
Tiling and Optimizing Time-Iterated Computations over
Periodic Domains

Uday Bondhugula
Department of Computer
Science and Automation,
Indian Institute of Science
Bangalore 560012 India

uday@csa.iisc.ernet.in

Vinayaka Bandishti
Department of Computer
Science and Automation,
Indian Institute of Science
Bangalore 560012 India

vbandishti@csa.iisc.ernet.in
Albert Cohen

INRIA and École Normale
Supérieure

45 rue d’Ulm
Paris 75005, France

Albert.Cohen@inria.fr

Guillain Potron
École Normale Supérieure

and Indian Institute of Science
45 rue d’Ulm

Paris 75005, France
guillain.potron@ens.fr

Nicolas Vasilache
Reservoir Labs
632 Broadway

New York, NY 10012, USA
vasilache@reservoir.com

ABSTRACT
This paper deals with optimizing time-iterated computations on pe-
riodic data domains. These computations are prevalent in computa-
tional sciences, particularly in partial differential equation solvers.
We propose a fully automatic technique suitable for implemen-
tation in a compiler or in a domain-specific code generator for
such computations. Dependence patterns on periodic data domains
prevent existing algorithms from finding tiling opportunities. Our
approach augments a state-of-the-art parallelization and locality-
enhancing algorithm from the polyhedral framework to allow time-
tiling of stencil computations on periodic domains. Experimental
results on the swim SPEC CPU2000fp benchmark show a speedup
of 5× and 4.2× over the highest SPEC performance achieved by
native compilers on Intel Xeon and AMD Opteron multicore SMP
systems, respectively. On other representative stencil computa-
tions, our scheme provides performance similar to that achieved
with no periodicity, and a very high speedup is obtained over the
native compiler. We also report a mean speedup of about 1.5×
over a domain-specific stencil compiler supporting limited cases
of periodic boundary conditions. To the best of our knowledge, it
has been infeasible to manually reproduce such optimizations on
swim or any other periodic stencil, especially on a data grid of two-
dimensions or higher.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compilers, Opti-
mization, Code generation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PACT ’14 August 24 - 27 2014, Edmonton, AB, Canada
Copyright 2014 ACM 978-1-4503-2809-8/14/08 ...$15.00.
http://dx.doi.org/10.1145/2628071.2628106.

Keywords
Tiling; Stencils; Periodic; Automatic parallelization; Polyhedral
model

1. INTRODUCTION
Stencil-style computations are widely used in solving partial dif-

ferential equations over discretized domains. They have been ex-
tensively studied by the parallel and high-performance computing
community. Stencil computations involve updating points in a data
grid of certain dimensionality repeatedly. The computation per-
formed at each point in the grid uses values from its immediate or
short distance neighbors. These updates to the grid are repeated a
certain number of times or until convergence. Hence, as originally
viewed and specified, the computation accesses the entire grid each
iteration before accessing it again the next iteration. Such an exe-
cution order is memory bandwidth-bound when the data grid does
not fit in the last level cache.

Stencil computations can be performed on discretized domains
that are either non-periodic or periodic. Non-periodic domains have
boundaries that do not change. However, periodic domains are of-
ten used to model a portion of a larger space. Periodicity also arises
when one models a hollow object. The object is cut and unrolled
flat in a lower dimensional space. For example, domains like hol-
low spheres, cylinders, or tori can be cut and flattened out in 2-d
space. Similarly, a ring can be cut and flattened into a 1-d array.
When this is done, the points on either boundary have to be treated
as neighbors with respect to one another, resulting in wrap-around
dependences. These wrap-around dependences create cyclic de-
pendences between tiles in an otherwise valid tiling. Although a
lot of effort has been put in optimizing stencil computations, there
is very little work on optimizing those with periodicity. This is an
important domain of numerical simulation, since periodic bound-
ary conditions are prevalent in partial differential equation solvers.
The fact that the SPEC CPU2000fp included the swim (171.swim)
as one of its benchmarks is strong evidence of this. The swim
benchmark is a weather prediction program that performs finite
difference modeling of shallow water equations through periodic
boundary conditions on a two dimensional grid [27]. All its run-
ning time is spent in the stencil computation. Modeling the earth’s

atmosphere and surface also involves two-dimensional periodic do-
mains [26].

Tiling for locality and parallelism [17, 37, 41] has been stud-
ied intensively for the optimization of stencils with no periodicity.
Tiling for locality allows simultaneous reuse in multiple directions—
the directions correspond to the loop dimensions being tiled. In
particular, the loop that iterates over time in stencils carries tem-
poral reuse while the space loops carry constant reuse as well as
spatial reuse along the innermost space dimension. Tiling for paral-
lelism allows reduction in the frequency of synchronization. Tiling
for locality and parallelism together makes the computation less
dependent on memory bandwidth, and in the context of multicore
processors, can make it scale better.

We make a key observation about stencils with periodic bound-
ary conditions: tiling can be enabled by first splitting the iteration
domain (or index set) in a very specific way. Then, an extension
of existing auto-parallelization and tiling techniques enables the
necessary program transformations allowing for dramatic improve-
ment in performance. In particular, our technique improves perfor-
mance by several factors when compared to code that just tiles and
parallelizes the loops that tile and iterate over the data space code.

The rest of this paper is organized as follows. Section 2 intro-
duces the technical background. Section 3 discusses challenges and
the feasibility of various approaches. Section 4 and Section 5 de-
scribe our solution. Experimental results are presented in Section 6
before concluding in Section 8.

2. BACKGROUND
In this section, we introduce notation and the mathematical back-

ground necessary for the sections that follow.

Definition 1 (Hyperplane). A hyperplane is an n−1 dimensional
affine sub-space of an n dimensional space.

Since we are interested in integer spaces, by a hyperplane we
refer to the set of all vectors x ∈ Z

n such that�h.�x = k, for k ∈ Z.
Two vectors �v1 and �v2 lie in the same hyperplane if�h.�v1 =�h.�v2. The
set of parallel hyperplane instances correspond to different values
of k with the row vector�h normal to the hyperplane.

A hyperplane divides a space into two half-spaces, the positive
half-space and the negative half-space. If the coefficients of�h are
integers, the set of integer points are divided into a non-negative
half-space (�h.x ≥ k) and a negative half-space (�h.x ≤ k−1).

Index sets and dependences.
Let S1, S2, . . . , Sn be the statements of a program. The set of all

iterations�iS of S is called the index set of S and is represented by IS.
Let mS be the dimensionality of statement S. A program parameter
is a symbol that is not modified in the portion of the program being
represented. Problem sizes appearing in loop bounds are typical
examples of program parameters. Let mp be the number of program
parameters, and �p be the vector of program parameters. Let E be
the set of dependence edges. For an e∈E, let De be the dependence
polyhedron. De is a relation between source and target iterations,
represented by �s and �t respectively, that are in dependence. For
example, the vertical dependence instances in Figure 1 and Figure 2
correspond to the dependence polyhedron:

De = {〈�s,�t〉|�s = (t, i)∧�t = (t ′, i′)∧ t ′ = t +1∧ i′ = i}
2.1 Tiling

Tiling is considered valid if and only if a total order can be con-
structed for the execution of all tiles, where each tile is being ex-
ecuted atomically. This implies that a tiling is valid if and only if

there is no dependence cycle between the tiles. This can be very
hard to check statically in general. Hence, compiler optimizers
work with sufficient conditions such as that of non-negative depen-
dence components: this was from the pioneering works of Irigoin
and Triolet [17] and a large amount of literature on the validity of
tiling relates to or derives from it [37, 25, 20, 1, 5]. In particular,
the condition involves checking if all components corresponding to
(yet unsatisfied) dependences are non-negative for the set of con-
tiguous loop nest dimensions that are being tiled. In a more general
polyhedral setting, a tiling hyperplane is an affine function of the
form:

φS

(
�iS
)

= (c1 . . . cmS) ·
(
�iS
)
+
(
d1 . . . dmp

) ·(�p)+c0

c0,c1, . . . ,cmS ,d1, . . . ,dmp ∈ Z, �iS ∈ IS

and a sufficient condition for φSi to be a statement-wise valid tiling
is written as:

φSp

(
�t
)−φSq

(
�s
)≥ 0, 〈�s,�t〉 ∈ De. (1)

When the above condition is enforced for all edges e unsatisfied up
to that depth, all linearly independent solutions for φ in (1) form a
band of valid tiling hyperplanes at that depth.

