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ABSTRACT 

Ornithologists are increasingly cognizant of the effect of detection error on abundance estimation 

and are using multiple visit surveys with occupancy and N-mixture models to account for 

detection error. These approaches assume the population of interest is closed. The effects of 

violating closure on density and relative differences between habitats are not fully appreciated.  

Closure might be violated during point count surveys for birds because of within-territory 

movement. A spatial simulation was used to generate data that would occur in a multiple visit 

survey if birds move within their territories between repeat visits.  We varied bird density, 

territory size, and number of visits and studied how density estimates from various analytical 

techniques changed with bird movement. Large biases (up to 900% overestimation) in density 

estimates were observed using maximum occurrence, maximum count, occupancy, and N-

mixture models.  The relative abundance ratio between habitats was generally underestimated 

using the maximum or multiple visit approaches.  Average presence and count were not biased as 

these metrics do not require closure.  Importance of detection error in avian studies cannot be 

denied.  However, given closure is likely violated in most point count applications due to bird 

movement, density estimates or even relative comparisons of bird abundance among habitats 

obtained by multiple visits must be checked for ecological plausibility. There is a clear need to 

develop metrics of bird abundance that do not rely on population closure but account for 

detection error.    
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MEASURING BIRD ABUNDANCE to understand the effects of environmental variation on 

populations is a fundamental aspect of ornithological research. Many sampling methods and 

statistical approaches have been developed to estimate the abundance of birds (Bibby et al. 2000).   

Despite many advances in sampling and analysis techniques, much ornithological research and 

monitoring continues to rely on comparisons of relative abundance over time or between habitats 

(Marsh and Trenham 2008).  While such approaches have improved our qualitative 

understanding of environmental factors influencing bird populations they do not facilitate 

effective comparisons among studies.  Ideally, ornithologists would report their results using a 

common metric, such as the density of birds per unit area, to allow direct comparisons among 

studies.  

Estimating density of birds accurately is challenging.  Spot-mapping is a methodology 

used to determine the number of birds in an area by mapping the territories of individuals in a 

known area.  While relatively accurate (Paul and Roth 1983 but see Verner and Milne 1990), 

spot-mapping requires multiple visits to a site and is best done with banded individuals.  The 

result is relatively few sites per study are done, limiting the scope of ecological investigations 

using this technique.  To increase efficiency, many ornithologists have turned to point counts 

(Bibby et al. 2000).  Point counts are stationary surveys where all birds heard or seen in a given 

area over a given unit of time are recorded.  Point count assessments are rapid and efficient but 

can not estimate density directly.  Statistical corrections are required to convert observed count 

information from point counts into density estimates.  A diversity of statistical approaches has 

been developed to convert raw counts from point counts into density estimates with an explosion 

of techniques occurring in the last five years.   

Two recent methods that are being widely used to estimate bird density based on point 

counts are occupancy and N-mixture models.  Occupancy models attempt to estimate the true 
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proportion of sites where a species occurs (MacKenzie et al. 2002).  N-mixture models attempt to 

estimate the true number of individuals of a species present at a site (Royle 2004).  Occupancy 

and N-mixture models estimate density by correcting the observed count data for detection error.  

Detection error is the probability that a species (occupancy) or an individual (N-mixture) is not 

observed at a site during a survey even though it was present.  To account for detection error, 

many have suggested that multiple visits to the same site must be done (MacKenzie et al. 2002).  

During multiple visits, the status of a species (detected versus not-detected) or individuals 

(number of individuals present) is recorded for each visit.  The rationale of multiple visit 

approaches is that at locations where the species or individuals are present, detection error will 

occasionally result in a species or individual not being detected during a visit despite being 

present during the period of observation.  Assuming occupancy status or abundance does not 

change over the period of observation, differences in detection of a species at a site between visits 

is caused by detection error.  The assumption that occupancy status or abundance does not 

change during the period between the first and the last survey is known as the closed population 

assumption.  If the closed population assumption is met, the resulting estimate of occupancy rate 

or true count can be divided by the area sampled to derive a density estimate (MacKenzie et al. 

2006).  In general, density estimates derived by multiple-visit methods are higher than those 

generated by naïve models (Kery et al. 2005).  However, for such estimates to be an accurate, it is 

essential that the closed population assumption is satisfied.   How often this assumption is 

violated and the degree of bias introduced if the closure assumption is not met remains poorly 

understood. 

