

Another problem for code analysis is related to the usage of
non-standard special forms in expansions of standard macros.
We review the handling of defun by popular free software
Common Lisp implementations.

We also survey the abilities and limitations of the avail-
able code walking and recursive macro expansion libraries.
Some examples of apparently-conforming code that exhibit
avoidable limitations of the portable code walking tools are
provided.

We present a new attempt to implement a portable best-
effort code walker for Common Lisp called Agnostic Lizard.

CCS CONCEPTS

•Software and its engineering→Macro languages; Soft-
ware testing and debugging;

KEYWORDS

code walker, macro expansion, code transformation

∗The author acknowledges support from the Danish National Research
Foundation and The National Science Foundation of China (under
the grant 61361136003) for the Sino-Danish Center for the Theory
of Interactive Computation. This work was supported by the French
National Research Agency (ANR project GraphEn / ANR-15-CE40-
0009).

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ELS2017, Vrije Universiteit Brussel, Belgium

© 2017 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-
x/YY/MM. . . $15.00
DOI: 10.5281/zenodo.3254669

ACM Reference format:

Michael Raskin. 2017. Writing a best-effort portable code walker
in Common Lisp. In Proceedings of 10th European Lisp Simpo-
sium, Vrije Universiteit Brussel, Belgium, April 2017 (ELS2017),

8 pages.

DOI: 10.5281/zenodo.3254669

1 INTRODUCTION

Much of the power of Common Lisp comes from its extensibil-
ity. Abstractions that cannot be expressed by functions can
still be expressed by macros; actually, many of the features
described in the standard must be implemented as macros.

Whilst macros are powerful on their own, some ways of
extending Lisp would benefit from using higher-level code
transformation abstractions. For many such abstractions the
most natural way to implement them includes code walk-
ing, i.e. enumeration of all the subforms of a piece of code,
identification of function calls, variable bindings etc. among
these subforms, and application of some code transforma-
tions. Unfortunately, code walking is complicated and the
libraries to perform it are non-portable. Even portable im-
plementations of recursive macro expansion, also known as
macroexpand-all, are missing.

Guy Steele writes (in the second edition of the book “Com-
mon Lisp: the Language” [3]) that Common Lisp implemen-
tations are expected to provide all the functionality needed
for code walking code analysis tools. The version of the
language described in the book includes support for changing
and inspecting the lexical environment objects; the book
explicitly recommends to use macroexpand on the macros in
the language core.

Lexical environment objects are defined by the Common
Lisp standard [2] are more opaque. Many Common Lisp
implementations do include some functions for environment
inspection and manipulation, and even some code walking
function. Unfortunately, both the naming and the feature
set vary between implementations.

We will show that (unlike CL:tL2) the Common Lisp stan-
dard does not allow to implement a portable code walker cor-
rectly. We suggest an approach that approximates the desired
functionality fairly well and remains implementation-agnostic
even when doing the implementation-specific workarounds.
We present an implementation of this approach, a library
called Agnostic Lizard.

2 RELATED WORK

2.1 Portable tools

The iterate library [4] provides an alternative iteration
construct also called iterate. It is more flexible than the

ELS2017, April 2017, Vrije Universiteit Brussel, Belgium Michael Raskin

standard loop macro, and it uses code walking for implemen-
tation. It doesn’t work exactly as expected for some code,
though. The code snippet

(iterate:iterate

(for x :from 1 :to 3)

(flet

((f (y) (collect y)))

(f x)))

works the same as

(iterate:iterate

(for x :from 1 :to 3)

(collect x))

But the following version with a local macro definition will
not work

(iterate:iterate

(for x :from 1 :to 3)

(macrolet

((f (y) ‘(collect ,y)))

(f x)))

The macroexpand-dammit library [7] is an attempt to pro-
vide implementation of the full recursive macro expansion
functionality (macroexpand-all) including an optional lexi-
cal environment parameter, but it has some bugs. It is not
clear if these bugs can be fixed without major changes. For
example, both the original version and the freshest known
fork [8] return 1 instead of 2 in the following case:

(defmacro f () 1)

(defmacro macroexpand-dammit-here

(form &environment env)

‘(quote

,(macroexpand-dammit:macroexpand-dammit

form env)))

(macrolet ((f () 2))

(macroexpand-dammit-here

(macrolet () (f))))

Additionally, the macroexpand-dammit library includes the
macroexpand-dammit-as-macro macro that the environment
handling system of the Common Lisp implementation. Both
the function and the macro versions of the recursive macro
expander remove macrolet and symbol-macrolet forms from
the code (replacing them with progn if necessary).

