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1. Introduction

Consider the Vlasov-Poisson system (VP)
{

∂tf + v · ∂xf − ∂xU · ∂vf = 0,
△U = ερ, ρ(t, x) =

∫

IRd f(t, x, v) dv

and the pressureless Euler-Poisson system (EP)






∂tρ+ div(ρ u) = 0,
∂tu+ (u · ∂x)u = −∂xU,
△U = ερ.

Here t ≥ 0, x, v, u = u(t, x) ∈ IRd, d ≥ 1 is the dimension of the physical space,

ε = +1 corresponds to the stellar dynamics and ε = −1 to the plasma physics
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2 Time-dependent rescalings and Lyapunov functionals

case. Throughout this paper, we shall assume that f is a nonnegative function in

L∞(IR+, L1(IRd × IRd)). Formally, we have the following relation between these

two systems: a pair (ρ, u) is a solution of (EP) if and only if

f(t, x, v) = ρ(t, x)δ
(

v − u(t, x)
)

is a solution of (VP) where δ denotes the Dirac delta distribution. In this situation

u can be recovered from f via the identity

ρ(t, x) u(t, x) =

∫

IRd

v f(t, x, v) dv. (1.1)

In this sense (EP) is a special case of (VP), and we will see later that the asymptotic

behaviour of (VP) for large times is connected with a special solution of (EP). On

a rigorous level the relation of (VP) with (EP) is investigated in 10.

Throughout this paper, we will also assume for simplicity that the solutions of

(VP) are of class C1 with compact support with respect to x and v, which allows

us to perform any integration by parts without further justifications (except maybe

in dimension 2). The results then pass to less smooth classes of solutions, assuming

for instance that f belongs to C0(IR+, L1(IRd × IRd)) (see for instance 25 or 29) and

is a global in time solution to the Cauchy problem corresponding to an initial data

f0 satisfying for instance:

(d = 2) f0 ∈ L1 ∩ L∞(IR2 × IR2) is such that for some ǫ > 0 the quantity

∫∫

IR2×IR2

f0(x, v) (|x|2+ǫ + |v|2+ǫ + |U0(x)|) dxdv

(with U0(x) = − 1
2 log |x| ∗

∫

f0 dv) is bounded (see 11).

(d = 3) f0 ∈ L1∩L∞(IR3× IR3) is such that for some ǫ > 0 and p > 3 the quantity

∫∫

IR3×IR3

f0(x, v)(|v|2+ǫ + |x|p) dxdv

is bounded (see 20,27,28,29 and 5,6 for the propagation of moments).

For weak solutions obtained as a limit of an approximating sequence (for instance,

if we assume no moments higher than 2), the equalities have to be replaced by

inequalities.

For the Euler-Poisson system, we shall consider only C1 solutions. The results

presented in this paper have to be understood as either a general method on how

to obtain dispersion effects without taking care of the existence or the regularity of

the solutions, or as a method to derive a priori estimates for less regular solutions

(by passing to the limit with smooth approximating solutions).



Time-dependent rescalings and Lyapunov functionals 3

Our paper is organized as follows. In Section 2, we introduce linear scalings

and explain why they give rise to singular self-similar problems. How to remedy

this pathology with time-dependent scalings is explained in Section 3. In the one-

dimensional case, the information on the solution is sufficient to provide the con-

vergence of the rescaled solution to the asymptotic measure. Section 4 is concerned

with the Lyapunov functionals and constitutes the heart of this paper: the energy

of the rescaled system turns out to be a Lyapunov functional for the initial problem.

A more straightforward (than the full time-dependent scaling method) approach to

the Lyapunov functionals is also given. In Section 5, we use the Lyapunov function-

als to describe the asymptotic behaviour (dispersion rate) of the solutions in the

plasma physics case.

Rescalings for the study of large time behaviour have been widely used in various

fields of applied mathematics but appear to be rather new in the context of kinetic

equations: in that direction we may mention the studies made by J. R. Burgan,

M. R. Feix, E. Fijalkow, and A. Munier (see 2) and J. Batt, M. Kunze, G. Rein

in 1. Our main point is to make the link between rescalings preserving the L1-norm

and Lyapunov functionals (or pseudo-conformal laws) and to explain on various

examples of conservative systems why it actually provides a general method for the

study of large time asymptotics.

While Sections 1–5 are exclusively devoted to the Vlasov-Poisson and Euler-

Poisson systems, Sections 6–8 are concerned with other problems of kinetic theory,

fluid mechanics and quantum physics. The relation between these various domains

has been noticed for a long time (see for instance 26), but it is surprising that the

estimates given in 17 have been adapted to kinetic models only recently. Here we

proceed in the reverse historical order, from kinetic equations to fluids and quantum

physics, and this approach actually seems to be very powerful.

To conclude with the introduction, it is worth mentioning that many of the esti-

mates we are giving in this paper were already at least partially known. The point

is that we present a systematic and elementary method which takes the nonlinear-

ity of the model very well into account (this was not necessarily the case in the

preceding papers) and gives rise to a more precise form of the Lyapunov functionals

(in the sense that these Lyapunov functionals also include second-moments in the

x-variable) which are natural for the problems we consider.

2. Linear Scalings

Let f = f(t, x, v) be a solution of (VP). Then for any λ, µ > 0

fλ,µ(t, x, v) = λ2−dµdf(λt, µx, λ−1µv)

is again a solution of (VP), as can be checked by direct computation using for in-

stance the following integral representation of ∂xU . Similarly, if (ρ, u) = (ρ, u)(t, x)

is a solution of (EP) then for any λ, µ > 0

ρλ,µ(t, x) = λ2ρ(λt, µx), uλ,µ(t, x) = λµ−1u(λt, µx)
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is again a solution of (EP), and the potential is transformed as for (VP). This also

follows from Relation (1.1) between (VP) and (EP).

If we require that the L1-norm of ρ(t), which is a conserved quantity for (EP)

as well as for (VP), is preserved by the scaling, λ and µ must satisfy

λ2µ−d = 1

and the rescaled distribution function is fλ,λ2/d . A standard way of studying the

asymptotic behaviour of f would then be to consider a self-similar solution, i.e. a

solution which satisfies f(t, x, v) = fλ,λ2/d(t, x, v) = λ4−df(λt, λ2/dx, λ2/d−1v) for

any λ > 0. This solution would then be given by its self-similar profile f̃(ξ, η) =

f(1, ξ, η) (choose λ to be 1
t ). Then

f(t, x, v) = ft−1,t−2/d(t, x, v) = td−4f̃(t−
2
d x, t1−

2
d v) (2.1)

is a solution of (VP) if, at least formally, f̃ is a solution of

(d− 4)f̃ + η · ∂ξ f̃ − 2
dξ · ∂ξ f̃ + (1 − 2

d )η · ∂η f̃ − ∂ξŨ · ∂ηf̃ = 0,

△ξŨ = ερ̃, ρ̃(ξ) =
∫

IRd f̃(ξ, η) dη

in the new variables ξ = t−
2
d x, η = t1−

2
d v. However, it is clear that as t → 0+,

g(t, x, v) does not converge to a well defined measure for which one might establish

an existence result, except for d = 1. This difficulty is completely removed by

considering general, non-singular, time-dependent scalings.

3. Time-dependent Scalings

Consider the following transformation of variables in (VP), where the positive func-

tions A(t), R(t), G(t) will be determined later:

dt = A2(t)dτ, x = R(t)ξ.

Thus, assuming that t 7→ x(t) and τ 7→ ξ(τ) satisfy dx
dt = v and dξ

dτ = η respectively,

the new velocity variable η has to satisfy

v =
dx

dt
= Ṙ(t)ξ +R(t)

dξ

dτ

dτ

dt
= Ṙ(t)ξ +

R(t)

A2(t)
η.

Let F be the rescaled distribution function:

f(t, x, v) = G(t)F (τ, ξ, η).