Recently, Rota et al. (2009) suggested that the assumption of closure is not met for 

passerine birds surveyed using point counts.  Using a robust occupancy estimation design where 

sampling consisted of secondary sampling periods nested within primary sampling periods they 
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found the closure assumption was violated for 71 to 100% of the species evaluated in two 

datasets.  Closure was found to be violated over periods ranging from 8 days to 3 weeks.  They 

attributed these violations in the closure assumption mainly to local extinction and recolonization 

events whereby populations were open to demographic changes between primary survey periods.  

We suggest that violation of the closed population assumption will occur at almost any 

temporal scale for passerine birds using standard point count methods.  Our rationale is that the 

spatial scale of sampling of point counts is not concordant with the spatial scale of within-

territory movement behavior of passerine birds.  If birds defend small territories that are 

consistently within the bounds of the point count area then the assumption of population closure 

may be met for occupancy models as at least one individual will always be present in the 

sampling area.  However, in N-mixture models where counts are used, individuals often have 

partial overlap between their territory and the point count sampling area (Fig.  1).  How much 

bias this creates when estimating density is unclear.  When an observer visits a point count site 

where a species or individual was previously detected but is not detected during a particular visit 

it could be due to detection error.  However, it also could be due to the bird being in that part of 

the territory that is outside the sampling area.  Strictly speaking such movement in the territory is 

a violation of the closed population assumption and could occur in virtually any time interval 

depending on within-territory movement rates of birds.  Such behavior could dramatically 

influence estimates derived from multiple visit methods.  Our objective was to study the effect of 

within-territory movement on estimates of density and relative abundance ratios derived from 

occupancy rate and N-mixture models. To isolate the effect of the closure assumption, we 

assumed that detection was perfect.  In other words, if present within the sampling area when the 

observer was present the bird was always detected. We also studied the effect of movement on 

the more commonly used metrics of average or maximum counts. Although our study is 
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motivated by ornithological studies, the results have implications for other ecological studies 

where density estimates are obtained using occupancy and N-mixture models and the species of 

interest is mobile.  

 

METHODS 

To test how violations of the closed population assumption might influence density 

estimates of passerine birds using multiple visits, we created a series of spatial simulations using 

Arcview 3.2 and program R (R Development Core Team 2009). We used Arcview to create a 

spatial map of territories based on a series of randomly generated hexagons on an island 9175 

hectares in size.  This established a known population of birds.  We then overlaid 100 random 

point count sites onto this map and determined the area of overlap between the simulated 

territories and the point count site (Fig.  1).  Point count areas were circular and 3 hectares in size 

(~ equivalent to a 100 metre fixed radius point count). Point count sites were randomly 

distributed on the island, and had a minimum distance of 300 meters between sites.  Arcview 3.2 

was then used to randomly select a certain number of territories to be occupied. A random 

number from a uniform distribution on (0 to 1) was used to determine whether the bird was 

present in the portion of his territory that was within the bounds of the point count sampling area 

at the time of the survey: if the random number was less than or equal to the observed proportion 

then the bird was present.  If a bird was present in that portion of his territory that was within the 

point count area during the time the observer was present it was detected with probability one.  If 

the bird was outside the 100 meter point count radius it was not recorded by the observer.  We 

then drew another random number for each territory to decide where the bird was located during 

a 2nd visit to the same point count site.  We did this to a maximum of 10 visits.  This created a 

data set that was similar to what ornithologists obtain when using multiple visits to point count 
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sites.  These data were then analyzed using program R with the package “unmarked” (Fiske and 

Chandler 2010).  The key assumption of our simulations was that birds sing at random locations 

within their territories.  The location of the point count sites and the territories of the birds were 

fixed at the start of the simulation.   

In our simulations, we varied 1) % of carrying capacity (% of all possible territories that 

were occupied); 2) ratio of territory size to point count area; and 3) number of visits to a site.  

Carrying capacity was modeled in 10% increments from 10 to 100%.  The area of the point count 

was fixed at 3 hectares with territory size ranging from 0.5 to 5 hectares in increments of 0.5 

hectares; a range we felt was typical of most passerine species (e.g. Bayne et al. 2005).  Number 

of visits to the same point count site ranged from 1 to 10.  Average presence was calculated as the 

average number of detections of a species per point count site over K visits, average count was 

the average number of individuals of a species detected over K visits, maximum presence was 

whether or not a species was detected over K visits, and maximum count was the highest count of 

individuals detected per point count site over K visits.  All presence (i.e. probability of 

occurrence) and count estimates were divided by the area of the point count site (3 hectares) to 

derive a density estimate.  For each scenario (i.e. when territory size was 1 hectare, 10 visits to 

each site occurred, and carrying capacity was 100%) we ran 300 simulations to derive median 

estimates of presence and count estimates for that scenario.  