As SICL [14] aims to be a modular and portable con-
forming implementation of Common Lisp in Common Lisp,
and the standard requires compile to do an equivalent of
macroexpand-all, there probably will be a usable code walker
in SICL at some point; to the best of our knowledge, there is
currently none.

2.2 Implementation-specific tools

Unfortunately, implementation-specific tools often check the
name of the Common Lisp implementation to choose the code
path (for example, using #+ reader conditionals to check for

the implementation name). Even if two Common Lisp imple-
mentations are closely related and have the same names for
the environment processing functions, support for these two
implementations has to be added separately. This limitation
makes some of the implementation-dependent tools not work
on some newer implementations (such as Clasp [15]) even
when the tool contains all the code needed for supporting
the implementation.

On the other hand, if different versions of the same Com-
mon Lisp implementation behave in a different way, such
checks can lead to breakage on some of the relatively recent
versions of a supported Common Lisp implementation.

Richards Waters has described [5, 6] a clean, almost portable
implementation of macroexpand-all that needs only a single
environment-related function to be implemented separately
for each of the Common Lisp implementations.

CLWEB [9] by Alex Plotnick follows a similar approach for
its custom code walker, and the same approach is described
as a “proper code walker” in an essay [10] by Christophe
Rhodes.

hu.dwim.walker [11] is a comprehensive code walking li-
brary that uses a lot of implementation-specific functions for
inspecting lexical environments etc. Unfortunately, the cur-
rent versions of some previously supported Common Lisp im-
plementations are not supported because of relatively recent
changes in environment handling. Also macroexpand-dammit

is implemented in such a way that it removes macrolet and
symbol-macrolet from the code completely after expanding
the local macros and the local symbol macros.

The trivial-macroexpand-all library [13] provides the
macroexpand-all functionality by wrapping the best func-
tion provided by each Common Lisp implementation. Un-
fortunately, some implementations don’t support the lexical
environment argument (for example, CLISP [16]). The same
approach is used by SLIME (Common Lisp editing and debug-
ging support for Emacs) [12]. Apparently, no more generic
code walking functionality is provided in a consistent way by
multiple implementations.

3 PROBLEMS

In this section we present a brief overview of the problems
that the portable code walkers face.

3.1 Interpretations and violations of the
standard

The Common Lisp standard allows Common Lisp imple-
mentations to implement some standard-defined macros as
additional special operators. But all special operators added
instead of macros must also have a macro definition avail-
able. This requirement seems to imply that the standard
expects the code walkers to succeed if they implement special
handling only for the special operators listed in the standard.

Writing a best-effort portable code walker in Common Lisp ELS2017, April 2017, Vrije Universiteit Brussel, Belgium

In practice many Common Lisp implementations violate
this expectation and implement standard macros using non-
standard implementation-specific special operators. For ex-
ample, the iterate library contains workarounds for such
macros as handler-bind and cond.

Fortunately, for most macros the current versions of the
major implementations provide usable expansions.

3.1.1 Named lambda expressions. A particular macro that
is almost always expanded to code with non-standard special
forms is defun. We have checked six free software Com-
mon Lisp implementations (SBCL, ECL, CCL, ABCL, GCL,
CLISP); we have found that only GCL expands the defun

macro into portable code. SBCL and ABCL pass a form
starting with named-lambda to function, ECL does the same
but calls the special symbol lambda-block, CLISP passes
two arguments (the name and the definition) to function

and CCL does the same but replaces function with special
form nfunction. For example, the expansion produced by
SBCL is as follows.

(progn

(eval-when (:compile-toplevel)

(sb-c:%compiler-defun ’f nil t))

(sb-impl::%defun ’f

(sb-int:named-lambda f

(x y)

(block f (* x (1+ y))))

(sb-c:source-location)))

3.1.2 Theoretical worst-case defun implementation. It seems
that an implementation of the defun macro that compiles the
code at expansion time and puts a literal compiled function
object into the expansion does not violate neither the Com-
mon Lisp standard nor the description in the “Common Lisp:
the Language”. While such an implementation could be com-
pliant, it would make code-walking of entire file meaningless
without handling the defun macro in a special way.

3.2 Environment handling

The Common Lisp standard provides no functions for in-
specting or modifying environments. On the other hand,
macro functions can receive environment parameters and
request macro expansion of arbitrary code using the envi-
ronment they receive. Unfortunately, sometimes there is no
way to construct an environment that would make the macro
expansion would work exactly as desired.