Often, when rectangular tiling is not valid on a given iteration
space, it can in many cases be transformed so that rectangular tiling
is valid in the new space, i.e., by finding the right set of φ’s. E.g.,
a short negative dependence component can be dealt with through
loop skewing with respect to an outer loop that satisfies that de-
pendence. However, a well-known scenario in which such a trans-
formation is not possible is when there are long dependences in
either direction corresponding to a dimension. As can be seen in
Figure 2, periodic stencil computations have such dependences and
cannot be tiled along all dimensions readily.

2.2 Stencils
Figure 1 and 2 show the iteration space and dependences for

stencil computations without and with periodic boundary condi-
tions, respectively. As can be seen, for non-periodic stencils, all
dependences are near-neighbor while for the periodic ones, there
are edges wrapping around boundaries.

i

t

N-1

T-1

0 1 2 3 4

1

2

Figure 1: no periodicity

i

t

N-1

T-1

0 1 2 3 4

1

2

Figure 2: with periodicity

There are multiple ways one could implement the periodic bound-
ary conditions in program code. Figure 3a and 3b show two ways of
implementing a simple periodic stencil on a one-dimensional grid.
Figure 3b uses a conditional to make the boundary updates access
the correct values, while Figure 3a employs copies on to ghost re-
gions to take care of the flow of values across boundaries. When the
copy statements are taken into account, the data flow for both codes
is equivalent. The conditional can be hoisted out to avoid overhead
in the innermost loop. Also, the above code is written with mod-
ulo indexing for the time dimension instead of using two copies of
the array—the latter is common practice as well. The swim SPEC
benchmark in particular uses copies for boundary conditions, and

for (t = 0; t < T−1; t++) {
for (i = 1; i < N+1; i++)

A[(t+1)%2][i] = (A[t%2][i+1] + 2.0∗A[t%2][i] + A[t%2][i−1])/4.0;
A[(t+1)%2][N+1] = A[(t+1)%2][1];
A[(t+1)%2][0] = A[(t+1)%2][N];

}

(a) periodic (with copies)

for (t=0; t <T−1; t++) {
for (i=0; i<N; i++)
A[(t+1)%2][i] = ((i+1==N?A[t%2][0]:A[t%2][i+1])

+ 2.0∗A[t%2][i] + (i==0?A[t%2][N−1]:A[t%2][i−1]))/4.0;
}

(b) periodic (with boundary conditionals)

Figure 3: Stencil: heat-1d equation

uses an old and a new copy for the array instead of indexing the
time dimension with a modulo operation.1

Time loops and space loops.
The number of times the space grid is updated is determined by

the number of iterations in the outermost loop which refer to as the
time loop. The loops that update points in the grid are referred to
as space loops.

In this context, time tiling refers to tiling the time loop, i.e.,
the outermost loop. Note that the space loops, being inner paral-
lel loops, can be freely tiled. Time tiling allows temporal reuse to
be exploited along the time dimension. This is often the source
of a dramatic improvement in single-thread performance, as well
as excellent scaling, as time tiled code may be either less memory
bandwidth bound or no longer memory bandwidth bound.

For non-periodic stencils, two existing techniques for time tiling
are shown in Figure 4. The first one is classical parallelogram-
shaped tiling (Figure 4a) that can be obtained by skewing the space
dimension(s) with respect to the time loop. Exposing parallelism
on such tiles induces a pipelined startup and drain delay, since there
is no boundary along which tiles can start in parallel. The second
one that we refer to as diamond tiling was recently proposed [3].
It allows concurrent start of all diamonds along the horizontal line:
these tiles have no dependences among each other and can start in
parallel. It leads to better load balance and maximizes the num-
ber of tiles on the wavefront without any pipeline fill-up and drain
delays.

3. CHALLENGES AND APPROACHES
This section explores different approaches to the problem of tiling

iterated stencil computations with periodic boundary conditions.
While these approaches are generally not applicable in a compiler,
and sometimes even unsuitable for manual transformation, they
provide valuable insights into the challenges involved.

As mentioned earlier, for stencils on periodic domains, the wrap-
around dependences at the boundaries create dependence cycles in
an otherwise valid tiling. For example, there is no cyclic depen-
dence between tiles in Figure 4a or Figure 4b. However, applying
this same tiling to Figure 2 will create a cyclic dependence between
tiles at either boundary.

3.1 Merging boundaries
We observe that the cyclic dependence between tiles can be bro-

ken if the tiles at either boundary for a dimension can be merged
into a single special tile. If the partial tiles at each end match, as is
the case in Figure 4b, they could be merged to give a full tile like
those in the middle. However, this is not possible in general: de-
pending on the alignment, the height of partial tiles at either bound-
ary may not be the same.
1Note that using a modulo with respect to two or any power of two
does not hurt performance since it directly translates to a bitwise bi-
nary operation as opposed to a branch. Alternatively, such modulo
indexing can be eliminated through partial unrolling of the loop.

As shown in Figure 5, a proper choice of tile alignment could
be found that guarantees matching height for the partial tiles by
shifting the tile origin by an amount equal to half the remainder
when the dimension length is divided by the tile size. Note that
even with such an alignment, if the boundary tiles are not exactly
half of a full tile, one would end up with either a smaller full tile
or a larger non-convex tile. We will then need to alternate between
the two shapes every time tile step. A roadblock to this approach is
that it is not practical for compiler automation since it requires the
knowledge of fixed tile shape and size, and it does not explicitly
say in which cases an invalid tiling can be fixed to make it valid,
and which of the tiling schemes is to be chosen. It would also miss
other directs way of tiling the space, which would not require such
a post-correction. In addition, a stencil in which dependences arise
through multiple statements make such a trial and error approach
almost infeasible.

iteration dependence
inter-tile dependence

(1, 2)(1, -2)

Figure 5: Partial tiles (in yellow) can be merged

3.2 Cut and paste dependent portion
Figure 6 shows an alternative approach where the cyclic depen-

dences are broken through cutting-and-pasting the loop iterations
that are transitively affected by periodic boundary conditions. This
displacement effectively results in the shortening of the periodic
boundary dependences. This is also equivalent to circular loop
skewing [38].

iteration dependence
inter-tile dependence

(1, 2)(1, -2)

Figure 6: Cut and paste over diamond tiling

This approach requires determining the set of iterations on which
another set depends. In other words, it requires computation of a
transitive closure of dependences which has remained a very hard
problem. Practical approximation schemes for it remain extremely
complex and expensive [35]. Libraries like isl [35, 36] that do
implement transitive closure often recommend avoiding its usage.

iteration dependence

inter-tile dependence

(0, 1)

(1, -1)

(a) Pipelined parallel tiling

iteration dependence

inter-tile dependence

(1, 1)(1, -1)

(b) Diamond tiling (concurrent start-up)
Figure 4: Two ways of tiling heat-1d (non-periodic)

In particular, to enable time tiling for a code like swim from the
spec suite, one needs to compute a transitive closure over tens of
dependences across multiple statements. In addition, unlike in the
one-dimensional case, the backward slice that a tile depends on is
not convex, i.e., it is a union of a large number of convex polyhe-
dra. The number of polyhedra in such a union increases with the
dimensionality of space, i.e., the number of space dimensions in
the stencil.