The aim is to choose this transformation in such a way that the transformed Vlasov

equation is still a transport equation on phase space and contains a given, external

force and a friction term. The inverse transformation is

dτ = A−2(t)dt, ξ = R−1(t)x, η =
A2(t)

R(t)

(

v − Ṙ(t)

R(t)
x

)

.
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Here ˙ always denotes derivative with respect to t. If ν and W are defined as the

rescaled spatial density and the rescaled potential respectively, then

ν(τ, ξ) =
∫

IRd F (τ, ξ, η) dη = A2d

RdGρ(t, x),

W (τ, ξ) = A2d

Rd+2GU(t, x), ∂ξW (τ, ξ) = A2d

Rd+1G∂xU(t, x),

and the Vlasov equation transforms into

∂τF + η · ∂ξF + 2A2

(

Ȧ
A − Ṙ

R

)

η · ∂ηF

− R̈A4

R ξ · ∂ηF −RdGA4−2d∂ξW · ∂ηF +A2 Ġ
GF = 0.

We want this to be a conservation law on (ξ, η)-space, so we require

Ȧ

A
− Ṙ

R
=

1

2d

Ġ

G
(3.1)

which holds if and only if

G =

(

A

R

)2d

(3.2)

up to a multiplicative constant. Recall that G should be positive. Next we require

that the external force in the above Vlasov equation becomes time-independent and

that there is no time-dependent factor in front of the nonlinear term, i.e. R̈A4

R =

−εc0, RdGA4−2d = 1, where c0 > 0 is an arbitrary constant. In view of (3.2) we

get A = Rd/4, G = R
d−4

2
d and R has to solve

R̈+ εc0R
1−d = 0. (3.3)

Remark 1 Every solution of Eq. (3.3) has the following properties:

(i) For any λ > 0, t 7→ Rλ(t) = c
− 1

d
0 λ−

2
dR(λt) is a solution of

R̈+ εR1−d = 0 . (3.4)

Without loss of generality we therefore assume that c0 = 1 in what follows.

(ii) With R0 = R(0) and Ṙ0 = Ṙ(0) we get, for d = 1, R(t) = − ε
2 t

2 + Ṙ0t + R0.

If d ≥ 2, it is easy to carry out one integration of Eq. (3.4):

1
2 Ṙ

2(t) + ε logR(t) = 1
2 Ṙ

2
0 + ε logR0 for d = 2,

1
2 Ṙ

2(t) − ε
d−2R

2−d(t) = 1
2 Ṙ

2
0 − ε

d−2R
2−d
0 for d ≥ 3.

In the plasma physics case, R(t) cannot change sign and is well defined for

any t ∈ IR. Moreover,

logR(t) = 1
2 Ṙ

2(t) − 1
2 Ṙ

2
0 + logR0 ≥ − 1

2 Ṙ
2
0 + logR0 for d = 2,

0 ≤ R2−d(t) = d−2
2

(

Ṙ2
0 − Ṙ2

)

+R2−d
0 ≤ d−2

2 Ṙ2
0 +R2−d

0 for d ≥ 3.

Together with Eq. (3.4) this proves that there exists a unique t0 ∈ IR such that

R(t0) > 0 and Ṙ(t0) = 0, and R(t) > R0 for any t 6= t0, provided ε = −1.
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(iii) If t 7→ R(t) is a solution of Eq. (3.4) with ε = −1, t 7→ R(t+ a) is a solution

too for any given a ∈ IR. Combining this with the invariance through the

rescaling λ 7→ Rλ(t) with Rλ(t) = λ−
2
dR(λt), we may always require R0 = 1

and Ṙ0 = 0 without loss of generality as long as we are interested in the

asymptotic behaviour of f when t → +∞. Note that with this special choice

for R0 and Ṙ0, at t = 0, G(0) = A(0) = 1, and if we assume τ(0) = 0, then

ξ(τ = 0, x) = x, η(τ = 0, x, v) = v and f(t = 0, x, v) = F (τ = 0, x, v). The

time-dependent rescaling has the interesting property that it does not introduce

any singularity at t = 0, and with R0 = 1 and Ṙ0 = 0, the initial data for f

and F are the same.

(iv) The singular self-similar solution (2.1) corresponding to the linear scalings of

Section 2 is — when it exists — the solution one expects to get in the limit

case R0 = 0. Formally, this solution also corresponds to the limit of Rλ(t) as

λ→ +∞.

(v) For ε = −1 and d ≥ 1, Ṙ
R ∼ 1

t as t→ +∞ and

R(t) ∼ t2 for d = 1 ,
R(t) ∼ t

√
log t for d = 2 ,

R(t) ∼ t for d ≥ 3 .
(3.5)

With R solving Eq. (3.4), we obtain the following rescaled Vlasov-Poisson sys-

tem (RVP):

∂τF + η · ∂ξF + divη

[(

εξ − ∂ξW + d−4
2 R

d
2
−1Ṙη

)

F
]

= 0,

△W = εν(τ, ξ) = ε
∫

IRd F (τ, ξ, η) dη.

The relation between the old and the new variables is

dt = Rd/2dτ, dτ = R−d/2dt,
x = Rξ, ξ = R−1x,

v = Ṙξ +R1−d
2 η, η = R

d
2
−1

(

v − Ṙ
Rx

)

,

and the rescaled functions are given by

F (τ, ξ, η) = R
4−d
2

df(t, x, v), ν(τ, ξ) = Rdρ(t, x),
W (τ, ξ) = Rd−2U(t, x), ∂ξW (τ, ξ) = Rd−1∂xU(t, x).

If we consider (EP) we find that with

η(τ, ξ) = R
d
2
−1

(

u(t, x) − Ṙ

R
x

)

the rescaled Euler-Poisson system (REP) is

∂τν + div(ν η) = 0,

∂τη + (η · ∂ξ) η = εξ − ∂ξW + d−4
2 R

d
2
−1Ṙη,

△W = εν.
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Note that this rescaling as the one for the Vlasov-Poisson system introduces a

harmonic force term εξ and a friction term which is proportional to the velocity.

There exists a unique steady state with a given L1-norm M for which the par-

ticles are at rest and uniformly distributed in the unit ball centered at 0, and the

self-consistent force is exactly balanced by the external force. Define FM
∞ (ξ, η) =

νM
∞ (ξ)δ(η) where δ is the usual Dirac distribution. If FM

∞ and (νM
∞ , ηM

∞ = 0) are the

stationary solutions of (RVP) and (REP) respectively such that ‖FM
∞ ‖L1(IRd×IRd) =

‖νM
∞‖L1(IRd) = M , then

∂ξW
M
∞ (ξ) = ε

{

ξ , |ξ| ≤ (M/|Sd−1|)1/d,

ξ/|ξ|d , |ξ| > (M/|Sd−1|)1/d,
(3.6)

and

νM
∞ (ξ) = d · 1IBd((M/|Sd−1|)1/d). (3.7)

Here Bd(r) denotes the ball with radius r centered at 0 ∈ IRd, and 1Iω denotes the

characteristic function of the set ω. The inverse rescaling transformation takes this

steady state into

fM
∞ (t, x, v) =

d

R(t)d
1IBd(R(t)(M/|Sd−1|)1/d)(x) δ

(

v − Ṙ(t)

R(t)
x

)

, (3.8)

and ρM
∞(t, x) = d

R(t)d 1IBd(R(t)(M/|Sd−1|)1/d)(x), uM
∞(t, x) = Ṙ(t)

R(t)x. It is easy to see

that this defines a weak solution of (VP) or (EP) respectively.

In the plasma physics case we have Ṙ(t) > 0 for t > 0 provided Ṙ(0) ≥ 0 so

that for d ≤ 3 the particles are slowed down by a friction force, and on physical

grounds one would expect that the steady state written above is a global attractor

for (RVP) or (REP) respectively. In 1 this was carried out rigorously for the case

d = 1. We will see in the next section that this is not true in general, at least

in dimension d = 3 for (EP). However, the rescaling still provides informations on

the asymptotic behaviour of the original system for large times: the energy for the

rescaled system gives rise to a Lyapunov functional for the original system by which

dispersion effects and the asymptotic behaviour can be analyzed.