Although *macroexpand-hook* is described as an expan-
sion interface hook to macroexpand-1, the retrieval of the
macro function from the environment is done by the standard
rules and cannot be overridden.

4 PASSING INFORMATION VIA
MACROLET AND MACROEXPAND-1, AND
TWO KINDS OF THE LEXICAL
SCOPE FOR MACROS

In this section we will discuss the available options for passing
information between the macro expansion functions, the

scopes and extents relevant to the different ways of passing
information and implications for portable code walkers. The
aim of this section is to provide some context and explanation
for the technique used in the next section. This technique will
be used to construct an example of impossibility of a correct
portable recursive macro expansion function that accepts a
lexical environment parameter.

The environment handling issue is related to a useful
feature of Common Lisp macros. Let’s consider a macro
function that needs to pass some information to another
macro function or another invocation of the same macro
function.

Ordinary functions can pass information via the arguments
and the return values, or via global variables. A macro
function has an extra option. A macro function can wrap
its expansion in a macrolet form or a symbol-macrolet

form that defines a macro (symbol macro) not intended
to be used directly. This definition will be accessible to
all the macro function invocations corresponding to macro
invocations inside the lexical scope of the definition. Such a
macro function can use the macroexpand-1 function to access
the definition.

It is a bit awkward to describe the scope of such a definition
because there are two kinds of lexical scope relevant for
macros. There is the normal lexical scope of the macro
function when it is defined and there is the lexical scope of
the expansion output in terms of expanded code.

Such approach allows, for example, to define a macro that
can be nested but limits the depth of its own nesting without
code walking:

(defmacro depth-limited-macro

(n-max &body body &environment env)

(let*

((depth-value

(macroexpand-1

(quote (depth-counter-virtual-macro))

env))

(depth (if (numberp depth-value)

depth-value 0)))

(if

(> depth n-max)

(progn

(format *error-output*

"Maximum macro depth reached.~%")

nil)

(progn

‘(macrolet

((depth-counter-virtual-macro ()

,(1+ depth)))

,@body)))))

The following code will expand fine:

(depth-limited-macro 0

(depth-limited-macro 1

:test))

but after a small change it will print a warning and expand
to nil:

ELS2017, April 2017, Vrije Universiteit Brussel, Belgium Michael Raskin

(depth-limited-macro 0

(depth-limited-macro 0

:test))

This example is probably not very useful on its own except
as an illustration and as a test case for code walkers.

5 IMPOSSIBILITY OF A GENERAL
SOLUTION

In this chapter we present an example where a portable recur-
sive macro expansion cannot guarantee correct expansion and
explain why this code is problematic for macro expansion.

Consider the following code

(macrolet

((with-gensym ((name) &body body)

‘(macrolet ((,name () ’’,(gensym))) ,@body)))

(with-gensym (f1)

(with-gensym (f2)

(defmacro set-x1 (value &body body)

‘(macrolet ((,(f1) () ,value))

,@body))

(defmacro set-x2 (value &body body)

‘(macrolet ((,(f2) () ,value))

,@body))

(defmacro read-x1-x2 (&environment env)

‘(list ’,(macroexpand-1 ‘(,(f1)) env)

’,(macroexpand-1 ‘(,(f2)) env))))))

(defmacro expand-via-function

(form &environment e)

‘’,(macroexpand-all (quote ,form) ,e))

(set-x1 1

(set-x2 2

(expand-via-function

(set-x2 3

(read-x1-x2)))))

If we replace the expand-via-function invocation with
an identity function call, this code will return (1 3). If
macroexpand-all worked correctly, the unmodified code snip-
pet would return (list 1 3), because the macros named
by the symbols returned by (f1) and (f2) would expand
to 1 as defined by (set-x1 1 ...) and 3 as defined by the
innermost (set-x2 3 ...). Evaluating this expansion will
provide (1 3), as expected. Unfortunately, a portable im-
plementation of a macroxepand-all function cannot expand
such code correctly.

Note that the symbol naming the local macros defined by
set-x1 is not accessible to the macroexpand-all function.
The do-all-symbols function iterates only on the symbols
in the registered packages, and gensym produces symbols not
accessible in any package; and the scope where the symbol
was available does not contain the macroexpand-all function
or even its call. It is also impossible to observe the internals of
execution of the macro expansion function for the read-x1-x2
macro.

But the macroexpand-all function needs to call the macro
expansion function for (read-x1-x2) and pass it some en-
vironment. The Common Lisp standard does not provide
any way of obtaining the environment except getting the
current environment at the call position. We need the lex-
ical environment to depend on the run-time input of the
macroexpand-all function, so we need to use eval. The
eval function evaluates in the null lexical environment, so
the new environment will contain only the entries that the
macroexpand-all function can name explicitly while con-
structing the form to evaluate.