3.3 Duplicating computation at boundaries
Redundant computation can be performed at each boundary to

eliminate the dependence between boundary tiles resulting from
periodic conditions. This is equivalent to replicating computation
from the opposite boundary. Doing so would be similar to the ap-
proach used in [18] where neighboring tiles were overlapped and
redundant computation performed to break a dependence for allow-
ing concurrent start.

Formalizing and implementing this approach would again re-
quire one to determine the set of dependent iterations, i.e., to com-
pute the transitive closure. Hence, it would suffer from the same
limitations as the “cut and paste approach”, and in addition, lead
to redundant computation. The amount of redundant computation
needed will increase with the size of the tile along the time dimen-
sion, and with the dimensionality of the data space.

3.4 Folding
The approach of folding [8, 42] used in the systolic array liter-

ature provides an interesting conceptual basis for addressing this
problem. The folding approach folds the data domain along the
middle of each dimension to bring the boundaries together, placing
them one on top of the other. The technique of smashing as de-
scribed by Osheim et al. [21] uses this idea of folding to describe
time tiling for periodic stencil computations. They view smashing
as “a data allocation technique rather than a loop/iteration transfor-
mation”. This statement is partly inaccurate since dependence dis-
tances cannot be shortened by allocating, reordering, or laying out
data in a particular way. They can only be changed by reordering
iterations since the distances correspond to distances in the itera-
tion space. Hence, allocating or storing data does not change the
ability to tile unless the iterations themselves were reordered with
respect to the order in which they were performed on the original
data domain. It is assumed that the authors meant the execution
order is also implicitly changed with the new data layout. Figure 7
illustrates the effect of folding on the 1-d heat stencil: the two hor-
izontal halves (in the data space) are stacked on top of each other,
converting the long cyclic dependences into short ones.

The folding approach is attractive in that in the folded view of the
iteration space, all dependences are short and existing tiling tech-
niques will work without any fixing, replication, or computation of
transitive closure. Osheim et al. [21] present the smashing tech-
nique as a manual or semi-automatic optimization strategy: there
are no heuristics to determine when and how to fold or smash. In
addition, visualizing it for higher than two dimensional data grids
is not straightforward, and hence, there is a need for a formalism
to reason about, express, and compute transformations that achieve
the proposed effect. Doing so also automatically solves the code
generation problem.

Our approach is strongly influenced by folding, but it handles the
periodic boundary constraints through iteration reordering trans-
formations only. We require no changes to the data layout: user-
defined data spaces remain unaffected.

4. INDEX SET SPLITTING TO CUT LONG
DEPENDENCES

This section describes the first systematic method to enable tiling
of stencil computations with periodic boundary conditions. The
first step in our approach is to perform a preprocessing that splits
the index sets of statements. The second step is to ensure that
the transformation space allows the necessary transformations to
be found for the new index sets and other performance enhancing
transformations can be applied on it. This section deals with the
first step while the next one deals with the second.

The method we propose subsumes folding techniques summa-
rized in the previous section. The key reason that a transformation
like folding cannot be performed by existing frameworks is that
affine transformations typically apply the same affine schedule to
the entire index set of a program statement. If the statement’s in-
dex set is partitioned at compile time into a finite number of par-
titions, and a possibly different affine transformation may be ap-
plied to each one, folding-like transformations fall into the space of
valid, piece-wise affine transformations. Thus, an index set splitting
heuristic has to be devised that suits the needs of periodic stencils.

4.1 Short and long dependences
We first explain the classification of dependences as being short

or long along a particular dimension. A single dependence rep-
resented by an edge e in the dependence graph can correspond to
multiple dependence instances, i.e., multiple source and target it-
eration pairs, 〈�s,�t〉 that are in dependence. A dependence instance
is short along a dimension if its length, i.e., the difference (or dis-
tance) between the source and target iteration along that particular
dimension can be bounded by a small constant. This constant is

typically a small number and it is important that it not be compa-
rable to loop trip counts. We see that a value of five is sufficient in
practice. This value is fixed and it is used for any input program
and all its dependences. A larger value such as ten could also be
used as long as it is not comparable to the trip counts we expect for
the problems of interest here. At the same time it should be larger
than the stencil width. In practice, choosing this value to classify
dependences as short is never a problem. We find that a value like
five works well for the entire domain of interest. For example, for a
3-d stencil used, the grid sizes typically of interest while optimizing
for execution time are at least a few hundred along each dimension.

A dependence is considered long if it is not short. Intuitively,
a long dependence is one whose length is of the order of iteration
space extents and any bound on its length has to involve program
parameters that are symbols appearing in loop bounds, typically
problem sizes. A dependence whose length varies (depending on
the particular source/target instances in dependence) from a small
value to a large value is also thus a long dependence. For a de-
pendence edge to be labeled short along a dimension, all of its de-
pendence instances should be short along that dimension; while a
single dependence instance being long will label the dependence
as being long. In addition, if a dependence is referred to being
long in a dimension-independent manner, it implies that there was
at least one dimension along which the dependence was long. The
above notion of short or long dependences is only meaningful in
the context of a schedule for the iterations. When referring to it
without mentioning a schedule, these are implicitly assumed to be
defined for the identity schedule that corresponds to the original
execution order. Applying another schedule will change these de-
pendence distances and their property of being long or short along a
dimension. Note that dependence distances for inter-statement de-
pendences are only meaningful under a schedule since the source
and target statements could have different dimensionalities. Since
a a statement-wise schedule maps all statements to the same set of
time dimensions, the distance between the mapped points in the
transformed space is meaningful.

In the examples presented so far, the dependence edge that cap-
tures the flow of values across the boundaries is a long dependence
while all remaining dependences in the grid are short dependences.
The length of the arrows in Figure 2 captures this in an obvious
way. As an example, for the code in Figure 3b, the long depen-
dence from the left boundary to the right one between�s = (t, i) and
�t = (t ′, i′) is given by:

t ′ = t +1∧ i = 0∧ i′ = N −1∧0 ≤ t ≤ T −3.

The above is long along the inner dimension (i/i′) in the positive
direction with length N − 1 while short along the outer dimension
(t/t ′). The short blue arrows are short dependences with the dis-
tances being standard distance vectors (1,0), (1,1), and (1,-1): these
are the well-known constant distance vectors used in compiler lit-
erature [2, 4, 38].

4.2 Details of the approach

Key idea.
The approach we describe below attempts to cut all dependences

that are long along one dimension roughly at its mid-point, while
not affecting how the shorter dependences will be transformed in
the resulting space. A hyperplane is used to cut the statement’s
index set into half spaces. After this cut, a separate affine trans-
formation can be applied to each half space. The goal is to allow
transformation frameworks to make all dependences short along at

least one more dimension than was previously possible. This is
sufficient to enable time tiling for periodic stencils.