4. Lyapunov Functionals

In this section, we investigate the behaviour of the total energy of (RVP) and

(REP). Let us consider first the case d ≥ 3. The potential energy term is the

same for both systems, namely Ep(τ) =
∫

(W (τ, ξ) − ε|ξ|2)ν(τ, ξ) dξ. For (RVP)

the kinetic energy reads Ek(τ) =
∫∫

|η|2F (τ, ξ, η) dη dξ, while for (REP) it reads

Ek(τ) =
∫

|η|2(τ, ξ) ν(τ, ξ) dξ. Recalling the remark on the relation between (VP)

and (EP) from the introduction, the second formula can be viewed as a special case

of the first one, and for both systems we find after a standard computation:

d

dτ

(

Ek(τ) + Ep(τ)
)

= (d− 4)R
d
2
−1Ṙ Ek(τ) for d ≥ 3 . (4.1)
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Note that for this computation one has to check that no boundary term appears.

This is true for d ≥ 3, but not for d = 2 as we shall see below.

Recall also that Rd/2Ṙ = Rd/2dR/dt = d[R(t(τ))]/dτ . Let us rewrite the energy

for the rescaled systems in terms of the original variables: if we define P and K by

P (t) = Ep(τ(t)) = Rd−2(t)
∫

(

U(t, x) − ε |x|2

R2(t)

)

ρ(t, x) dx,

and K(t) = Ek(τ(t)) = Rd−2(t)
∫∫

|v − Ṙ
Rx|2f(t, x, v) dx dv for (VP) or, for (EP),

K(t) = Ek(τ(t)) = Rd−2(t)
∫

|u(t, x) − Ṙ
Rx|2ρ(t, x) dx, then because of (4.1)

L(t) = K(t) + P (t) (4.2)

is a non-increasing quantity with respect to t for d = 3, 4:

dL

dt
= (d− 4)

Ṙ

R
K ≤ 0 . (4.3)

Because of the integrations by parts in the intermediate computations, the above

formulas are true only for d ≥ 3. We will now consider the cases d = 1 and d = 2.

In dimension d = 1 with ε = −1 (plasma physics case), direct computations

involving the kinetic energy and integral quantities related to the force field have

been used in 1 to prove the exponential convergence (in the rescaled time variable τ)

of F (τ, ·, ·) towards F∞ in (W 1,∞(IR2))′ and of ∂ξW (τ, ·) towards ∂ξW∞ in L2(IR).

The same computation also holds true for the solution of (EP) if it exists globally

in time:

Proposition 1 Assume that d = 1, ε = −1 and consider a global solution (t, x) 7→
(ρ(t, x), u(t, x)) of (EP) in C1(IR+×IR) such that for any t > 0, ρ(t, ·) has a compact

support. Then

ν(τ(t), ξ) = R(t)ρ(t, R(t)ξ) , η(τ(t), ξ) =
1

√

R(t)

(

u(t, R(t)ξ) − Ṙ(t)ξ

)

with τ(t) = 2 log(1 + t) and R(t) = (1 + t)2 is a solution of (REP) and converges

to (νM
∞ , 0) where νM

∞ is given by Eq. (3.7), with M = ‖ρ(t, ·)‖L1: there exists a

positive constant C such that

‖ν(τ, ·) − νM
∞ ‖(W 1,∞)′ ≤ C · e−τ ,

while the electric field −∂ξW (τ, ·) =
∫ ξ

−∞ ν(τ, ζ) dζ − 1
2‖ν(τ, ·)‖L1(IR) converges in

L2(IR) to −∂ξW
M
∞ which is given by Eq. (3.6):

‖∂ξW (τ, ·) − ∂ξW
M
∞ ‖L2(IR) ≤ C · e−τ .

In terms of the original variables and with the notation of Section 3, this means

that ‖(1 + t)2ρ(t, (1 + t)2·) − νM
∞ ‖(W 1,∞)′ and ‖∂xU(t, (1 + t)2·) − ∂ξW

M
∞ ‖L2(IR) are

bounded by C
(1+t) for some C > 0.



Time-dependent rescalings and Lyapunov functionals 9

Note that in Proposition 1, we made for R(t) the same choice as in 1, which

means that with the notation of Remark 1 we consider the solution of Eq. (3.3)

corresponding to R0 = 1 and Ṙ0 = 2.

The proof follows the same arguments as in 1.

In the case ε = +1 (gravitational case), essentially nothing is known concerning

the asymptotic behavior of the solution. If d = 2, 3, 4 and ε = −1, the question of

identifying the limit of F (τ, ·, ·) or ν(τ, ·) in the sense of measures as τ → τ∞ =
∫ +∞

0 R−d/2(t) dt (which is finite as soon as d ≥ 3) is an open question. As already

noted, a natural conjecture would be to identify this limit with FM
∞ for the solution

of (RVP) and νM
∞ for the solution of (REP) as in dimension d = 1. In other terms,

the stationary state of the rescaled equation would be an attractor for the solutions

of the rescaled system in dimension d > 1. If d ≥ 3, this is not true in general.

Counter-examples. Consider a solution for which it is the case and shift the

initial data by a constant velocity. Since asymptotically the support of the unscaled

solution grows linearly in time, after rescaling, the shifted solution cannot converge

to the stationary profile. One may then ask the same question in the reference

frame of the center of mass. The following counter-example for (EP) again shows

that for d ≥ 3, ε = −1, the answer is negative.

Consider in IR3 the solution corresponding to the following initial data:

ρ(t = 0, x) = 31IB3(1)(x) + 1IB3(3)\B3(2)(x) ,

u(t = 0, x) = 0 if |x| < 1 , u(t = 0, x) = x if 2 < |x| < 3 .

For any t > 0, the solution is supported in the union of a centered ball of radius

R(t) (which obeys to Eq. (3.3)) and of a centered annulus of inner radius R1(t). A

straightforward computation shows that R and R1 satisfy

R̈ =
1

R2
, R(0) = 1, Ṙ(0) = 0, R̈1 =

1

R2
1

, R1(0) = 2, Ṙ1(0) = 2 ,

respectively, and an integration with respect to t gives

Ṙ2(t) = 2 − 2

R(t)
< 2 < 4 < 5 − 2

R1(t)
= Ṙ2

1(t)

for any t > 0. As t → +∞,
√

2 = lim→+∞
R(t)

t < lim→+∞
R1(t)

t =
√

5 which again

forbids the convergence to the stationary solution after rescaling.

In dimension d = 2 for ε = −1, the situation is different: t 7→ R(t) grows

superlinearly (as for d = 1: see Remark 1, (v)), and the question is still open.

Consider now the case d = 2 for (VP). The main difficulty comes from the

integration by parts, and one has to be very careful with the terms involving the
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self-consistent potential U since ∇U essentially decays like 1/|x|. Let (ρ, ρu) =
∫

f(t, x, v)(1, v) dv, (ν, νη) =
∫

F (τ, ξ, η)(1, η) dη and M = ‖f(t, ·, ·)‖L1(IR2×IR2).

∫

ξ

|ξ|2 · (νη) dξ =

∫

Rx

|x|2 ·R2ρ(u− Ṙ

R
x)

dx

R2
= −MṘ−R

∫

1

|x|∂tρ dx

using the local conservation of mass ∂tρ+ ∂x(ρu) = 0. Similarly,

∫

∂ξW · (
∫

ηF (τ, ξ, η) dη) dξ = −M
2

2π

Ṙ

R
− 1

2

d

dτ

∫

Wν(τ, ξ) dξ

cf. 11 for more details. Of course the computations are exactly the same for (EP).

Thus in dimension d = 2, the definition (4.2) has to be replaced by

L(t) = K(t) + P (t) +
M2

2π
logR(t) , (4.4)

so that Eq. (4.3) still holds, see also Remark 3.

Eq. (4.3) provides an identity which is a sharpened form of the Lyapunov

functional (also called pseudo-conformal law: see Section 10 for the relation with

the Schrödinger equation). A simple form of this identity had been discovered

independently by R. Illner and G. Rein, and by B. Perthame, cf. 16,25. The improved

Lyapunov functional has the striking property that it easily provides all the terms

that one has to take into account in the case d = 2 (see 11 for (VP)) in a quite

straightforward manner, while a direct approach was far from being obvious.