Therefore we can either pass the initial environment (which
contains the definition set by set-x1 but also contains an
obsolete definition set by set-x2), or construct a new envi-
ronment, which can take into account the innermost set-x2

invocation but cannot include any macro definition for the
macro name defined by set-x1. Both options will cause
(read-x1-x2) to expand to a wrong result.

6 PARTIAL SOLUTIONS

In this section we describe partial solutions that allow to
provide macroexpand-all and code walking functionality for
the simple cases and many of the most complicated ones.

6.1 Hardwiring specific macros

Given that defun is expanded into something non-walkable
in most Common Lisp implementations, the walker can treat
this macro as a special form and implement special logic
to handle it. The same approach can be applied to all the
macros as soon as an unwalkable expansion is observed in
some Common Lisp implementation.

Note that while hardwiring macros can make some appli-
cations of a code walker less convenient, it doesn’t sacrifice
portability. The resulting code will still be legal even on the
implementations where the workaround was not needed.

This workaround doesn’t fully solve the problem of im-
plementations expanding standard macros to non-compliant
code, because a portable program could ask for an expansion
of a standard macro and use it in a macro function for some
user-defined macro. The following code fragment illustrates
the problem:

(defmacro my-defun (&rest args)

(macroexpand ‘(defun &rest args)))

(macroexpand-all ‘(my-defun f (x) x))

There is also a risk that an implementation would expand
a standard macro to some code including a non-standard
invocation of another standard macro; if only the second
macro is hardcoded, the code walker will fail.

6.2 Recognizing named lambda by name

The most popular approach to the expansion of defun in-
cludes passing a non-standard argument to function. As
a list starting with anything but lambda and setf is a non-
standard argument, trying to interpret the symbol name

Writing a best-effort portable code walker in Common Lisp ELS2017, April 2017, Vrije Universiteit Brussel, Belgium

won’t break compatibility with an implementation that im-
plements function without extensions. Apparently the forms
with the first symbol being named-lambda or lambda-block

are handled by the function special form in the same way
in all the Common Lisp implementations using them.

This workaround relies on extrapolating behaviour of non-
standardized forms based on unwritten traditions. The code
walker has no way to know whether

(function (named-lambda f (x) y))

is a function called f returning y or a function called y

returning f, but there are reasons to believe that the latter
interpretation doesn’t occur in practice. Here we have an
inherent conflict between detecting the walker’s failure and
portability.

6.3 Macro-only expansion

In most cases the lexical environment for code walking is the
lexical environment in the place of the call to the code walker.
This situation allows the code walker to be implemented
as a macro that does a single step of the expansion and
leaves the recursive calls to itself in the expansion. The
lexical environment will be handled by the Common Lisp
implementation.

A minor drawback of this approach is a necessity for addi-
tional processing when the result of code walking should be
put into a run-time variable. In other words, this approach
requires additional processing to produce a quoted result.

A more significant limitation is related to the use of code
walking with callbacks. Macro-only code walking is done in
a top down manner, so the callbacks don’t have access to the
result of processing the subforms.

If the implementation provides a macroexpand-all func-
tion with an environment parameter, combining a code trans-
formation implemented by a macro-based code walker and
the macroexpand-all function yields a code walker that can
be called as a function.

This approach fully solves the environment handling prob-
lem by asking the Common Lisp implementation to handle
the environment, but shares the problems related to non-
standard code in the expansions of standard macros.

In the following subsections we describe what can be done
in order to construct a portable code walking function.

6.4 Start with the top level

Whilst it is impossible to augment a lexical environment in
a portable way, it is easy to construct a lexical environment
with given entries. So when a form is walked in the null
lexical environment, the code walker can guarantee correct
environment arguments for all macro expansions.

The limitations related to the expansions of the standard
macros still apply in this case, but the environment handling
can be made fully correct.

6.5 Guessing which environment to pass

Despite the fact that it is sometimes impossible to construct
a correct environment for the call to macroexpand-1, there

are cases where it is clear which environment to use. In other
cases we can try to make a good guess.

If we have started from the null lexical environment, we can
always create the environment from scratch. If we haven’t yet
collected any lexical environment entries that add or shadow
any macro (or symbol macro) definitions, we can use the
lexical environment initially provided by the caller of the
code walker.