The resulting density estimates were multiplied by the area of the island to calculate an 

estimated population size.  Bias in population size estimates was calculated as percentage bias 

from the actual population size using: 







 


PsAct

PSActPSEst
Bias

.

)..
*100 

 



 8

While density and population estimation are the objective of some scientific studies, there 

is much more research evaluating how bird abundance changes in response to variation in 

vegetation or other habitat characteristics.  To determine whether the relative difference in 

density was influenced by violations of closure, we created a series of scenarios where we 

estimated average presence, average count, maximum presence, maximum count, occupancy, and 

N-mixture estimates in two habitats.  In these scenarios there were 100 point count sites in each 

habitat.  The following scenarios were modeled: 1) in habitat A & B, individual birds have the 

same size territories but were at different densities; 2) in habitat A & B, there were the same 

number of individuals but they varied in territory size; and 3) in habitat A birds were abundant 

and had small territories but in habitat B they were less common and had larger territories.  

Simulations used 1 to 10 visits.  The relative abundance ratio between habitats (hereafter RAR) 

was calculated as: 

BHabitatDensity

AHabitatiDensity
RAR

 in .

 n .
  

Habitat A was defined as the area where birds had the smallest territories.   

 

RESULTS 

Bias in population estimation — Fig.  2 shows the trends in median bias for occupancy estimates 

as compared to the bias in the average presence or maximum presence metrics.  In general, 

occupancy estimates of density overestimated the size of the population relative to average 

presence and maximum presence.  Average presence had relatively little bias.  The bias that did 

exist for average presence was simply due to random placement of point count sites relative to 

the territories. If we had moved the point count sites randomly in our simulations the slight bias 

we observed would not have occurred. Average presence as a density estimator did not change 
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with an increasing number of visits.  Maximum presence and occupancy estimates generally 

converged to the same level of bias with more visits.  However, the magnitude of the bias tended 

to increase with more visits.  Occupancy estimates were more biased than maximum presence 

when the number of visits to a point count site was low.  Bias was highest when birds had 

territories larger than the point count area. The bias also increased when birds were rare.  

Occupancy estimates underestimated population size when birds were abundant but had 

territories smaller than the point count area.   

Fig.  3 shows the trends in median bias for N-mixture estimation compared to the bias in 

average count or maximum count.  N-mixture estimates of density always overestimated the size 

of the population as compared to the average or maximum count.  Again, the average count had 

relatively little bias and did not change with the number of visits.  The bias for N-mixture 

estimates was higher than the bias in maximum counts up to 10 visits.  Bias in maximum count 

estimates increased with more visits although it approached an asymptote in several scenarios.  

The direction of bias with increasing number of visits changed for N-mixture models depending 

on territory size and carrying capacity.  When a species had a large or intermediate size territory 

(i.e. ≥ the size of the point count area) bias decreased with increasing visits although the bias 

always was severe (200 to 300% overestimation of population size).  As territory size decreased 

or the species became rare the bias became less severe.  Scenarios with small territories and/or 

low density showed an increasing bias with more visits.  For the intermediate - abundant scenario 

(3 hectare territory and 90% carrying capacity) we simulated the predicted count from N-mixture 

models versus the maximum count for 100 visits.  It took between 20 to 30 visits to have N-

mixture estimates converge to the maximum count. 
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Bias in relative abundance between habitats. —To study the influence of within-territory 

movement on the estimation of RAR, we calculated estimates of density for 5 (large), 3 

(intermediate), and 1(small) hectare territories with bird abundance at 90% carrying capacity in 

habitat A and 10% carrying capacity in habitat B.  Actual RAR was defined as the actual 

population size in Habitat A divided by the actual population size in Habitat B.  A RAR of 1 

indicated an equal number of individuals in each habitat.  Values > 1 indicated habitat A had 

more individuals while values < 1 indicated that habitat B had more individuals.   

Fig. 4 shows the results of simulations where habitat A had 9 times as many birds as 

habitat B.  When territories were large relative to the point count area, N-mixture models were 

the most biased estimators of RAR.  For example, when birds had territories of 5 hectares and 

point count sites were visited 2 to 5 times, habitat A was estimated to have 20 to 25 times more 

birds than habitat B.  In truth, habitat A had only 9 times more birds.  With more visits this bias 

decreased.  The maximum count typically underestimated RAR.  With more visits, both 

maximum count and N-mixture estimates of RAR suggested habitat A had fewer birds relative to 

habitat B than was actually the case.  In all cases, habitat A was identified as having more birds 

although the actual RAR was poorly estimated.  The average count was a consistent estimator of 

RAR with increasing visits. 