Theorem 4.1 Assume that f is a solution of (VP) with M = ‖f(t, ·, ·)‖ and that

t 7→ R(t) is the solution of Eq. (3.4) with R(0) = 1, Ṙ(0) = 0. The function

t 7→ L(t) given by

L(t) = Rd−2

∫∫

IRd×IRd

∣

∣

∣

∣

v − Ṙ

R
x

∣

∣

∣

∣

2

f dv dx+Rd−2

∫

IRd

(

U(t, x) − ε
|x|2
Rd

)

ρ dx

for d ≥ 3 and

L(t) =

∫∫

IR2×IR2

∣

∣

∣

∣

v − Ṙ

R
x

∣

∣

∣

∣

2

f dv dx+

∫

IR2

(

U(t, x) − ε
|x|2
R2

)

ρ dx+
M2

2π
logR

if d = 2 is decreasing for d = 2, 3, constant for d = 4, and for any d ≥ 2 satisfies

dL

dt
= (d− 4) ṘRd−3

∫∫

IRd×IRd

∣

∣

∣

∣

v − Ṙ

R
x

∣

∣

∣

∣

2

f dv dx .

Moreover in the plasma physics case ε = −1, L is bounded from below, and for

d = 2, 3,

∫ +∞

0

Ṙ(s)Rd−3(s)

(
∫∫

IRd×IRd

∣

∣

∣

∣

v − Ṙ(s)

R(s)
x

∣

∣

∣

∣

2

f(s, x, v) dv dx

)

ds < +∞ .
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Proof. dL/dt has already been computed above. For ε = −1, the proof of the

existence of a lower bound is straightforward except maybe for d = 2. In that case,

the Lyapunov functional is decreasing but might a priori be unbounded from below,

and we have to estimate it. This can be done with Jensen’s inequality using the

fact that (− log) is a convex function:

− 1

2π

∫∫

IR2×IR2

log |x− y| ρ(t, x)ρ(t, y) dxdy

=
M2

4π

∫∫

IR2×IR2

(

− log |x− y|2
)

· ρ(t, x)ρ(t, y) dxdy
M2

≥ −M
2

4π
log

(
∫∫

IR2×IR2

|x− y|2 · ρ(t, x)ρ(t, y) dxdy
M2

)

− M2

4π
log(2I/M) ,

where I =
∫

|x|2ρ dx, and an optimization on I > 0 gives

M2

2π
logR+

I

R2
− M2

4π
log(2I/M) ≥ M2

4π
[1 − log(M/2π)] ,

which proves the result. 2

Remark 2 For ε = +1 and d = 3 or 4, using the Hardy-Littlewood-Sobolev inequal-

ity and classical interpolation identities, one proves that the self-consistent potential

energy term ‖∇U‖2
L2 is bounded in terms of K by

‖∇U‖2
L2(IRd) ≤ C‖f‖2(1−(d2−4)/4d)

L1(IRd×IRd)
‖f‖(d−2)/d

L∞(IRd×IRd)
K(t)(d−2)/2 ,

see Section 5 for more details on interpolations.

Remark 3 In dimension d = 2, for ε = −1, it is probably easier to compute dL/dt

and prove (4.3) directly from (VP) using the identity

∫∫

IR2×IR2

(x · v) (∂xU · ∂vf) dv dx = −
∫

IR2

(x · ∂xU)ρ dx =
M2

4π

once the equation for R is known, cf. 11.

Note that with the help of (3.5) and the results of Theorem 4.1, we recover the

results of 16,25 in dimension d = 3 as well as the results of 11 in dimension d = 2.

Very similar results of course hold for (EP) since the estimates on the Lyapunov

functional in dimension d = 2, 3, 4 are the same.

Theorem 4.2 Assume that (ρ, u) is a global strong solution of (EP) with M =

‖ρ(t, ·)‖L1(IRd) and that t 7→ R(t) is the solution of Eq. (3.4) with R(0) = 1 and

Ṙ(0) = 0. The function t 7→ L(t) given by

L(t) = Rd−2

∫

IRd

∣

∣

∣

∣

u− Ṙ

R
x

∣

∣

∣

∣

2

ρ dx+Rd−2

∫

IRd

(

U − ε
|x|2
Rd

)

ρ dx
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for d ≥ 3, with the additional term M2

2π logR for d = 2, is decreasing for d = 2, 3,

constant for d = 4, and for any d ≥ 2 satisfies Eq. (4.3). Moreover in the plasma

physics case ε = −1, L is bounded from below, and for d = 2, 3

∫ +∞

0

Ṙ(s)Rd−3(s)

(
∫

IRd

∣

∣

∣

∣

u(s, x) − Ṙ(s)

R(s)
x

∣

∣

∣

∣

2

ρ(s, x) dx

)

ds < +∞ .

The case d = 4 appears to be the limit case to which the above method for

finding Lyapunov functionals in the plasma physics case applies since for d ≥ 5,

t 7→ L(t) is increasing. However for d ≥ 4, we may write

d

dt

(

R2 L

Rd−2

)

≤ 0 ,

and thus obtain
∫∫

IRd×IRd |v − Ṙ
Rx|2f(t, x, v) dv dx = O

(

R−2
)

= O
(

t−2
)

since for

d ≥ 3 all the quantities involved in L(t) are nonnegative and R(t) ∼ t as t→ +∞.

In this last part of Section 4, we will derive the Lyapunov functionals in another

way, not because of the case d > 4 (which is of minor interest for (EP) or (VP) in

itself), but because the method is simpler and will be applied to other systems in

Sections 6–8. We assume that ε = −1 in the rest of this section.

We may indeed notice that all the quantities we have been taking into account

are integrated in the x variable, so that the change of variable ξ(t, x) = x/R(t) does

not play any role in the estimates. Let us first consider the Vlasov-Poisson system

(VP). According to the above remark, we may use the change of variables

η(t, x, v) = v − Ṙ

R
x , f(t, x, v) = F (t, x, η)

so that F solves the rescaled system (R′VP):

∂tF + η · ∂xF − R̈
Rx · ∂ηF − ∂xU(t, x) · ∂ηF + Ṙ

R

[

∂x(xF ) − ∂η(ηF )
]

= 0 ,

−∂xU(t, x) = x
|Sd−1| |x|d

∗
∫

Rd F (t, x, η) dη .

As for (RVP), we may compute the energy:

E(t) =

∫∫

IRd×IRd

(

|η|2 +
R̈

R
|x|2 + U

)

F dxdη

if d ≥ 3, with the additional term M2

2π logR for d = 2. This energy is a decaying

function of t : for any d ≥ 2,

dE

dt
(t) = −(d− 2)

Ṙ

R

∫∫

IRd×IRd

FU dxdη

+

∫∫

IRd×IRd

[(

d

dt
(
R̈

R
) + 2

R̈

R

Ṙ

R

)

|x|2 − 2
Ṙ

R
|η|2

]

F dxdη .
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We may now define L(t) = B(t)E(t). For any d ≥ 3,

dL

dt
=

(

Ḃ − (d− 2)
Ṙ

R
B

)
∫

IRd

|∇U |2 dx

+

(

Ḃ − 2
Ṙ

R
B

)
∫∫

IRd×IRd

F (t, x, η)|η|2 dxdη (4.5)

+

(

Ḃ
R̈

R
+

(

d

dt
(
R̈

R
) + 2

R̈

R

Ṙ

R

)

B

)
∫∫

IRd×IRd

F (t, x, η)|x|2 dxdη ,

while for d = 2, there is an additional term: (Ḃ logR − B Ṙ
R )M2. For d ≥ 3, the

following conditions are sufficient for L to be nonincreasing:

1) B(t) = R(t)d−2, which implies Ḃ − (d− 2)B Ṙ/R ≤ 0,

2) d ≤ 4, which implies Ḃ −B Ṙ/R = −(4 − d)B Ṙ/R ≤ 0 ,

3) R̈ = Rp , R(0) = 1 , Ṙ(0) = 0 with p ≤ −(d − 1), which implies ( d
dt(

R̈
R ) +

2 R̈
R

Ṙ
R )B + Ḃ R̈

R ≤ 0,

and we recover the results of Theorem (4.1) for d = 3, 4; for d = 2 take B = 1.