We first describe our approach for the case when all dependences
are intra-statement. In our context, this is a stencil on a single data
grid. An affine hyperplane is defined by two characteristics: its
orientation given by its normal vector �h, and its position given by
an affine function of the program parameters, v(�p), i.e., v(�p) is of
the form �P·�p+ r. Finding a suitable hyperplane cut is the same as
finding a suitable orientation and position. The cut itself is given
by

�h.�iS = v(�p), i.e., �h.�iS = �P·�p+ r.

With such a cut, the index set of S, IS, is partitioned into two halves
given by I+S and I−S :

I+S = IS ∧{�h.�iS ≥ v(�p)} I−S = IS ∧{�h.�iS ≤ v(�p)−1}.
For example, a possible cut is 2i = N, cutting the i dimension in

the middle; this corresponds to�h = (0,2), �iS = (t, i), and v(�p) = N
with �P = (1), �p = (N), and r = 0. Having two linearly independent
hyperplanes (�h) would generate four partitions, and so on.

While trying to cut long dependences, we need to make sure
the short dependences can continue to remain short, i.e., no short
dependence is made long while the long ones are being reduced
through a future automatic transformation algorithm. Consider sep-
arate affine transformations being applied to each half-space of
some cutting hyperplane. If both ends of a short dependence lie
on the same side of the hyperplane, the dependence continues to
remain short because the same affine transformation is applied on
it. If the ends lie on different sides, they both stay at a constant
distance from where the dependence crosses the hyperplane. The
crossing point thus has to be a fixed point for both affine transfor-
mations, and then the dependence will remain short. This provides
the intuition that if the long dependences are all cut at their mid-
points or at a fixed distance from their mid-points, the source and
target iterations of the long dependences can be brought close with
the new split index sets while keeping the original short depen-
dences short. Note that it would be valid even if some long de-
pendence instances, potentially belonging to the same dependence
edge, are cut at their mid-points while others are cut close to it. We
now propose a technique that automatically finds such a cut when-
ever possible.

The following approach is taken for each dimension along which
there are long dependences in both directions, positive and negative—
since this is what prevents tiling. Let�s and�t be the source and target
iterations corresponding to a dependence edge e, characterized by
dependence polyhedron De, that is long along a dimension. In or-
der to cut all dependences within a bounded constant distance from
their mid-points, the cutting hyperplane�h has to satisfy the follow-
ing:

−m ≤ (v(�p)−�h·�s)− (�h·�t −v(�p))≤ m

for some m ∈ Z+ that we will minimize later. We thus have

2v(�p)−m ≤�h·�s+�h·�t ≤ 2v(�p)+m, 〈�s,�t〉 ∈ De. (2)

Note that �h is unknown while �s, �t are related through the depen-
dence polyhedron. The above can be linearized with the affine form
of the Farkas lemma [28, 11], i.e., if �f0, �f1, . . . , �fm are the faces of
De, then there exist λi ≥ 0 such that

2v(�p)+m−�h·�s−�h·�t ≡ λ0 +λ1�f1 + · · ·+λm�fm (3)
�h·�s+�h·�t −2v(�p)+m ≡ λ′0 +λ′

1
�f1 + · · ·+λ′

m
�fm. (4)

The coefficients of iterators in �s and�t from the LHS and RHS
can be equated to obtain constraints linear in �h’s coefficients, �P’s
coefficients, r, and m. The λis, also called Farkas multipliers, can
be eliminated locally for each of the long dependences along that
dimension, and the constraints aggregated. The constraints are now
solved with the objective to minimize m. If a solution is found,
a hyperplane orientation and position is obtained that cuts within
a non-parametric or constant distance from the mid-points of all
dependence instances in question, and we succeed in finding a split
that in turn will allow distinct affine transformations on the split sets
that shorten all of these dependences. m is that constant distance
since it is free of program parameters (�p). m = 0 implies that all
mid-points lie on�h.�iS = v(�p). If a solution is not found, there exists
no hyperplane that cuts all dependences at a bounded distance from
their respective mid-points, and no index set splitting is applied
for that dimension. This approach is repeated along all canonical
dimensions along which dependences are long in both directions.

Figure 8 shows two other synthetic examples where the cut will
lead to better transformations. In general, our technique is robust
and resilient to variation in the boundary dependences, width and
pattern of the stencils. This is because we minimize the upper
bound on the distance of the mid-points of the dependences from
the splitting hyperplane, m, as opposed to looking for solutions with
m = 0. It thus clearly works for the entire domain of interest. Com-
ments on its applicability beyond this domain are made towards the
end of the next section.

2

1

...

3

1 2

T−1

N/2...

t

i

Figure 7: Folded
periodic 1-d heat

i
.

.

0 1 2 3 4

1

2

3

4

i
.

.

0 1 2 3 4

1

2

3

4

Figure 8: Cutting along the red line allows trans-
formations shortening all dependences

As an example, for the periodic 1-d heat stencil from Figure 2,
the split index sets are given by:

IS+ = IS ∧{2∗ i ≥ N} IS− = IS ∧{2∗ i ≤ N −1}.
IS is thus replaced with two statements, with index set IS+ and

IS− . We will show in Section 5 how profitable transformations can
be applied automatically with the new statements.

4.3 Multi-statement stencils
In the case of multiple statements, long self-dependences could

be hidden since they could be implied transitively through other
inter-statement dependences which cannot themselves be classified
as long or short. This is the case for stencils written with copies at
the boundaries for every time step. If the approach described in the
previous section is applied just for the intra-statement dependences
in the case of multiple statements, it will not enable tiling even if it
succeeds in finding a cut.

This problem can be addressed by computing transitive depen-
dences with respect to a set of dependences. A full transitive clo-
sure is not needed: one may only compute transitive dependences
for paths leading back to the same statement. Once this is done, the
approach described in the previous sub-section is applied to deter-
mine the index set splitting. In the case of periodic stencils, such
transitivity is over a path of length two. However, if the code is not
written with copies but with conditionals (Figure 3b), the need for

computing transitive dependences does not arise even with multi-
ple statements. This is the case we encounter for all experimental
evaluations.

5. POST-ISS SHORTENING AND TRANS-
FORMATIONS

In the previous section, we showed that index set splitting opens
the possibility for dependences being shortened. We now argue that
the Pluto framework, that shortens dependences, naturally finds the
tiling transformation on the split index sets.

5.1 Pluto scheduling algorithm
We first provide some background on the Pluto scheduling algo-

rithm. Consider a one-dimensional affine transformation for S:

φS

(
�iS
)
= (c1 . . . cmS) ·

(
�iS
)
+
(
d1 . . . dmp

) ·(�p)+c0,

c0,c1, . . . ,cmS ,d1, . . . ,dmp ∈ Z

where �iS is an iteration vector of S, mS is the dimensionality of
statement S, mp is the number of program parameters, i.e., symbols
appearing in the program (typically representing problem sizes),
and �p is the vector of those program parameters. Each statement
has its own set of ci and di coefficients: ci correspond to the in-
dex set dimensions while di correspond to parameters and model
parametric shifts. For convenience, the notation we use does not
involve a superscript specific to S, i.e., cS

i , dS
i .

The Pluto algorithm [5] finds such one-dimensional affine trans-
formations, iterating from the outermost inwards while looking for
tilable bands, i.e., for φs satisfying

φSj (�t)−φSi (�s)≥ 0, 〈�s,�t〉 ∈ De. (5)

The objective function it uses is that of reducing dependence dis-
tances using a parametric upper bounding function that was first
proposed as a technique by Feautrier [11].