Fig. 4 also shows that occupancy, average presence, and maximum presence always 

underestimated RAR.  The smaller the territory the less accurate presence/absence data was in 

estimating RAR. This is because such data does not take into account that multiple individuals 

are present at point count sites in habitat A.  Average presence was a consistent estimator with 

increasing visits but was also biased.  With more visits, both maximum presence and occupancy 

resulted in a decline in the RAR. 
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Fig. 5 shows three scenarios of how changes in territory size and density in two habitats 

might influence RAR.  Fig.  5 (left column) shows birds increasing their territory size in habitat B 

but with the total land area used by the species the same as in habitat A.  In habitat A there were 

more individuals but each individual had a smaller territory.  In this scenario, we found N-

mixture and maximum counts typically underestimated RAR.  Average count was the best 

estimator of RAR and was consistent with increasing visits.  Of particular concern in this 

scenario was the situation where birds had 1 hectare territories in habitat A and 3 hectare 

territories in habitat B.  With < 4 visits, N-mixture models predicted that habitat B had more birds 

than habitat A. In truth, habitat A had three times as many birds as habitat B.   

In our second scenario (Fig.  5 - middle column), we had an identical number of 

individuals in habitat A and B (1000 in each) but territory size varied between habitats.  When 

territory sizes were greater than the point count area, estimates of RAR from all methods were 

reasonably close to the actual 1:1 ratio simulated.  However, when territories in one habitat were 

smaller than the point count area, habitat A (habitat with smaller territories) was always viewed 

as having fewer birds than habitat B for all metrics. 

In our final scenario (Fig.  5 - right column), birds in habitat A had higher density and 

smaller territories than birds in habitat B.  N-mixture models were the least accurate estimators of 

RAR in this scenario although the change in RAR with more visits showed only minor declines 

relative to using the maximum count.  In one scenario, habitat A had 27 times more birds than 

habitat B but N-mixture models and maximum count models suggested that there were only 12.5 

times more birds in habitat A than B.
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DISCUSSION 

 Our simulations suggest that using multiple visit methods to estimate density and relative 

abundance ratios for birds could be problematic if there is within-territory movement during the 

period when closure is assumed.  It is well established that birds move throughout their territories 

during the period when observers conduct point counts (Bayne et al. 2005) but the extent to 

which this could bias estimates of density is under appreciated.  As Fig. 1 shows, the variance in 

counts that ornithologists typically attribute to detection error could be caused by within-territory 

movements.  It is unclear how much of the variation in counts is due to detection error and how 

much due to movement. We have followed the movements of 71 color-banded or radio-marked 

Ovenbirds (Seiurus aurocapilla) for one to five hours (Lankau and Bayne, unpublished data) and 

found that the mean time spent in one location is 5.4 minutes, the median 3 minutes, and the 

mode < 1 minute (Fig.  6).  This suggests closure could be violated even if one used a five-minute 

point count with one-minute intervals to generate the multiple visits required for occupancy or N-

mixture estimation.  The practicality of recording bird point count information this rapidly in the 

field is also questionable.  

 The absolute magnitude of bias in density estimates generated by within-territory 

movement seems to be highly dependent on the ratio of the size of the territory to the point count 

area.  Many ornithologists use small radius point counts (i.e. 50 meters) under the belief that they 

more accurately estimate the number of individuals present, mainly because different observers 

are more consistently able to estimate a 50 meter distance interval than larger distances (i.e. 100 

meters). While this is true, the gain in accuracy of area sampled using a smaller point count 

radius will be swamped by the variation caused by movement (Thompson et al. 2002).  

Movement of birds over small point count areas is more likely to result in violations of the 

closure assumption, particularly for species with larger territories resulting in severe bias using 
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multiple visit techniques.   The increase in bias caused by multiple visit methods due to 

movement also occurs when using maximum presence or maximum count.  This occurs because 

the more visits to a single site, the more likely an observer will find individuals whose territories 

only partly overlap the sampling area. Based on our simulations, the maximum and multiple 

visits methods will not estimate density accurately for passerine birds under these behavioral 

assumptions. 