In the remaining case any guess can be wrong. We can try
to improve our track record by using the initial environment
if and only if we expand a macro defined locally in the initial
environment. Otherwise we construct a lexical environment
using the entries collected while processing the containing
forms.

There is no way to check whether a guess is correct, and
in some cases like the example presented in the section 5
both options are wrong. Moreover, there is no way for a code
walker to check whether a macro expansion function defined
outside of the form being walked uses macroexpand.

7 POSSIBLE APPLICATIONS OF
CURRENTLY
IMPLEMENTATION-SPECIFIC
FUNCTIONALITY

7.1 Environment-augmenting functions

Having a macro with-augmented-environment that creates
a lexical-scope dynamic-extent variable with an environment
with specified additions with respect to an initial one would
be enough for implementing a code walker following the
standard approach currently taken by the implementation-
specific walkers.

7.2 Using a recursive macroexpander to
build a code walker

If a code walker has access to the macroexpand-all function
which accepts an environment argument, there are two natu-
ral strategies. The first one is to call macroexpand-all be-
fore code walking, and code walk the expanded code without
needing to expand any macros. The second one is to build
with-augmented-environment using macroexpand-all. It
can be done using code similar to the following example.

(defmacro with-current-environment

(f &environment env)

(funcall f env))

(macroexpand-all

‘(let ((new-x nil))

(macrolet ((new-f (x) ‘(1+ ,x)))

(with-current-environment ,(lambda (e) ...))))

env)

7.3 Using environment inspection for
constructing augmented environments

Just having a list of all locally defined and shadowed names
is enough to construct an augmented environment in a way

ELS2017, April 2017, Vrije Universiteit Brussel, Belgium Michael Raskin

that indistinguishable using only the standard facilities. The
idea of the construction is to use a macro that obtains its
environment, passes it to the function we want to call, quotes
the result and returns the quoted result as the result of
the macro expansion. An invocation of such a macro can
be wrapped in to set up the correct environment, and the
wrapped code can be evaluated using eval. We do the
wrapping related to the desired changes first so that these
forms are the innermost forms altering the environment. The
evaluated code would be similar to the following example.

(defmacro with-current-environment

(f &environment env)

(funcall f env))

(eval

‘(let ((y-from-environment nil))

(let ((new-x nil))

(macrolet ((new-f (x) ‘(1+ ,x)))

(with-current-environment

,(lambda (e) ...)))))

For each symbol we can query whether it defines a lo-
cal macro (using macro-function) or a local symbol-macro
(using macroexpand as the macro expansion of a symbol
macro does not depend on anything). Having a name and a
macro expansion function is enough to construct a wrapping
macrolet form; having a name and an expansion is enough
to construct a wrapping symbol-macrolet form. If it doesn’t
define a local macro or a local symbol macro we can use let

or flet to ensure that global definitions are shadowed. Tags
and block names cannot be inspected by macros. The list of
names in the lexical environment will also be preserved.

Of course, it would be even better to have access to listing
all the variable-like names, all the function-like (operator)
names, all the tag names and all the block names. Distin-
guishing variables and symbol macros, and functions and
macros can be done in the same way as before.

8 THE AGNOSTIC LIZARD LIBRARY

We present a new library for code walking, Agnostic Lizard.
It implements all of the described workarounds.

For code walking and macro expansion it exports two
functions and two macros.

The macroexpand-all function accepts two arguments, a
form and an optional lexical environment object. It tries to
perform recursive macroe xpansions and usually succeeds.
The macro-macroexpand-all macro accepts a form, and ex-
pands it in the current lexical environment. The expansion
is quoted, i.e. the runtime value of the generated code is the
expansion of the initial form.

The walk-form function accepts a form, a lexical envi-
ronment object (required argument, can be nil), and the
callbacks as the keywords arguments. The callbacks can be:
:on-every-form-pre — called before processing each form
in an executable position;
:on-macroexpanded-form — called for each form after pos-
sibly expanding its top operation, the hardwired macros are

passed unexpanded;
:on-special-form-pre — called before processing a special
form or a hardwired macro;
:on-function-form-pre — called before processing a func-
tion call;
:on-special-form — called after processing a special form
or a hardwired macro;
:on-function-form — called after processing a function call;
:on-every-atom — called after processing a form expanded
to an atom;
:on-every-form — called after expanding each form in an
executable position.

The macro-walk-form macro accepts the form as a re-
quired argument, and the callbacks as keyword arguments.
The callbacks have the same semantics as for walk-form. The
expansion is the result of walking the form in the current
lexical environment with the specified callbacks.