�u·�p+w−(
φs j(�t)−φsi(�s)

) ≥ 0, 〈�s,�t〉 ∈ De (6)

�u and w are then minimized, in order of decreasing priority, using
the lexicographic minimum as

lexmin
(
�u,w, . . . ,cSj

i ,dSj
i , . . .

)
. (7)

5.2 Dependence shortening
Once an index set splitting is performed, the long dependence is

still long since a new execution order has still not been specified.
The split index sets obtain their schedules from the unsplit index
set. For example, the long dependence in Figure 2 (code in Fig-
ure 3b that goes from the left boundary to the right one is given
by:

t ′ = t +1∧ i = 0∧ i′ = N −1∧0 ≤ t ≤ T −3 (8)

has the dependence distance along its two dimensions given by the
vector [1,N − 1]T and this is long along the second dimension as
per the original execution order. We now show that the objective
function (6) is well-suited to enable tiling for periodic stencils as
well. Note that a solution that corresponds to �u =�0 is preferred
over a solution with �u ��0 since the former would have a better
objective function value as per (7). Importantly, �u =�0 corresponds
to a transformation that shortens all dependence distances to a
constant (due to (6)), the constant itself being given by w that is
also minimized as part of (7). Hence, transformations that shorten

t = k

N/2

N/2

t = k+1

(+,-)

(-,+)

(-,-)

(+,+)

t = k

t = k+1

N

N

(+,+) (+,-)

(-,+)
(-,-)

Dependence

Splitting hyperplane

Figure 9: Index set splitting and piece-wise scheduling: iterations are partitioned into 4 pieces by cutting along the dashed lines (2 time steps
shown); interleaving the pieces, (shown on the right) results in a space with short dependences only

all dependences to within a fixed constant, which would be w, have
a better objective function value than those that do not.

For the dependence in (8), with index set splitting, �s = (t, i) and
�t = (t ′, i′) are placed into two different index sets, S+ and S−. Con-
sider the following transformation on S+ and S−:

TI+S
(�iS+) =

[
1 1
1 −1

][
t
i

]
(9)

TI−S
(�iS−) =

[
1 −1
1 1

][
t
i

]
+

[
1
−1

]
[N] (10)

For S−, the above can be seen as a composition of (t, i)→ (t,N−
i) with the diamond tiling transformation: (t, i)→ (t + i, t − i), re-
sulting in transformation (t − i+N, t + i−N): this is the same as
(10) written concisely. With the transformation in (9) (10), we get
the new dependence distance for dependence (8) as:

TI−S
(�t)−TI+S

(�s) =

[
(t +1)− (0+N −1)+N
(t +1)+(0+N −1)−N

]

−
[

t +0
t −0

]
=

[
1
0

]

Hence, the dependence is made short along both dimensions by
T : this is implied by �u =�0 at both levels. The other long depen-
dence is also shortened similarly by this transformation. Though
there are other transformations that also enable such a shortening,
this transformation, in addition, also enables concurrent start lead-
ing to tiles of shape shown in Figure 4b [3]. However, as long as
dependences can be shortened, one can exploit temporal locality
along the time dimension and reduce frequency of synchronization
with tiling. Thus, the objective is still well-suited for tiling periodic
stencils. Another time tiling transformation that will lead to paral-
lelogram tiles of shape in Figure 4a (still with �u = 0 at both levels)
is:

T (S+) = (t, t + i) T (S−) = (t, t − i+N)

As can be viewed geometrically and as a direct fall-out of the index-
set splitting proposed in Section 4.2, the transformations that allow
shortening of dependences, once index sets have been split, include
reversals as well as negative (backward) parametric shifts. In par-
ticular, for a 2-d grid in Figure 9, three of four stacked split sets
have to be reversed and shifted backwards along one or two dimen-
sions in order to be aligned as depicted. Consequently, negative

coefficients are needed in the statement-wise affine transformation
functions.

The Pluto algorithm [5] does not allow negative coefficients in
its transformations. This is primarily due to the combinatorial dif-
ficulty in avoiding the trivial zero solution for φ’s coefficients as
well as in modeling the space of solutions representing linear inde-
pendent sub-spaces [7]. This trade-off between expressiveness and
computational complexity has worked well in practice for many
affine loop nests in which reversals are not a prerequisite to enable
efficient parallelization. For the important class of computations we
consider here, this trade-off is a limitation: the required reversals
are not part of the space of valid transformations. Other transforma-
tion algorithms like those of Feautrier [11, 12] also avoid negative
values in their coefficients. Such algorithms are also designed to
extract the maximal amount of fine-grained parallelism, by greed-
ily satisfying dependences as early as possible. This design is in-
compatible with time tiling. This limitation in Pluto was recently
addressed by Bondhugula and Cohen [6], thereby extending it to
include transformations that allow reversal and negative parametric
shifts in conjunction with other transformations. Since the objec-
tive function itself is untouched, index set splitting only enlarges
the space of transformations with transformations that were origi-
nally in unsplit space still included.

Overall impact.
Note that our technique kicks in only when there are long de-

pendences in both directions along a dimension. We make three
observations here: (1) this is sufficient to deal with all stencils on
periodic domains, (2) there is obviously no loss of good transfor-
mations in cases where the index set splitting does not succeed, and
(3) all transformations that were valid on the unsplit index set are
also naturally valid on the split index sets. We thus conclude that
the approach has no detrimental impact on cases that lie outside
the domain for which this technique has been developed. If our
technique is applied even when there are long dependences in one
direction, the index set splitting may still lead to better paralleliza-
tion even though tiling was already valid. Evaluating this is out of
the scope of this work and is left for future.

5.3 Complementary transformations
Vectorization is key to obtain good single thread performance for

stencils [15, 16]. We rely on the native compiler to perform it. To

this end, we only make sure that the generated code is precondi-
tioned for good automatic vectorization.

Once dependences are shortened and the code tiled, one need not
maintain the execution order implied within a tile, i.e., the split sets
can be freely reordered within a tile even if it makes the depen-
dences longer again. This is because the dependence would only
be longer inside the tile, preserving the validity of the tiling. Such
reordering is helpful for vectorization, prefetching, better cache ca-
pacity use within a tile, and register tiling.

Note that the split index sets all use different data for the most
part except at the boundaries. Hence, we make the following changes
to the schedule:

1. Reverse the reversed split index sets back so that we always
have a positive stride. This helps vectorization as well as
prefetching.

2. Separate out the split index sets at the tile level so that the
entire cache capacity is used for each split index set indepen-
dently, without interleaving. This ensures we do not artifi-
cially mix working sets, and that we keep tile sizes as large
as possible. This also reduces cache conflicts and pollution
among the split index sets.

Both of the above optimizations significantly improve single thread
performance while preserving the benefits of tiling and parallel
scaling.

6. EXPERIMENTS

Intel Xeon E5645 AMD Opteron 6136
Microarch Westmere-EP Magny-Cours
Clock speed 2.4 GHz 2.4 GHz
Cores / socket 6 8
Total cores 12 16
L1 cache / core 32 KB 128 KB
L2 cache / core 512 KB 512 KB
L3 cache / socket 12 MB 12 MB
Peak GFLOPs 115.2 153.6
Compiler icc/ifort 12.1.3 icc/ifort 12.1.3
Compiler flags -O3 -fp-model precise -O3 -fp-model precise
Linux kernel 2.6.32 2.6.35

Table 1: Details of architectures used for experiments

Benchmark Problem size
heat-1dp 1.6x106 ×1000
heat-2dp 160002 ×500
heat-3dp 3003 ×200
swim 13352 ×800

Table 2: Problem sizes for benchmarks (grid × time steps)

Techniques we described have been implemented into Pluto [22].
Experimental evaluation was performed on two different multi-way
SMP multicore setups: an Intel Xeon SMP system and an Opteron
SMP one. Table 1 lists their hardware specification. Intel’s C, C++,
and Fortran compilers version 12.1.3 were used for all experiments,
including for compiling codes we automatically generated.