   If the closure assumption is met then occupancy rate and maximum presence (assuming 

only one individual per species is detected per site) as well as N-mixture count and maximum 

count should be unbiased estimators of density.  Unlike average presence and average count, 

these approaches allow ornithologists to correct for detection error caused by differential singing 

rates, observer error, and possibly differences in detectability among habitats.   Rota et al. (2009) 

provide a test for closure over longer time intervals that can be used with birds, but it remains to 

be seen if this approach could be biased due to within-territory movement.  Given the inability to 

test for closure at time intervals relevant to bird movement it seems premature to accept that 

multiple visit methods, even with primary and secondary sampling intervals, will provide 

accurate estimates of density for birds.  Even when multiple visits can be done over a time 

interval where closure might be met (i.e. breaking a 5-minute point count into five 1-minute 

intervals) there is a concern that observations may not be independent. Riddle et al. (2010) found 

that independence of observations conducted over relatively short time intervals resulted in 

significant bias in occupancy and N-mixture estimates for three species of birds because 

observers tend to remember where and when they located an individual or species.  Rota et al. 

(2009) suggest using a removal sampling protocol to reduce the independence problem whereby 

sampling is done for a species only until it is first detected up to a maximum number of surveys.  
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While possibly reducing the impact of dependence, this approach does not explicitly test for 

violations of the closure assumption caused by within-territory movement of birds. 

 At face value, our simulations suggest that average presence and average counts modeled 

using generalized linear models would provide better estimates of true density. This is true only if 

detection probability is one. Ornithologists are well aware of the fact that detection error is nearly 

always present in point counts. Our simulations purposely did not include all of the biological 

realities that influence the number of birds detected using point counts.  Our goal was to 

demonstrate how important the assumption of closure is for density estimation not to identify the 

relative importance of closure versus detection error.  The current push to account for detection 

error in ornithological studies is important but we feel it is critical to make sure that the 

assumptions behind such methods are reasonable and satisfied in practice.  Ensuring that the 

occupancy rates and N-mixture count models generate plausible density estimates is crucial.  

Many papers that use multiple visit models emphasize model fitting rather than providing the 

estimates of density derived from the models (Joseph et al. 2009).   

Recently we had a paper reviewed where we compared the average count versus N-

mixture density estimate for the Dark-eyed Junco (Junco hyemalis) in relation to an experimental 

treatment. We found an average density of 0.25 birds per hectare in control and 0.38 birds per 

hectare in thinned stands based on a generalized linear mixed model (Bayne and Nielsen, in 

review).  N-mixture models using various distributional forms (i.e. negative binomial, Poisson, 

zero-inflated Poisson) estimated 2.22 birds per hectare in controls and 3.67 birds per hectare in 

thinned stands, an almost ten-fold increase over raw counts.  While we did not have spot-

mapping density estimates for this species in our study area, it seemed the N-mixture estimates 

were not biologically plausible given that spot-mapping studies in other areas suggest a density of 

about 0.65 birds per hectare (Sperry et al. 2008).  Despite our protests that some assumption 
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underlying the N-mixture technique was violated, it was recommended that we only report the 

density estimates from N-mixture model because “detection error is a critical factor to account 

for in thinning studies”.  Modeling the factors influencing detection error seems to have become 

such a dominant issue to ornithologists that we seem willing to ignore the ecological plausibility 

of the resulting density estimates.  From a conservation perspective, ornithologists should start 

considering the implications of using methods that, due to violations in assumptions, either 

underestimate (i.e. raw counts) or overestimate (i.e. multiple visits) bird density (Joseph et al. 

2009).  

For many scientific investigations, estimating absolute density is not critical.  Thousands 

of studies have relied on comparisons of relative abundance between habitats to draw scientific 

inference.  Proponents of multiple visit methods argue that biases in detectability among habitats 

(i.e. you can not hear birds as well in one habitat versus another) makes such inferences suspect 

(Kery et al. 2005).  While we agree this should be a concern, there are several reasons why 

relative abundance ratios between habitats as estimated by multiple visits methods may also be 

biased.  First, lower quality habitats typically have fewer individuals than high quality habitat.  