8.1 Implementation details

Agnostic Lizard mostly follows the design of the walkers us-
ing the implementation-specific environment inspection and
manipulation functions. In other words, it starts at the top
and recursively calls itself for the subforms, passing the up-
dated environment information. It keeps track of the lexical
environment changes in an object, and uses the initial envi-
ronment only as a fallback. Agnostic Lizard always identifies
macro invocations correctly, but it has to use heuristics for
choosing what environment to pass. The code walker also
tries to guess how to handle non-standard special forms in
the expansions.

Agnostic Lizard defines three classes to handle code walk-
ing. The metaenv class contains the data directly describing
the current walking context. It contains the list of defined
functions and macros, variables and symbol-macros, blocks,
and tags. It also keeps a reference to the Common Lisp
implementation specific lexical environment object which has
been initially passed by the caller.

This class stores just enough data to implement the basic
recursive macro expansion. The metaenv-macroexpand-all

generic function is used for dispatching the expansion logic.
For the forms that are not cons forms with a hardwired
operator the function calls metaenv-macroexpand first. The
metaenv-macroexpand generic function contains all the deci-
sions about the environment construction used at that step.
Then the metaenv-macroexpand-all generic function passes
the result of macro expansion or the original form to the
metaenv-macroexpand-all-special-form generic function
with the operator of the form as the first parameter. The
methods of this generic function contain all the handling of
the special operators and the hardwired macros These meth-
ods call metaenv-macroexpand-all for recursive processing
of the subforms. Actually, the methods do little else: they
clone create a new metaenv object with extra entries for the
child forms (if needed), call metaenv-macroexpand-all and
build the expanded form out of expansions of the subforms.

Writing a best-effort portable code walker in Common Lisp ELS2017, April 2017, Vrije Universiteit Brussel, Belgium

The class implementing the callbacks for code walking is
walker-metaenv. It is a subclass of metaenv. Objects of
the walker-metaenv class additionally store the callbacks
to allow replacing the form in various stages of expansion.
The only non-trivial method defined for this class is for the
metaenv-macroexpand-all generic function. The method
does the same operations as the method for the metaenv

class, but optionally invokes the callback functions.
The class for macro-only walking is macro-walker-metaenv.

It extends walker-metaenv with the data needed for macro-
based walking: a boolean to alternate between creating a
macro wrapper for capturing the updated environment and
actually expanding the form using the captured environment;
a callback for the macro creation step; and a label for letting
the callbacks distinguish the parts of the code wrapped for
further walking.

The macro-based recursive macro expansion that returns
the code evaluated to the expanded form is done using the
callbacks provided by the walkers. The callbacks walk the
already walked part of the code and perform a transform
similar to quasiquotation; they also make sure that the code
that has not yet been expanded will be expanded in the
correct environment despite such rewrite of the containing
code.

8.2 Portability testing

We have tested Agnostic Lizard by checking that various
forms return the same value before and after the expansion.
We have written a small test suite to check the handling
of local macros, and we have used the iterate library test
suite to get special form coverage. Agnostic Lizard passed
these tests when loaded under SBCL, ECL, CCL, ABCL and
CLISP.

8.3 Reimplementing access to local
variables

As a demonstration of the code walking interface we provide
a partial portable reimplementation of the wrappers ensuring
access to local variables during debugging [17]. Currently
Agnostic Lizard does not provide an interface that would
allow a callback to check if the processed form has the same
environment as the parent one, so the wrapper saves the
references to the lexical environment entries for every form.
On the other hand, the macro code walker in the Agnostic
Lizard library allows to get the same code-walking based
functionality on a wider range of implementations.

The implementation of the wrapper presented in [17] uses
hu.dwim.walker [11], which is the only implementation of a
generic code walker we could find that was compatible with
at least two implementations. Unfortunately, it has limited
portability because of changes in some of the previously sup-
ported Common Lisp implementations, and it removes macro
definitions completely. Agnostic Lizard lacks environment
object handling features relying on implementation specific
functions, but has better portability and preserves macro
definitions.

9 CONCLUSION

We have shown that although a portable code walker for
Common Lisp is impossible, it is possible to create an incor-
rect code walker that is wrong less often than the currently
available ones.

9.1 Benefits for portable code walkers
from hypothetical consensus changes
in implementations

Portable code walkers suffer from two issues: non-standard
expansions of standard macros and opaqueness of the lexical
environment objects.