The SPEC CPU2000fp swim benchmark (171.swim) is a weather
prediction application that performs finite difference modeling of
shallow water equations. It involves periodic boundary conditions
on a two dimensional grid. Given that swim is part of the SPEC
benchmarks, performance of code generated by a production com-
piler like icc is expected to be highly competitive and a strong ref-
erence point. There is no hand-optimized time-tiled code available
for swim from prior art. Compiler flags used with ifort were “-O3

-ipo”. We experimented with other combinations and found these
to be the best. Most scores reported on spec.org for swim also
use these flags for both base and peak tuning configurations. The
Pochoir domain-specific compiler could not be used to specify such
computation as explained in the next section.

Besides swim, we use three other representative periodic stencil
benchmarks, heat-1dp, heat-2dp, and heat-3dp, from the Pochoir
suite [33]. Problem sizes used are provided in Table 2. For swim,
the reference input that the benchmark is required to be reported
with was used—it specifies a 2-d grid of size 1335×1335 with an
outer time loop of 800 iterations. For the heat benchmarks, prob-
lem sizes used are from the Pochoir suite and are meaningful for the
respective computations. Performance for all is compared with In-
tel’s compiler as well as the Pochoir stencil compiler [33] (version
0.5) that is publicly available.

Choice of benchmarks and coverage.
We argue that these benchmarks indeed comprehensively cover

the domain of interest. Firstly, all realistic grid dimensionalities
are covered. Other variations in input in this domain could come
from a different width for the stencil, i.e., a different number of
neighbors. However, this only affects the skewing factor needed to
perform the tiling. For example, in Figure 4b, the skewing factor
is one. The structure of the code and all other transformations and
their effects remain the same. In addition, we did not find using
different problem sizes or a different computation for the actual
point update providing any additional insights. All data sets are
significantly larger than the L3 cache.

icc-par or ifort-par refers to code auto-parallelized with Intel’s
C or Fortran compiler respectively, using the ‘-parallel’ flag in ad-
dition to the flags specified in Table 1, while icc-seq refers to the
same without auto-parallelization. poly-diamond refers to code we
generate that is time tiled using diamond tiling while poly-pipeline
is tiled with parallelogram shaped tiles. poly-pipeline suffers from
pipelined startup and drain and thus load imbalance, while diamond
tiling allows concurrent startup enabling maximal parallelism; both
enable reuse along the time dimension. The tile sizes for poly-
diamond are set to maximize locality and single thread performance.
However, those for poly-pipeline are set to guarantee a sufficient
number of tiles on the wavefront in the steady-state of the pipeline
to keep all processors busy.

Table 3 and Table 4 show the performance of different tiled ver-
sions, and compare them with pochoir and the native compiler’s
auto-parallelization. Table 11 shows scaling for heat-2d periodic
on the AMD Opteron. Overall, a very big improvement is seen over
icc-par as the latter is not expected to time tile such stencils. Lack
of time tiling makes the code memory bandwidth-bound yielding
no or limited speedup in spite of parallelization. Due to better
locality from time tiling, poly-diamond code incurs less memory-
bandwidth per core, and the improvement with it increases with the
number of cores. In some cases, the scaling with poly-diamond is
not close to ideal since all implementations tend to get memory-
bandwidth-bound for a large number of cores. However, the im-
provement is still very significant. Improvements are higher for
lower dimensional stencils than for higher ones as the spatial reuse
is lower for the former.

Except in one case, an improvement of 6% to 4× is seen over the
Pochoir stencil compiler that is able to tile in the presence of peri-
odicity, though with a different tiling strategy. The mean (geomet-
ric) speedup over it on the Intel and Opteron systems is 1.42× and
1.5× respectively. These performance improvements over Pochoir
are similar to those observed for non-periodic stencils by Bandishti
et al. [3].

Benchmark 1 core 12 cores Speedup over
icc-seq pochoir pipeline diamond icc-par pochoir pipeline diamond icc-par pochoir

heat-1dp 4.50s 2.09s 4.41s 1.66s 0.583s 195ms 2.5s 162.4ms 26.50 1.20
heat-2dp 517.9s 304.1s 459s 305.8s 570s 26.7s 65.5s 25.1s 22.70 1.06
heat-3dp 39.17s 50.27s 41.3s 36.81s 38.19s 11.5s 10.78s 5.07s 7.53 2.26
swim 45.04s - 34.05s 31.6s 20.4s - 7.07s 4.07s 5.00 -

Table 3: Running times and speedup with poly-diamond on Intel Xeon multicore SMP

Benchmark 1 core 16 cores Speedup over
icc-seq pochoir pipeline diamond icc-par pochoir pipeline diamond icc-par pochoir

heat-1dp 7.16s 3.36s 5.69s 1.88s 9.25s 0.235s 0.789s 0.318s 29.10 0.74
heat-2dp 1424s 504.5s 632.6s 454.8s 1211s 38.47s 65.9s 32.37s 4.12 1.19
heat-3dp 88.5s 93.86s 51.1s 67.55s 38.19s 32.81s 15.95s 8.41s 4.54 3.90
swim 109s - 59.08s 53.29s 28.00s - 10.21s 6.61s 4.24 -

Table 4: Running times and speedup with poly-diamond on AMD Opteron multicore SMP

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

Number of cores

ifort-par
poly-pipeline
poly-diamond

(a) on 2-way SMP Intel Xeon E5645 (12 cores)

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

Number of cores

ifort-par
poly-pipeline
poly-diamond

(b) 2-way SMP AMD Opteron (16 cores)
Figure 10: Performance on Swim benchmark from SPEC2000fp

Figures 10a and 10b show improvement on the full swim bench-
mark. Our approach splits the data domain into four partitions as
shown in Figure 9 before applying reversal, shifts, and skewing
transformations. Time tiling allows nearly ideal scaling in contrast
to ifort-par which scales poorly even when the number of cores is
low. This behavior has indeed been expected without techniques
to exploit reuse along the time dimension. Table 5 supports the
claim that improved locality leads to higher performance and bet-
ter scaling. With inner space loop tiling and parallelization alone,
the computation incurs significantly higher number of cache misses
and is memory bandwidth-bound. Both ifort-par and poly-diamond
utilize all cores as was reflected from the CPU utilization. poly-
pipeline suffers from load imbalance due to a pipelined startup and
drain phase.

Hardware event Count (in billions)
ifort-par poly-diamond

L2_RQSTS.LD_HIT 1.23 0.731
L2_RQSTS.LD_MISS 1.74 0.238
L2_RQSTS.LOADS 2.97 0.977
L2_RQSTS.MISS 5.73 0.635
L2 prefetch requests 4.15 0.400
L2 prefetch hits 0.63 0.070
L2 prefetch misses 3.52 0.322

Table 5: Performance counters comparing ifort-par with poly-
diamond for swim on 12 cores on the Intel multicore

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14 16

G
F

LO
P

s

Number of cores

icc-par
pochoir
poly-pipeline
poly-diamond

Figure 11: Periodic heat-2d scaling on the Opteron system

The running times of our generated diamond-tiled code for swim
on the Intel system and the resulting SPEC rate of 761.67 that we
achieve are also better than the highest ever publicly reported on
spec.org—across all machines (as of 2013). A direct compari-
son with any of those numbers is however not possible since the
machines for which the numbers were reported are different from
ours.