This can lead to greater violation of the closure assumption in the lower quality habitat than 

higher quality habitat as a smaller proportion of territories will be completely within the point 

count sampling area in the low quality habitat.  The result is that detection error for occupancy 

and N-mixture estimates will be estimated to be higher in the low density habitat.  However, in 

our simulations this error was purely due to movement not actual detection error.  Higher 

detection error that is in fact due to violation of closure results in higher occupancy and N-

mixture estimates in habitats with fewer birds, biasing estimates of the relative abundance ratio of 

birds in different habitats.  
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Birds in habitats with low conspecific density often have large territories than areas with 

many conspecifics.  For example, Cooper et al. (2009) found the territory size of Prothonotary 

Warblers (Protonotaria citrea) increased by 50% after forest harvesting relative to controls while 

density decreased about the same amount.  Whether such increases are caused by birds requiring 

more space to acquire resources or birds simply moving over larger areas because space is 

available due to fewer conspecifics is unclear.  The end result of differential territory size 

between habitats is that the assumption of closure is violated to a different degree in each habitat.  

The consequence is relative abundance ratios between habitats, as estimated by multiple visits, 

decrease the perceived magnitude difference between “high and low” quality habitats.  In certain 

circumstances we found that differences in territory size and density between habitats could in 

fact result in a reversal of relative abundance ratios between habitats using multiple visit 

approaches.  In most scenarios that we evaluated, all approaches correctly identified the habitat 

where the species was more abundant but the actual magnitude of difference between habitats 

was incorrect when using multiple visit methods or the maximum.  We argue metrics of relative 

abundance between habitats are misleading if they do not accurately estimate the correct relative 

abundance ratio (Krebs 1999). 

Most studies correcting for detection error in point count data concentrate on factors that 

affect detection such as observers, habitat types, conditions at the time of survey etc.  None of the 

simulations we have seen that test the effect of detection error on density estimates have 

incorporated movement of birds as well as factors influencing actual detection error.  As we have 

illustrated, the movement of the birds is likely a crucial factor that affects the population closure 

assumption and resultant density estimates.  It is important that ornithologists interpret their data 

in this context.  Methods and metrics need to be developed that account for detection error but 

they also need to be robust against the violation of closure assumption.
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FIG. 1.  Example of a GIS simulation. Map shows bird population at 10% of carrying 

capacity with individual birds holding non-overlapping 1 hectare territories.  Dark circles 

represent the locations of 100 randomly chosen point count sites.  The insert shows a single point 

count site where multiple territories overlap the sampling area to a partial extent resulting in a 

violation of closure assumption.  Histogram shows the distribution of count values you might 

expect from a point count site for this location if birds move randomly in their territories 

 

FIG. 2.  Median bias (percentage difference of estimated population size from actual 

population size) with increasing number of repeat visits to a site using detected – not detected 

data.  Solid diamonds show bias when using average frequency of occurrence to calculate 

density, open squares show bias when using whether a species was detected during any visit, 

while crosses show bias using occupancy estimation.  Results are shown for species with small 

(1), intermediate (3ha), and large (5ha) territories and for rare (10% of carrying capacity), 

common (50% of carrying capacity), and abundant species (90% of carrying capacity).   

 

FIG. 3.  Median bias (percentage difference of estimated population size from actual 

population size) with increasing number of repeat visits to a site using count data.  Solid 

diamonds show bias when using average count to calculate density, open squares show bias when 

using maximum number of individuals detected during a visit, while crosses show bias using N-

mixture estimation.  Results are shown for species with small (1), intermediate (3ha), and large 

(5ha) territories and for rare (10% of carrying capacity), common (50% of carrying capacity), and 

abundant species (90% of carrying capacity).   
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FIG. 4.  Relative abundance ratio (density in habitat A/ density in habitat B) for count 

(left column - CNT) and presence (right column -PA) data.  Solid line indicates actual relative 

abundance ratio.  Solid diamonds show relative abundance ratio based on average count or 

presence, open squares showing maximum presence or count, and crosses showing multiple visit 

methods. In each panel the territory size is constant but varies as a function of number of visits to 

a site and the difference density between two habitats (CC = carrying capacity). 

 

FIG. 5.  Relative abundance ratio (density in habitat A/ density in habitat B) for count 

data under various scenarios of density and territory size.  Solid line indicates actual relative 

abundance ratio.  Solid diamonds show relative abundance ratio based on average count, open 

squares using maximum count, and crosses N-mixture estimates.  In the left column, the territory 

size of birds is larger in habitat B than A.  The total population size is changed as a function of 

total carrying capacity with a constant relative abundance ratio of 3:1.  The middle column has 

equal numbers of individuals in each habitat but different territory sizes.  The right column shows 

scenarios with different densities of birds in each habitat and different territory sizes.  

 

FIG. 6.  Frequency distribution showing number of minutes male Ovenbirds spent singing 

in a single location based on following color-banded birds for a period of 1 to 5 hours. 