Remark 4 If d ≥ 2 (including the case d ≥ 4), we may choose B = Rd−2−θ,

θ ≥ max(0, d − 4), and R solving the equation R̈ = Rp, R(0) = 1, Ṙ(0) = 0

for some p ≤ θ − (d − 1) without any further restriction on d. Note that for

d ≥ 4, p < −1 and θ < d − 2, one recovers the estimate one would have for

the free transport ∂tf + v · ∂xf = 0, since in that case f(t, x, v) = f0(x− vt, v) and
∫ ∫

f(t, x, v)|x − vt|2 dxdv =
∫ ∫

f0(x, v)|x|2 dxdv. For the consequences on the

dispersion rate, see Section 5.

An analogous method also works for the Euler-Poisson system (EP). If we shift

the velocity u(t, x) by an unknown ”bulk” velocity Ṙ
Rx, so that η(t, x) = u(t, x)− Ṙ

Rx,

then (ρ(t, x), η(t, x)) solves the system (R′EP):

∂tρ+ ∂x(ρ(η + Ṙ
Rx)) = 0 ,

∂tη + d
dt (

Ṙ
R )x+ ((η + Ṙ

Rx) · ∂x)η + Ṙ
R (η + Ṙ

Rx) = −∂xU(t, x) ,
−∂xU(t, x) = x

|Sd−1| |x|d ∗ ρ .

As for (RVP), we may consider the energy:

E(t) =

∫

IRd

(

|η(t, x)|2 +
R̈

R
|x|2 + U(t, x)

)

ρ(t, x) dx

for d ≥ 3 (if d = 2, one has to add the term M2

2π
Ṙ
R ). Again t 7→ E(t) is decaying:

for any d ≥ 2, as for (VP), we may also define L(t) = B(t)E(t), and the rest of the

discussion is exactly the same.

This method for finding a Lyapunov functional can be summarized as follows:

first change the velocity variable by subtracting a velocity Ṙ
Rx for some increasing
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function R, then compute the energy associated to the new equation and finally

choose the Lyapunov functional to be L(t) = B(t)E(t) where B(t) is the function

of t which has the maximal growth in order that L(t) is still a decaying function of

t and corresponds to a function t 7→ R(t) solving an adequate ordinary differential

equation which takes the nonlinearity into account and has to be chosen well. Of

course, one way to find an equation for R is to apply the method of the time-

dependent rescalings of the beginning of this section. This method is sufficient to

extract the asymptotic rate of decay of the relevant quantities, as we shall see later

in several other cases, cf. Sections 6–8.

5. Asymptotic Behaviour, Dispersion

An estimate of the rate of dispersion of a solution f of the Vlasov-Poisson system

(VP) in the plasma physics case ε = −1 is given by the interpolation of ρ(t, x) =
∫

IRd f(t, x, v) dv between the L∞-norm of f , which is preserved for strong solutions,

and the momentum
∫∫

IRd×IRd f |v − x
t |2 dxdv ∼

∫∫

IRd×IRd f |v − Ṙ
Rx|2 dxdv as t→ +∞:

there exists a constant C = C(d) > 0 such that

∣

∣

∣

∣

∣

∣

∣

∣

∫

IRd

f dv

∣

∣

∣

∣

∣

∣

∣

∣

L
d

d+2 (IRd)

≤ C · ‖f‖
2

d+2

L∞(IRd×IRd)
·
(

∫∫

IRd×IRd

f

∣

∣

∣

∣

v − Ṙ

R
x

∣

∣

∣

∣

2

dxdv

)
d

d+2

(5.1)

(for a systematic study of these interpolation inequalities see 11 and references

therein).

The asymptotic form of the Lyapunov functional was given in 16,25 for the case

d = 3 and in 11 for the case d = 2. Using R(t), we remove the difficulty due to the

singularity at t = 0 and recover the known results. The use of the decay term of

the Lyapunov functional allows us to prove that the decay is not optimal.

Proposition 2 Assume that f is a strong solution of (VP) in the plasma physics

case ε = −1 and t 7→ R(t) is the solution of R̈ = R1−d with R(0) = 1 and Ṙ(0) = 0.

Then f obeys to the following Strichartz type estimate: if d = 2 or 3,
∫ +∞

0

Rd−3(t)Ṙ(t)

(
∫∫

IRd×IRd

f(t, x, v)

∣

∣

∣

∣

v − Ṙ(t)

R(t)
x

∣

∣

∣

∣

2

dxdv

)

dt ≤ C , (5.2)

and for d = 3, 4, we have the following dispersion estimate

‖ρ(t, ·)‖
L

d+2

d (IRd)
≤ C R(t)−d d−2

d+2 ∼ t−d d−2

d+2 . (5.3)

Here C denotes various positive constants which depend only on d and f0, and L is

the Lyapunov functional of Theorem 4.1. If d = 2,

lim inf
t→+∞

‖ρ(t)‖L2(IR2) = 0 . (5.4)

The proof follows from Theorem 4.1 and the interpolation identity (5.1) given

above. The decay of ρ(t, ·) in L2(IR2) is given by the decay term of the Lyapunov

functional; see Remark 5 below. Estimate (5.2) for d = 2 has been improved

compared to 11.
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Remark 5 The decay given in Proposition 2 is not optimal. Consider indeed a

function t 7→ h(t) such that h ≥ 1, limt→+∞ h(t) = +∞ and

∫ +∞

0

ds

s h(s)
= +∞ if d = 2 ,

∫ +∞

0

ds

h(s)
= +∞ if d = 3 .

For instance, one may take for t > 0, h(t) = log(t+2)if d = 2 and h(t) = t log(t+2)

if d = 3. The bounds (5.2) immediately provide for d = 2, 3

lim inf
t→+∞

h(t)

∫∫

IRd×IRd

f(t, x, v)

∣

∣

∣

∣

v − Ṙ(t)

R(t)
x

∣

∣

∣

∣

2

dxdv = 0,

and as a consequence, the decays in (5.3) and (5.4) are not optimal.

Similar results can of course be obtained for any d ≥ 5, using Remark 4. We

may notice that the decay in (5.3) for d ≥ 4 is the one which is obtained for the

free transport equation when considering the second moment in x− vt.

Remark 6 The Lyapunov functionals given in 11,16,25 correspond to the asymptotic

form of R(t) as t→ +∞. The fact that this asymptotic form also gives a Lyapunov

functional is easily explained by the scaling invariance of the equation (see Remark

1): if one replaces R(t) by t for d = 3, 4 or t
√

log t for d = 2 in the expression

of the Lyapunov functional L(t) of Theorem 4.1, L(t) would still be a Lyapunov

functional.

Similar results for the pressureless Euler-Poisson system (EP) also hold except

that no direct interpolation can be used. The decay only holds in a weak norm

defined as follows (assume here that d ≥ 3): let us consider the space D1,2(IRd) =
{

φ ∈ L
2d

d−2 (IRd) : ∇φ ∈ L2(IRd)
}

and define on its dual space the norm

|||ρ||| = ‖ρ‖(D1,2(IRd))′ = sup

{
∫

ρφ dx | φ ∈ D1,2(IRd), ‖∇φ‖L2(IRd) ≤ 1

}

.

If U ∈ D1,2(IRd) is such that −∆U = ρ, then |||ρ||| ≤ ‖∇U‖L2(IRd). Using the same

notation as in Section 4, if d = 3, 4, there exists a positive constant C such that

R(t)d−2
∫

IRd ρ(t, x)|u(t, x) − Ṙ
Rx|2 dx ≤ C and R(t)d−2

∫

IRd |∇U(t, x)|2 dx ≤ C. The

last inequality can be reinterpreted as an estimate on |||ρ(t, ·)|||.
Proposition 3 Assume that (ρ, u) is a C1 solution on IR+ × IRd of (EP) in the

plasma physics case ε = −1 and t 7→ R(t) is the solution of R̈ + εR1−d = 0 with

R(0) = 1 and Ṙ(0) = 0. Then (ρ, u) obeys to the following Strichartz type estimate

for d = 2, 3:

∫ +∞

0

Rd−3(t)Ṙ(t)

(
∫

IRd

ρ(t, x)|u(t, x) − Ṙ(t)

R(t)
x|2 dx

)

dt < +∞ .