Figure 12 shows that time-tiled code for the periodic case pro-
vides roughly the same performance as the non-periodic ones. Note
that the amount of computation for both periodic and non-periodic,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

heat-1d-1
heat-1d-4

heat-1d-12

heat-2d-1
heat-2d-4

heat-2d-12

E
xe

cu
tio

n
tim

e
no

rm
al

iz
ed

 to
 n

on
-p

er
io

di
c

non-periodic
periodic

Figure 12: Non-periodic vs periodic stencil performance with time
tiling (poly-diamond) on the Intel system (1, 4, 12 cores)

given a particular grid size and number of time iterations, is the
same. In one case, surprisingly, the periodic version performs bet-
ter than the non-periodic. This clearly shows that the non-periodic
one could have been optimized better. In general, the periodic sten-
cil code has a more complex structure and is expected to only per-
form at most as well as the non-periodic one. More optimizations
in the polyhedral code generator Cloog could simplify it for bet-
ter optimization by the native compiler. Overall, these interactions
have not yet been studied fully, and this not being the main focus
of this paper, are planned for future.

7. RELATED WORK
Recent stencil optimization works that include some domain-

specific ones [10, 30, 31, 34, 16] and compiler-based ones [29, 39,
18, 7, 3] do not optimize those with periodic boundary conditions.
The Pochoir [33] stencil compiler is the only one, to the best of our
knowledge, that supports periodic conditions while applying the
optimizations within the scope of this paper. Results indicate that
Pochoir is able to perform time tiling via trapezoids regardless of
the presence of periodic conditions, but the generated code is not
as efficient as with our technique, as discussed in Section 6. We
could not find a way to write multiple inter-related stencil compu-
tations with Pochoir, and hence the SPEC benchmark swim could
not be expressed with it. However, ours being a general-purpose
compiler approach driven by data dependences naturally handles
such code. Of course, domain-specific optimization efforts have
an opportunity to generate better code due to the greater amount
of information they have about the problem, and our framework is
suitable for integration into domain-specific stencil compilers.

Index-set splitting [14] and iteration space slicing [23] are trans-
formations that partitions iteration domains into smaller sub-domains.
This in turn allows different scheduling functions for different pieces
of the program and results in more freedom. These seminal works
focus on minimizing the dimensionality and latency of admissible
schedules. In this work we exploit the degrees of freedom offered
by index-set splitting as well as the expressiveness of linear trans-
formations to reduce folding to an index-set splitting problem fol-
lowed by a dependence shortening transformation problem.

Multiple tiling strategies have been devised to optimize stencil
computations for shared and distributed memories. Originally, spa-
tial decomposition through rectangular tiles is applied to the spatial
dimensions. Spatial decomposition has the advantage of being sim-
ple to achieve but does not exhibit temporal reuse. The 171.swim
SPEC CPU2000fp benchmark implements a well-known shallow
water simulation model [32, 27]; an earlier version with a smaller

data set was already included in the SPEC CPU1995fp suite. It
lends itself well to spatial decomposition. However, spatial decom-
position alone is not sufficient to reduce the memory-bandwidth
consumption of the simulation model. As shown in an earlier work
on semi-automatic loop nest optimization, the swim benchmark
is amenable to loop fusion across one iteration of the time loop.
Such polyhedral-enhanced fusion improves temporal locality and
achieved 34% speedup on single-threaded execution [9, 13]. But
despite much progress in production and research compilers since
1995, and despite the promises of a boost in the overall SPEC CPU
score, time tiling remained inaccessible for the swim benchmark.

Time tiling was proposed to aggregate multiple time iterations
and increase temporal reuse compared to tiling only in the data
space [39]. Time tiling has roots in Lamport’s hyperplane method [19]
and is the most widely implemented technique within polyhedral
transformation tools and compilers. Due to its reliance on loop
skewing to extract parallel wavefronts of tiles, traditional time tiling
suffered from two problems: (1) pipelined startup and shutdown
phases in which some processors do not have work, and (2) load-
imbalance due to insufficient number of tiles along each wavefront.
For stencils implementing an explicit residual smoothing scheme
such as Jacobi iterations, concurrent startup is possible [18] and
results in asymptotically more parallelism than available with the
traditional form of skewing-enabled time tiling. A successful tiling
scheme which systematically exploits available parallelism is based
on diamond tiling [3]. Our contribution builds on these insights,
and extends them to stencils with periodic boundary conditions.
This results in asymptotically more parallelism and locality on sten-
cils with boundary conditions than was previously available [40].

Choffrut and Culik [8] perform folding on two-dimensional sys-
tolic arrays eliminating long wires for connections between ele-
ments that are related by reflections and/or rotations. [24] hints at
using reflections to find piece-wise linear schedules as opposed to
schedules for tiling: however, we found the approach proposed to
determine splits itself to be incomplete and preliminary in its de-
scription, and very limited in its applicability. Yaacoby et al. [42]
presents an algorithm on “uniformizing” dependences in affine re-
currence equations in the context of systolic array synthesis through
generalized folding. Though the method is unique because of its
use of images of dependences and the characterization of affine
recurrence equations which can be uniformized, its practical ap-
plication and subsequent scalability is limited by its reliance on
closures of dependence maps, eigenvalues and cycles in the depen-
dence graph. Also, the formalism as described does not capture
long dependences across boundaries—this is needed to derive fold-
ing for periodic stencils. Overall, our approach is inspired by fold-
ing, but, for the problem of tiling and parallelization for the domain
of interest here, is more general and made possible by reasoning
through index set splitting for dependence shortening. It is also
far more robust and resilient to variations in dependence patterns,
as argued towards the end of Section 4: it was made possible by
minimizing the upper bound on the distance of the splitting hyper-
plane from the mid-points of long dependences. It thus subsumes
reflections. Our approach can also seamlessly deal with any grid
dimensionality as opposed to only up to two-dimensional as in the
case of [8].

8. CONCLUSIONS
We introduced an automatic method to optimizing time-iterated

computations on periodic domains. Our method relies on an orig-
inal index set splitting scheme. The scheme allowed us to trans-
parently apply tiling transformations with the existing objective
function used in Pluto. Experimental results on the swim SPEC

CPU2000fp benchmark showed a speedup of nearly 5× over the
highest performance achieved by a highly tuned commercial pro-
duction compiler. We are not aware of any SPEC numbers for
swim that come close to this result, obtained through either man-
ual or automatic means. On other representative stencil compu-
tations, our scheme provides performance similar to that achieved
with no periodicity. In addition, our technique always matches or
outperforms—by up to 4×—a domain-specific stencil capable of
handling periodicity in simpler cases. Our method is implemented
in an open source research compiler and is available [22].

These results are not only interesting for computational sciences,
but also excellent news for programming language and compiler
designers. We conclude that it is practically infeasible to manually
reproduce the optimizations we performed on swim or any other pe-
riodic stencil, especially on a two-dimensional or higher data grid.
On the other hand, advanced tools can deal with this complexity,
opening dimensions of program optimization that have so far been
practically out of the reach of domain experts.

Acknowledgments.
This work was partially funded as part of the ARTEMIS COP-

CAMS project id. 332913, by the FP7 project CARP id. 287767,
and by the INRIA-IISc PolyFlow associate team. We would like
to thank P. Sadayappan and Tobias Grosser for their important role
during the early stages of this work. We are also thankful to the
reviewers of PACT 2014 for their detailed comments.

