The Actuator Line Model in Lattice Boltzmann Frameworks

Wake Characteristics and Turbulence Modelling

Henrik Asmuth, Hugo Olivares-Espinosa, Karl Nilsson & Stefan Ivanell June 18, 2019

Uppsala University, Department of Earth Sciences, Wind Energy Group

MOTIVATION

.

The Lattice Boltzmann Method is fast

Application in wind energy remains limited

Number of publications according to Web of Science (June 13, 2019)

SCOPE OF THIS STUDY

- Continuation of our recent Actuator Line Model (ALM) validation and analysis [1]
- $\cdot\,$ Wake characteristics of a single turbine in uniform inflow
- Code-to-code comparison to standard finite volume Navier-Stokes (NS)

THE LATTICE BOLTZMANN METHOD

- $\cdot\,$ The fundamental variable of the LBM, the particle distribution function (PDF): $f(\textbf{x}, \textbf{\xi}, t)$
- \cdot Governing equation: The kinetic Boltzmann equation

The LBM

 \Rightarrow The Lattice Boltzmann equation:

$$f_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) - f_{\alpha}(\mathbf{x}, t) = \Omega_{\alpha}$$
(1)

· Raw velocity moments of f yield macroscopic quantities

$$\rho = \sum_{\alpha=1}^{m} f_{\alpha} \quad , \quad \rho u = \sum_{\alpha=1}^{m} e_{\alpha} f_{\alpha}$$
 (2)

 \cdot A second-order approximation of the incompressible NSE

- $\cdot \ \Omega_{\alpha}$: Relaxation of f in cumulant space
- $\cdot\,$ Superior stability and accuracy at high Re
- · AllOne (AO): 2nd-order in advection and diffusion [2]
- Parametrized cumulant (PC): 2nd-order in advection, 4th-order in diffusion [3]

CASE SET-UP

- ALM simulation of the NREL 5MW turbine in uniform laminar inflow
- $\cdot \ \lambda = 7.55$, $u_0 = 8 \, m/s$
- $\cdot\,$ Isotropic Gaussian smearing approach with $\varepsilon=2.5\Delta x$
- \cdot Smagorinsky model, C_s = 0.1
- The LB-solver ELBE [4]
- NS-FV reference: EllipSys3D
 [5, 6, 7]

Turbulence Characteristics

Performance measures of ALM simulations in ELLIPSYS3D and ELBE with. Wall time and process time given per flow-through time (456s).

	NS-FV	Cumulant LBM
Processing unit	1080 CPU cores (Intel Xeon Gold 6130)	1 GPU (Nvidia RTX 2080 Ti)
Grid nodes	35 · 10 ⁶	
CFL number	0.132	0.057
Mach number	-	0.1
Wall time	2h 44m	0h 09m
Process time [CPUh,GPUh]	3019.79	0.14
Real time / Comp. time	0.05	0.90

CONCLUSION

- The LB-ALM validation was successfully extended to the nearand far-wake
- The cumulant LBM is a suitable bulk scheme for typical high Re flows using relatively low spatial resolutions
- $\cdot\,$ Notable differences between AllOne and parametrised cumulant
- Significant performance gains: close to real-time computing on the desktop

- · More soon in Wind Energy Science
- Mach-number dependency, more in-depth analysis of turbulence characteristics ...
- $\cdot\,$ Long-term: Wind farm simulations with the LBM

Thank you! Questions?

- [1] Asmuth H, Olivares-Espinosa H, Nilsson K and Ivanell S 2019 Journal of Physics: Conference Series
- [2] Geier M, Schönherr M, Pasquali A and Krafczyk M 2015 Comput. Math. Appl. 70 507-547
- [3] Geier M, Pasquali A and Schönherr M 2017 J. Comput. Phys. 348 862-888
- [4] Janßen C F, Mierke D, Überrück M, Gralher S and Rung T 2015 Computation 3 354
- [5] Michelsen J A 1994 Basis3D—a platform for development of multiblock PDE solvers Tech. Rep. Report AFM 92-05 Technical University of Denmark, DTU
- [6] Michelsen J A 1994 Block structured multigrid solution of 2D and 3D elliptic PDE's Tech. Rep. Report AFM 94-06 Technical University of Denmark, DTU
- [7] Sørensen N N 1995 General purpose flow solver applied to flow over hills Ph.D. thesis Risø National Laboratory, Roskilde, Denmark