Moreover, if d = 3, 4, then

lim sup
t→+∞

t
d
2
−1|||ρ(t, ·)||| = lim sup

t→+∞
R(t)

d
2
−1‖∇U(t, ·)‖L2(IRd) < +∞ .
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Remark 7 If d = 2, we cannot use the (D1,2(IRd))′-norm as in the case d ≥ 3, but

the following estimates for the solutions in the plasma physics case ε = −1 of the

pressureless Euler-Poisson system (EP) hold:

lim
t→+∞

1
log R(t)

∫

IR2 ρU dx = −M2

2π ,

lim
t→+∞

1
log R(t)

∫

IR2 ρ|u|2 dx = M2

2π , and lim
t→+∞

1
t2

∫

IR2 ρ|x|2 dx = M2

2π .

These estimates are easily deduced from the conservation of the energy, the ex-

pression of the Lyapunov functional L(t) and the estimate given in the proof of

Theorem 4.1.

Maybe more interesting is the observation (see 11) that for d = 2, which is the

limit case for dispersion results, the dispersion estimate gives a lower bound for the

growth of the support of a solution corresponding to a compactly supported initial

datum:

Corollary 1 Consider for d = 2 solutions of (VP) or (EP) corresponding to com-

pactly supported initial data. Assume that r(t) is the minimal radius of the balls

containing the support of ρ(t, ·). Then there exists a constant C > 0 such that

r(t) ≥ C R(t) as t→ +∞.

Proof. As in 11 one may simply notice that

M2

2π

(

logR(t) − log(2r(t))

)

≤ L(t) ≤ L(0). 2

6. The 2-dimensional Symmetric Vlasov-Poisson System with an Exter-

nal Magnetic Field

In dimension d = 2, we may consider the following system (VPM)

∂tf + v · ∂xf +

(

−∂xU(t, x) +B0v
⊥

)

· ∂vf = 0

−∂xU(t, x) = x
2π |x|2 ∗

∫

IR2 f(t, x, v) dv

corresponding to a system of particles with a self-interaction through electrostatic

forces, in the presence of an external constant magnetic field B0. Here we use

the notation (
v1
v2

)⊥ = (
−v2
v1

). For the linear system without self-consistent

electrostatic forces, all the characteristics are circles and a solution with an initially

compact support will remain supported in a fixed compact set for all time. With

a self-consistent Poisson term, the situation is radically different since we get the

same estimates as for the Vlasov-Poisson system without a magnetic field.

We may indeed shift the velocity variable η(t, x, v) = v − Ṙ
Rx, and the new

distribution function f(t, x, v) = F (t, x, η) obeys to the system

∂tF+η·∂xF− R̈
R
x·∂ηF+

(

B0(η
⊥+

Ṙ

R
x⊥)−∂xU

)

·∂ηF+
Ṙ

R

(

∂x(xF )−∂η(ηF )

)

= 0 ,
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Th energy is the same as for the Vlasov-Poisson system (VP) (see Section 4) and

decays according to

dE

dt
= −

∫∫

F (t, x, η)

[

2
Ṙ

R
|η|2 +

(

d

dt
(
R̈

R
) + 2

R̈

R

Ṙ

R

)

|x|2 + 2
Ṙ

R
(x · η⊥)

]

dxdη .

If f is radially symmetric, i.e. depends only on t, |x|, (x · v) and |x|2|v|2 − (x · v)2,
then the analogous property holds for F : F only depends on t, |x|, (x · η) and

|x|2|η|2−(x·η)2, and
∫

IR2

(

x⊥·
∫

IR2 ηF (t, x, η) dη

)

dx =
∫∫

IR2×IR2(x·η⊥)F (t, x, η) = 0 .

The system has the same Lyapunov functional as (VP), and we obtain the same

dispersion results as for the Vlasov-Poisson system:

Proposition 4 Let d = 2. Assume that f is a solution of (VPM) and that t 7→
R(t) is the solution of R̈ = 1

R with R(0) = 1, Ṙ(0) = 0. The function L(t) =
M2

2π logR+
∫∫

IR2×IR2 |v− Ṙ
Rx|2f(t, x, v) dv dx+

∫

IR2(U+ |x|2

R2 ) ρ dx is decreasing, bounded

from below and satisfies: dL
dt = −2 Ṙ

R

∫∫

IR2×IR2 |v − Ṙ
Rx|2f(t, x, v) dv dx. Moreover

∫ +∞

0
Ṙ(s)
R(s) (

∫∫

IR2×IR2 |v − Ṙ(s)
R(s)x|2f(s, x, v) dv dx) ds < +∞

and lim inft→+∞ ‖ρ(t)‖L2(IR2) = 0.

7. The Isentropic Euler System for Perfect Gases

As another example, which does not belong to the field of kinetic equations, we

consider the isentropic Euler system (IE) for perfect gases (for γ > 1)

∂tρ+ ∂x(ρu) = 0 ,
∂tu+ (u · ∂x)u = −∂xp ,

p = ργ−1 .

The method goes exactly as for the pressureless Euler-Poisson system (here we use

the second method of Section 4): the rescaled system (R′IE) given by η(t, x) =

u(t, x) − Ṙ
Rx is

∂tρ+ ∂x(ρ(η + Ṙ
Rx)) = 0 ,

∂tη + η · ∂xη + Ṙ
Rx · ∂xη + R̈

Rx+ Ṙ
Rη = −∂xρ

γ−1 .

If we define the energy by

E(t) =

∫

IRd

ρ(t, x)|η(t, x)|2 dx +
R̈

R

∫

IRd

ρ(t, x)|x|2 dx+
2

γ

∫

IRd

ργ(t, x) dx ,

a Lyapunov functional is easily exhibited by considering L(t) = B(t)E(t). The

energy is indeed decreasing:

dE

dt
=

∫

IRd

ρ

[

−2
Ṙ

R
|η|2 +

(

d

dt
(
R̈

R
) + 2

R̈

R

Ṙ

R

)

|x|2 − 2d
γ − 1

γ

Ṙ

R
ργ−1

]

dx
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so that

dL

dt
=

(

Ḃ − 2
Ṙ

R
B

)
∫

IRd

ρ(t, x)|η(t, x)|2 dx

+

[

Ḃ
R̈

R
+

(

d

dt
(
R̈

R
) + 2

R̈

R

Ṙ

R

)

B

]
∫

IRd

ρ(t, x)|x|2 dx

+
2

γ

(

Ḃ − (γ − 1) dB
Ṙ

R

)
∫

IRd

ργ(t, x) dx,

and sufficient conditions for L to be decreasing are therefore given by:

1) B = Rq with q ≤ min(2, (γ − 1)d), which implies Ḃ − 2 Ṙ
RB ≤ 0 and Ḃ − d (γ −

1)B Ṙ/R ≤ 0.

2) R̈ = Rp with p ≤ −(q + 1), which implies ḂR̈/R+ ( d
dt (

R̈
R ) + 2 R̈

R
Ṙ
R )B ≤ 0.

It turns out that these dispersion relations (or at least their asymptotic form) are

already known and have been used for the Navier-Stokes equation by J.-Y. Chemin

in 7, and by D. Serre in 14,30 and B. Perthame in 26. One of the interests of these

estimates is that one may use them as an a priori estimate to control the behaviour

for large times and build a global (in time) solution to the Cauchy problem. An

equivalent remark (see 30) is that it is possible to build a solution by a fixed-point

method for a finite time (this is not in contradiction with T. Sideris’ results 31 on

non-existence, if the initial data is small in the correct sense) and that one may

choose the rescaling t 7→ R(t) such that (for the complete rescaling as defined in

Section 3 of course) the evolution with respect to the rescaled time holds only on a

finite time interval 0 ≤ τ < τ∞ =
∫ +∞

0 A−2(t) dt. However, we are here interested

only in the dispersion relations which were easily obtained by the mean of the second

method of Section 4. These dispersion relations can be summarized as follows:

Proposition 5 If (ρ, u) is a global classical solution of (IE) with γ > 1, then it

satisfies the following dispersion relation

d

dt

(

Rq

∫

IRd

ρ

∣

∣

∣

∣

u− Ṙ

R
x

∣

∣

∣

∣

2

dx+
1

R2

∫

IRd

ρ|x|2 dx+
2

γ
Rq

∫

IRd

ργ dx

)

≤ 0

with q = min(2, (γ−1)d) and t 7→ R(t) such that R̈ = R−(q+1), R(0) = 1, Ṙ(0) = 0.