9. REFERENCES
[1] N. Ahmed, N. Mateev, and K. Pingali. Synthesizing

transformations for locality enhancement of
imperfectly-nested loops. International Journal of Parallel
Programming, 29(5), Oct. 2001.

[2] A. V. Aho, R. Sethi, J. D. Ullman, and M. S. Lam.
Compilers: Principles, Techniques, and Tools Second
Edition. Prentice Hall, 2006.

[3] V. Bandishti, I. Pananilath, and U. Bondhugula. Tiling stencil
computations to maximize parallelism. In SC, pages
40:1–40:11, 2012.

[4] U. K. Banerjee. Loop Transformations for Restructuring
Compilers: The Foundations. Kluwer Academic Publishers,
Norwell, MA, USA, 1993.

[5] U. Bondhugula, M. Baskaran, S. Krishnamoorthy,
J. Ramanujam, A. Rountev, and P. Sadayappan. Automatic
transformations for communication-minimized
parallelization and locality optimization in the polyhedral
model. In ETAPS CC, 2008.

[6] U. Bondhugula and A. Cohen. Handling negative coefficients
in Pluto. Technical Report 1, Indian Institute of Science, Feb.
2014.

[7] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral parallelizer
and locality optimizer. In PLDI, pages 101–113, 2008.

[8] C. Choffrut and K. Culik. Folding of the plane and the design
of systolic arrays. Information Processing Letters, 17(3):149
– 153, 1983.

[9] A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, and
N. Vasilache. Facilitating the search for compositions of
program transformations. In ACM ICS, pages 151–160, June
2005.

[10] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,
L. Oliker, D. A. Patterson, J. Shalf, and K. A. Yelick. Stencil

computation optimization and auto-tuning on state-of-the-art
multicore architectures. In Supercomputing, page 4, 2008.

[11] P. Feautrier. Some efficient solutions to the affine scheduling
problem: Part I, one-dimensional time. IJPP, 21(5):313–348,
1992.

[12] P. Feautrier. Some efficient solutions to the affine scheduling
problem: Part II, multidimensional time. IJPP,
21(6):389–420, 1992.

[13] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello,
M. Sigler, and O. Temam. Semi-automatic composition of
loop transformations. IJPP, 34(3):261–317, June 2006.

[14] M. Griebl, P. Feautrier, and C. Lengauer. Index set splitting.
International Journal of Parallel Programming,
28(6):607–631, 2000.

[15] T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti,
J. Ramanujam, and P. Sadayappan. Data layout
transformation for stencil computations on short simd
architectures. In ETAPS International Conference on
Compiler Construction (CC’11), pages 225–245,
Saarbrucken, Germany, Mar. 2011.

[16] T. Henretty, R. Veras, F. Franchetti, L.-N. Pouchet,
J. Ramanujam, and P. Sadayappan. A stencil compiler for
short-vector simd architectures. In ACM ICS, 2013.

[17] F. Irigoin and R. Triolet. Supernode partitioning. In ACM
SIGPLAN Principles of Programming Languages, pages
319–329, 1988.

[18] S. Krishnamoorthy, M. Baskaran, U. Bondhugula,
J. Ramanujam, A. Rountev, and P. Sadayappan. Effective
Automatic Parallelization of Stencil Computations. In ACM
SIGPLAN PLDI, July 2007.

[19] L. Lamport. The hyperplane method for an array computer.
In Proceedings of the Sagamore Computer Conference on
Parallel Processing, pages 113–131, London, UK, 1975.
Springer-Verlag.

[20] A. Lim and M. S. Lam. Maximizing parallelism and
minimizing synchronization with affine transforms. In
Proceedings of the 24th ACM SIGPLAN-SIGACT symposium
on Principles of Programming Languages, pages 201–214,
1997.

[21] N. Osheim, M. M. Strout, D. Rostron, and S. Rajopadhye.
Smashing: Folding space to tile through time. In J. N.
Amaral, editor, LCPC, pages 80–93. Springer-Verlag, 2008.

[22] PLUTO: A polyhedral automatic parallelizer and locality
optimizer for multicores.
http://pluto-compiler.sourceforge.net.

[23] W. Pugh and E. Rosser. Iteration space slicing and its
application to communication optimization. In International
Conference on Supercomputing, pages 221–228, 1997.

[24] S. Rajopadhye, L. Mui, and S. Kiaei. Piecewise linear
schedules for recurrence equations. In VLSI Signal
Processing V, IEEE Press, pages 375–384, Oct. 1992.

[25] J. Ramanujam and P. Sadayappan. Tiling multidimensional
iteration spaces for multicomputers. Journal of Parallel and
Distributed Computing, 16(2):108–230, 1992.

[26] D. A. Randall, T. D. Ringler, R. P. Heikes, P. Jones, and
J. Baumgardner. Climate modeling with spherical geodesic
grids. Computing in Science and Engg., 4(5):32–41, Sept.
2002.

[27] R. Sadourny. The dynamics of finite-difference models of the
shallow-water equations. J. atm. sciences, 32(4), Apr. 1975.

[28] A. Schrijver. Theory of Linear and Integer Programming.
John Wiley & Sons, 1986.

[29] Y. Song and Z. Li. New tiling techniques to improve cache
temporal locality. In ACM SIGPLAN PLDI, pages 215–228,
1999.

[30] R. Strzodka, M. Shaheen, D. Pajak, and H.-P. Seidel. Cache
oblivious parallelograms in iterative stencil computations. In
ACM ICS, pages 49–59, 2010.

[31] R. Strzodka, M. Shaheen, D. Pajak, and H.-P. Seidel. Cache
accurate time skewing in iterative stencil computations. In
ICPP, pages 571–581, 2011.

[32] P. N. Swarztrauber. 171.swim spec cpu2000 benchmark
description file. Standard Performance Evaluation
Corporation.
http:

//www.spec.org/cpu2000/CFP2000/171.swim/docs/171.swim.html,
2000.

[33] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and
C. E. Leiserson. The pochoir stencil compiler. In SPAA,
pages 117–128, 2011.

[34] J. Treibig, G. Wellein, and G. Hager. Efficient
multicore-aware parallelization strategies for iterative stencil
computations. Journal of Computational Science, 2(2):130 –
137, 2011.

[35] S. Verdoolaege. isl: An integer set library for the polyhedral
model. In K. Fukuda, J. Hoeven, M. Joswig, and
N. Takayama, editors, Mathematical Software - ICMS 2010,
volume 6327, pages 299–302. Springer, 2010.

[36] S. Verdoolaege. Integer Set Library, 2013. An integer set
library for program analysis.

[37] M. Wolf. More iteration space tiling. In Proceedings of
Supercomputing ’89, pages 655–664, 1989.

[38] M. Wolfe. High Performance Compilers for Parallel
Computing. Addison-Wesley Longman Publishing Co., Inc.,
1995.

[39] D. Wonnacott. Using time skewing to eliminate idle time due
to memory bandwidth and network limitations. In IPDPS,
pages 171 –180, 2000.

[40] D. Wonnacott and M. Strout. On the scalability of loop tiling
techniques. In International workshop on Polyhedral
compilation techniques, 2013.

[41] J. Xue. Loop tiling for parallelism. Kluwer Academic
Publishers, Norwell, MA, USA, 2000.

[42] Y. Yaacoby and P. R. Cappello. Converting affine recurrence
equations to quasi-uniform recurrence equations. VLSI

Signal Processing, 11(1-2):113–131, 1995.