For most macros we hope that all the implementations
with a release in the last couple of years already expand
them to code using only standard invocations of macros
and special forms. The only currently exceptional macros
are defun, defmacro and defmethod that typically use non-
standard named-lambda forms as arguments to function (or
something very similar). There are benefits for storing the
name of the function, and adopting Alexandria solution of
using labels and saving the form definition would probably
have some implementation cost. It is possible that the current
practice goes against the intent of some parts of the Common
Lisp standard, but there are non-trivial costs to changing it.
It would be convenient to have at least a consensus symbol
name and package name for named-lambda and nfunction

without requiring neither to be present. It would also be nice
to have an agreement that the expansions of standard macros
should only use the special forms that have consensus names.

Opaqueness of lexical environments can be solved by hav-
ing a consensus name for either augmenting the lexical envi-
ronments or listing their entries. Listing the entries seems
preferable because of the additional applications of such func-
tionality, but using environment modification functions would
probably provide better performance.

The macroexpand-all function has a recognizable name
(although some Common Lisp implementations use different
names, and of course there is no consensus package name),
and its interface is clear and natural. It also allows imple-
menting environment augmentation. It would still be useful
to support listing the names in the lexical environment, but
having portable access to a macroexpand-all implementation
does allow implementing a portable generic code walker.

We believe that a good interface for a more general code
walker requires some period of experimentation and evolution
of alternative implementations. Therefore it is too early to
promote a consensus name and interface for a generic code
walker.

9.2 Further related issues that could
benefit from consensus naming

In general it would be nice to have all a consensus package
name for CLtL2 functionality not included in the ANSI
Common Lisp standard in order to have a portable way to
check which parts of this functionality are provided by an

ELS2017, April 2017, Vrije Universiteit Brussel, Belgium Michael Raskin

implementation. Many implementations de facto provide a
large part of the difference, but they use different package
names and sometimes also change function names.

Having a consensus name for a type for the lexical environ-
ment objects would make using generic functions more com-
fortable. This would allow writing portable generic functions
handling both implementation defined lexical environment
objects and library-defined enriched environments. This type
can coincide with some other predefined type.

9.3 Future directions

Some interesting uses of code walking require processing large
amounts of code. For such applications, performance of a
code walker can be important. We haven’t benchmarked
Agnostic Lizard. It seems likely that some optimisations may
be needed.

We have mentioned that most implementations expand
defun to code containing non-standard special operators or
non-standard uses of the function special form. In most
cases such code is easy to analyze by using a few predeter-
mined heuristics. It may be possible to further reduce the
impact of this problem by expanding a defun form with the
function name and argument names obtained by gensym, and
analyzing where these names get mentioned.

It would be interesting to see how much of the code avail-
able via QuickLisp breaks after expansion by Agnostic Lizard.
We haven’t tried doing it yet.

Different tasks solved by code walking require different
interfaces to be provided by the code walker. The callback
interface of Agnostic Lizard is currently pretty minimalistic
and should be expanded. Any advice and feedback are very
welcome.

10 ACKNOWLEDGEMENTS

We would like to thank Irène Durand and the anonymous
reviewers for their comments and advice.

REFERENCES
[1] Agnostic Lizard homepage. Retrieved on 30 January 2017

https://gitlab.common-lisp.net/mraskin/agnostic-lizard
[2] American National Standards Institute, 1994. ANSI Common

Lisp Specification, ANSI/X3.226-1994.
A hypertext version (converted by Kent Pitman for LispWorks)
retrieved on 24 January 2017 from
http://www.lispworks.com/documentation/HyperSpec/
Front/index.htm

[3] Guy L. Steele. 1990. Common Lisp the Language, 2nd Edition.
Also retrieved on 24 January 2017 from
https://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html

[4] Jonathan Amsterdam. Don’t Loop, Iterate. Working Paper 324,
MIT AI Lab. Also retrieved on 24 January 2017 from
https://common-lisp.net/project/iterate/doc/

Don 0027t-Loop-Iterate.html
Project homepage: https://common-lisp.net/project/iterate/

[5] Richard C. Waters. 1993. Some Useful Lisp Algorithms: Part 2.
Tech. Rep. TR93-17, Mitsubishi Electric Research Laboratories.
Also retrieved on 24 January 2017 from
http://www.merl.com/publications/TR93-17

[6] Richard C. Waters. 1993. Macroexpand-All: an example of a
simple lisp code walker. Newsletter ACM SIGPLAN Lisp Pointers.
Volume VI Issue 1, Jan.-March 1993.