8. Wigner and Schrödinger Equations

The relation between the Schrödinger equation, the Wigner equation and the Vlasov

equation is now quite well understood. It has been the subject of a considerable

number of papers in the recent years: we mention 13,15 as some of the most recent

ones, and also 19,23 for the limit of the Schrödinger-Poisson to the Vlasov-Poisson

system. Historically, the dispersion relations have been studied for the Schrödinger

equation first and then adapted to the corresponding kinetic equation 8,9,17. The
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analysis of the dispersion relations in the kinetic framework came only after, but

now seems to provide powerful tools to build new dispersion identities, cf. 12.

Consider the Schrödinger equation

ih̄∂tψ = −1

2
h̄2∆ψ + V ψ .

If w(t, x, v) =
∫

IRd e−ivy ψ(t, x + h̄
2y)ψ(t, x − h̄

2 y) dy is the Wigner transform of ψ,

it has to satisfy the Wigner equation

∂tw + v · ∂xw − i

h̄
Θ(V )w = 0

where the pseudo-differential operator Θ(V ) is defined by

Θ(V )f(x, v)=
1

(2π)d

∫

IRd

e−ivy

[

V (x+ h̄
2

y) − V (x− h̄
2

y)

]

·
(

∫

IRd

e+iyξf(x,ξ) dξ

)

dy .

In the semi-classical limit h̄ → 0+, the operator Θ(V ) is formally expected to

converge to −∂xV · ∂v, and it is the purpose of many papers to justify this limit,

cf. 13,15,19,23.

In this section we will only derive some dispersion identities according to the

technique developed at the end of Section 4 and give some easy consequences of

these estimates.

We shall consider three cases:

The linear case (L): V is a given fixed nonnegative potential which does not depend

on t and decays as |x| → +∞. We will not go further into this case since the

dispersion properties would depend on the local properties of V and x · ∂xV ,

but the computations are essentially the same as for the other cases up to Eq.

(8.1).

The Poisson case (P): V is given by −∆V = |ψ|2 =
∫

IRd w(t, x, v) dv (we con-

sider only the electrostatic case). We shall state a result on the Wigner and

the Schrödinger formulations of the problem, which clearly proves that this

case can be handled in full generality with our methods. The estimates are

slightly improved in dimension d = 3 and can obviously be generalized to any

dimension d ≥ 4. The results are new for d = 2.

The nonlinear case (NL): V = |ψ|p−1 and ψ is a solution of the nonlinear Schrö-

dinger equation (NLS)

ih̄∂tψ = −1

2
h̄2∆ψ − ε|ψ|p−1ψ

(in the following, we shall only study the defocusing case ε = −1). This case

is mentioned here to make the link with the pseudo-conformal methods and

to recover the pseudo-conformal law, which has been studied extensively.
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8.1. Wigner equation

For the Wigner equation, we introduce as for the Vlasov-Poisson system the new

velocity variable η(t, x, v) = v − Ṙ
Rx and exactly as for the Vlasov-Poisson system,

F (t, x, η) = w(t, x, v) solves the rescaled Wigner equation (R′W):

∂tF + η · ∂xF − R̈

R
x · ∂ηF − i

h̄
Θ(V )F +

Ṙ

R

(

∂x(xF ) − ∂η(ηF )

)

= 0 .

Again as for (R′VP), we compute the energy

E(t) =

∫∫

IRd×IRd

F

(

|η|2 +
R̈

R
|x|2 + αV

)

dxdη

if d ≥ 3, with an additional term M2

2π logR if d = 2 in case (P). Here α is a coefficient

which takes different values according to the case we consider: α = 2, 1, and 2
p+1

in case (L), (P) and (NL) respectively. The same computation as before provides

dE

dt
=

∫∫

IRd×IRd

F (t, x, η)

[

−2
Ṙ

R
|η|2 +

(

d

dt
(
R̈

R
) + 2

R̈

R

Ṙ

R

)

|x|2
]

dxdη

− α
Ṙ

R

∫∫

IRd×IRd

V (t, x)∂x(xF (t, x, η)) dxdη

(for d ≥ 3 in case (P) — the case (P), d = 2 is similar up to the integrations by

parts that are to be done with care) and we may define L(t) = B(t)E(t) and, as

for the Vlasov-Poisson system,

dL

dt
= α

∫∫

IRd×IRd

V (t, x)

(

ḂF − Ṙ

R
B∂x(xF )

)

dxdη

+

(

Ḃ − 2
Ṙ

R
B

)
∫∫

IRd×IRd

F (t, x, η)|η|2 dxdη

+

[

Ḃ
R̈

R
+

(

d

dt
(
R̈

R
) + 2

R̈

R

Ṙ

R

)

B

]
∫∫

IRd×IRd

F (t, x, η)|x|2 dxdη .

In the case of the coupling with the Poisson equation (d ≥ 2) , the conditions on

L that are sufficient for it to be nonincreasing are exactly the same as for (R′VP) in

the Poisson case (P): see Section 4. The detailed justifications of the computations

for initial data |ψ(t = 0, ·)|2 =
∫

IRd w(t = 0, ·, v) dv in L1(IRd) are not given here,

and we shall refer to 3 for a proof if d ≥ 3 in the context of the Schrödinger-Poisson

system.

Theorem 8.3 Assume that w is a solution of (WP) with M = ‖w(t, ·, ·)‖ and that

t 7→ R(t) is the solution of Eq. (3.4): R̈ + εR1−d = 0, R(0) = 1, Ṙ(0) = 0.

The function t 7→ L(t) defined above for d ≥ 2 (with B = Rd−2) is decreasing for

d = 2, 3, constant for d = 4, and satisfies for any d ≥ 2

dL

dt
= (d− 4) ṘRd−3

∫∫

IRd×IRd

∣

∣

∣

∣

v − Ṙ

R
x

∣

∣

∣

∣

2

w dv dx .
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In the plasma physics case ε = −1, L is bounded from below and for d = 2, 3,

∫ +∞

0

Ṙ(s)Rd−3(s)

(
∫∫

IRd×IRd

∣

∣

∣

∣

v − Ṙ(s)

R(s)
x

∣

∣

∣

∣

2

w(s, x, v) dv dx

)

ds < +∞ .

However, the results on the dispersion for the Vlasov-Poisson system cannot be

transposed straightforwardly because of the lack of positivity of w and one has to

be very careful to recover the estimates given in 17 for d = 3. In dimension d = 2,

the situation is even worse because the boundedness of L from below is not obvious

at all. In that sense, the Schrödinger formulation of the problem is more suitable.

8.2. Schrödinger equation

The Lyapunov function for the Schrödinger equation is easily found by simply con-

sidering the Wigner transform. However, it is interesting to realize how the method

of Section 4 applies directly. According to the Weyl quantification and the Wigner

transform, the operator ih̄∂x corresponds to the variable v: the change of variables

η = v − Ṙ
Rx therefore means that instead of ih̄∂x we consider the new operator

ih̄∂x − Ṙ
Rx:

φ 7→ (ih̄∂x − Ṙ

R
x)φ = e−i Ṙ

R
|x|2

2h̄ ih̄∂x

(

ei Ṙ
R

|x|2

2h̄ φ

)

.

For that purpose, we may consider the new wave function φ(t, x) = e−i Ṙ
R

|x|2

2h̄ ψ(t, x)

which solves the rescaled Schrödinger equation (R′S)

ih̄∂tφ = −1

2
h̄2∆φ+ (V +

R̈

2R
|x|2)φ − ih̄Ṙ

2R
(dφ+ 2x · ∂xφ) .

If we define the potential energy term by W [φ] = 2V |φ|2, W [φ] = V |φ|2, or W [φ] =
2

p+1 |φ|p+1 in case (L), (P), or (NL) respectively, the corresponding energy is given

by

E(t) =

∫

IRd

(

h̄2|∇φ|2 +W [φ] +
R̈

R
|x|2|φ|2

)

dx

if d ≥ 3, with the additional term 1
2π logR(t)‖φ(t, .)‖2

L2(IR2) if d = 2 in case (P). We

may then build the Lyapunov functional in the same way as for the solution of the

Wigner equation. Going back to the original variables, we have to replace |∇φ|2 by

|(∇− i Ṙ
h̄Rx)ψ|2.

The Schrödinger-Poisson system and its asymptotics has been studied in 8,9,17.

More recently, a theory for L2 solutions corresponding to mixed quantum states

has been established by F. Castella (see 3,4). In the case of a pure quantum state,

J. L. Lopez and J. Soler in 21,22 also gave detailed results on the asymptotic be-

haviour using a linear scaling approach in the continuation of the method developed

S. Kamin and J. L. Vázquez. The main interest of our approach is that it gives a

refined estimate for d = 3 and is adapted to the limit case d = 2 as well.
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Concerning the notion of solution we may assume that it is as smooth as desired

and refer to 3,4 for minimal requirements (estimates for weak solutions are built

using approximating smooth solutions).

Theorem 8.4 Assume that d ≥ 2 and consider a solution of the Schrödinger-

Poisson system. With the above notation

L(t)=Rd−2(t)

∫
∣

∣

∣

∣

(∇− i
Ṙ

h̄R
x)ψ

∣

∣

∣

∣

2

dx+Rd−2(t)

∫

V |ψ|2 dx+
1

R2(t)

∫

|x|2 |ψ|2 dx

for d = 3, 4, with the additional term 1
2π logR(t)‖ψ(t, .)‖2

L2(IR2) for d = 2, is de-

creasing for d = 2, 3 and constant for d = 4 if t 7→ R(t) is a solution of R̈ = R1−d,

R(0) = 1, Ṙ(0) = 0. As a consequence n(t, x) = |ψ(t, x)|2 is decreasing: there exists

a constant C > 0 such that

‖n(t, ·)‖Lp(IRd) ≤ C · Ṙd( 2
p−1) ·Rd( 1

p− 1
2
)( d

2
−1) (8.1)

for any p ∈ [2, 2d
d−2 ] if d = 3, 4 and lim inft→+∞ ‖n(t, ·)‖Lp(IR2) = 0 for p ∈]2,+∞[

if d = 2.

Note that for d = 3, p = 10/3, we recover the same exponents as for the Vlasov-

Poisson system. For d = 2, exactly the same estimate as in the proof of Theorem

4.1 holds: lim inft→+∞

∫

IR2 |(∇ − i Ṙ
h̄Rx)ψ|2 dx = 0. The crucial ingredient in the

proof of this theorem is the following interpolation lemma (see 8,9 and [Cor.5.5]17)

which plays a role similar to the one of Eq. (5.1) for the Vlasov-Poisson system:

Lemma 8.1 Assume that d ≥ 3. There exists a constant C > 0 depending only on

d such that, for any u ∈ H1(IRd) such that x 7→ xu(x) belongs to L2(IRd),

‖u‖Lp(IRd) ≤ C‖u‖a
L2(IRd)‖(x+ it∇)u‖1−a

L2(IRd)
· t−(1−a)

for any p ∈ [2, 2d
d−2 ], a = d

2 ( 2
p − d−2

d ).

The proof of Lemma 8.1 is easily established using the Gidas-Nirenberg inequality

‖u‖Lp(IRd) ≤ [C(d)]1−a‖u‖a
L2(IRd)‖∇u‖

1−a

L
2d

d−2 (IRd)

where C(d) is the Sobolev constant corresponding to the injection of H1(IRd) into

L
2d

d−2 (IRd), and the decomposition u = ρeiϕ which holds at least for smooth enough

functions (the conclusion holds by a density argument). We may then write

‖(x+ it∇)u‖2
L2 = t2

∫

|∇ρ|2 dx+

∫

|xρ+ tρ∇ϕ|2 dx ≥ t2‖ ∇|u| ‖2
L2 ,

which proves the interpolation results.

Proof of Theorem 8.4. One has to replace 1/t by Ṙ/R in Lemma 8.1: for d = 3

or 4, we may refer to 17 for the proof of Eq. (8.1), where it is done in the case

R = t. For d = 2, the argument is similar, the main step being the proof of the

boundedness of L which goes exactly as in the Vlasov-Poisson case. 2
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We conclude this section by considering the case of the Nonlinear Schrödinger

equation which allows us to make an explicit link with the pseudo-conformal law.

If W [φ] = 2
p+1 |φ|p+1, a direct computation gives

dE

dt
=−d(p− 1)Ṙ

2R

∫

W [φ] dx− 2
Ṙ

R
h̄2

∫

|∇φ|2dx+

(

d

dt
(
R̈

R
) + 2

R̈

R

Ṙ

R

)
∫

|x|2|φ|2dx

and L(t) = B(t)E(t) is decreasing if B(t) = Rq(t), q = min((p − 1)d/2, 2), R̈ =

1/Rq+1, R(0) = 1, Ṙ(0) = 0. In the next result we are again not interested in the

weakest notion of solution and assume that the solution is global in t and as smooth

and sufficiently decreasing at spatial infinity as necessary to justify any integration

by parts in the computations.

Theorem 8.5 Assume that d ≥ 2 and consider a global solution of the Nonlinear

Schrödinger equation (NLS) in the defocusing case. Then with the above notation

L(t) = Rq(t)

∫
(

|(∇− i
Ṙ

h̄R
x)ψ|2 +

2

p+ 1
|ψ|p+1

)

dx+
1

R2(t)

∫

|x|2 |ψ|2 dx (8.2)

is decreasing.

Decay estimates can of course be deduced from Lemma 8.1 as for the Schrödin-

ger-Poisson system. The details of the computations for the proof of Theorem 8.5

are left to the reader.

A simple method to understand the pseudo-conformal law is simply to look for

a pseudo-conformal invariance of the equation, i.e. a transformation which leaves

the equation invariant. Let u(t, x) be a solution of (NLS) in the focusing or in the

defocusing case (ε = −1). A function t 7→ (R(t), τ(t), ω(t)), (τ, ξ) 7→ v(τ, ξ) given

by

u(t, x) =
1

Rα(t)
eiω(t)

|x|2

2 v(τ(t), ξ(t)) , ξ(t) =
x

R(t)

is a solution of (NLS) for some α ∈ IR only in the case p−1 = 4
d (critical case), and

t 7→ (R(t), τ(t), ω(t)) then solves the system

dτ

dt
=

1

R2
,

dR

dt
= 2ωR ,

dω

dt
= −2ω2 .

The solution is given by ω(t) = ω0

1+2ω0t , R(t) = R0(1+2ω0t), τ(t) = t
R2

0
(1+2ω0t)

+ τ0.

This transformation can be found in 24 (see also 18 for instance). The conservation

of the energy after rescaling (conservation of the energy for v) gives the following

conservation law for u:

d

dt

(

R2(t)

∫

IRd

|∇u(t, x)−iω(t)xu(t, x)|2 dx− dε

d+ 2

∫

IRd

|u(t, x)| 2d (d+2) dx

)

=0 . (8.3)

This expression clearly corresponds to the case q = 2 = (p−1)d/2, and the pseudo-

conformal law is nothing else than the expression of dL/dt where L is given by
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Eq. (8.2). As we already noticed already several times, one may replace ω(t) and

R(t) by their equivalents as t→ +∞, which is the same as considering the singular

solution corresponding to the limit ω0 → +∞ and R0ω0 → 1, and recover instead

of Eq. (8.3) the more classical form for the conformal invariance law:

d

dt

(

t2
∫

IRd

∣

∣

∣

∣

∇u(t, x) − i
x

2t
u(t, x)

∣

∣

∣

∣

2

dx− dε

d+ 2

∫

IRd

u(t, x)| 2d (d+2) dx

)

= 0 .
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