[7] John Fremlin. 2009. Macroexpand-dammit. Web Archive copy.
Retrieved on 24 January 2017.

https://web.archive.org/web/20160309032415/
http://john.freml.in/macroexpand-dammit

[8] The freshest macroexpand-dammit fork repository. Retrieved on
24 January 2017.
https://github.com/guicho271828/macroexpand-dammit

[9] Alex Plotnick. 2013. CLWEB homepage.
Retrieved on 24 January 2017.
http://www.cs.brandeis.edu/∼plotnick/clweb/

[10] Christophe Rhodes. 2014. Naive vs proper code-walking.
Retrieved on 24 January 2017.
http://christophe.rhodes.io/notes/blog/posts/2014/
naive vs proper code-walking/

[11] hu.dwim.walker repository. Retrieved on 24 January 2017.
http://dwim.hu/darcsweb/darcsweb.cgi?
r=LIVE%20hu.dwim.walker;a=summary

[12] The Superior Lisp Interaction Mode for Emacs (SLIME) project
repository. Retrieved on 24 January 2017.
https://github.com/slime/slime

[13] trivial-macroexpand-all repository. Retrieved on 24 January 2017.
https://github.com/cbaggers/trivial-macroexpand-all

[14] SICL homepage. Retrieved on 24 January 2017.
https://github.com/robert-strandh/SICL

[15] Christian E. Schafmeister. 2015. Clasp - A Common Lisp that
Interoperates with C++ and Uses the LLVM Backend. In pro-
ceedings of ELS2015. Retrieved on 24 January 2017.
http://european-lisp-symposium.org/
editions/2015/ELS2015.pdf
Project repository: https://github.com/drmeister/clasp

[16] GNU CLISP homepage. Retrieved on 24 January 2017.
http://www.clisp.org/

[17] Michael Raskin, Nikita Mamardashvili. 2016. Accessing local
variables during debugging. In proceedings of ELS2016. Retrieved
on 30 January 2017.
http://european-lisp-symposium.org/
editions/2016/ELS2016.pdf

https://gitlab.common-lisp.net/mraskin/agnostic-lizard
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm
https://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
https://common-lisp.net/project/iterate/doc/Don_0027t-Loop-Iterate.html
https://common-lisp.net/project/iterate/doc/Don_0027t-Loop-Iterate.html
https://common-lisp.net/project/iterate/
http://www.merl.com/publications/TR93-17
https://web.archive.org/web/20160309032415/http://john.freml.in/macroexpand-dammit
https://web.archive.org/web/20160309032415/http://john.freml.in/macroexpand-dammit
https://github.com/guicho271828/macroexpand-dammit
http://www.cs.brandeis.edu/~plotnick/clweb/
http://christophe.rhodes.io/notes/blog/posts/2014/naive_vs_proper_code-walking/
http://christophe.rhodes.io/notes/blog/posts/2014/naive_vs_proper_code-walking/
http://dwim.hu/darcsweb/darcsweb.cgi?r=LIVE%20hu.dwim.walker;a=summary
http://dwim.hu/darcsweb/darcsweb.cgi?r=LIVE%20hu.dwim.walker;a=summary
https://github.com/slime/slime
https://github.com/cbaggers/trivial-macroexpand-all
https://github.com/robert-strandh/SICL
http://european-lisp-symposium.org/editions/2015/ELS2015.pdf
http://european-lisp-symposium.org/editions/2015/ELS2015.pdf
https://github.com/drmeister/clasp
http://www.clisp.org/
http://european-lisp-symposium.org/editions/2016/ELS2016.pdf
http://european-lisp-symposium.org/editions/2016/ELS2016.pdf

	Abstract
	1 Introduction
	2 Related work
	2.1 Portable tools
	2.2 Implementation-specific tools

	3 Problems
	3.1 Interpretations and violations of the standard
	3.2 Environment handling

	4 Passing information via macrolet and macroexpand-1, and two kinds of the lexical scope for macros
	5 Impossibility of a general solution
	6 Partial solutions
	6.1 Hardwiring specific macros
	6.2 Recognizing named lambda by name
	6.3 Macro-only expansion
	6.4 Start with the top level
	6.5 Guessing which environment to pass

	7 Possible applications of currently implementation-specific functionality
	7.1 Environment-augmenting functions
	7.2 Using a recursive macroexpander to build a code walker
	7.3 Using environment inspection for constructing augmented environments

	8 The Agnostic Lizard library
	8.1 Implementation details
	8.2 Portability testing
	8.3 Reimplementing access to local variables

	9 Conclusion
	9.1 Benefits for portable code walkers from hypothetical consensus changes in implementations
	9.2 Further related issues that could benefit from consensus naming
	9.3 Future directions

	10 Acknowledgements
	References

