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Abstract

The obvious method for transforming an F or t variate into a z variate is via the
corresponding p value, but this method is inaccurate when F or t is so large that p differs
from 1 by only the last few bits of its floating-point representation. More accurate results
may be obtained by using q = 1− p as the intermediate variable so that the full precision
of the floating-point representation is available.
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Statistical parametric mapping (SPM, Frackowiak, Friston, Frith, Dolan, and Mazziotta 1997)
evaluates some statistical hypothesis at each voxel of a set of images which have been registered
to a common coordinate system. Depending on the form of the hypothesis being tested, the
statistic may be described by an F or t distribution with some known number of degrees of
freedom. It is often convenient to transform these F and t variates into normal, or z, variates
for further analysis.

The obvious approach to transforming an F variate x into a normal variate z is to compute

p = PF (ν,ω)(x)

z = P−1
N (p) (1)

where PF (ν,ω)(x) denotes the cumulative probability function for the F distribution with (ν, ω)
degrees of freedom and PN (x) is the cumulative distribution function for the standard normal
distribution. Both PF (ν,ω)(x) and P−1

N (p) are available as double-precision library functions
in many computer languages, including MATLAB (The MathWorks, Inc. 2003).

This approach works well for small to moderate values of x, but fails when x becomes too
large. The solid line in Figure 1 shows the z values corresponding to x values from 120 to
180 for (10, 20) degrees of freedom, as computed by the formula above using the (double-
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Figure 1: The solid line shows the F -to-z transform (for 10,20 degrees of freedom) computed
using the naive algorithm; the dashed line shows the same transform computed using the
algorithm recommended in this paper.

precision) fcdf and norminv functions in MATLAB. The mapping shows visible stairstepping
for x > 110 and goes to infinity at around x = 166.

This problem has been observed in z maps generated by SPM for experiments with high sta-
tistical power. It appears visually as quantized bands of uniform z value with some maximum
z value determined by the number of degrees of freedom.

The source of the problem is found in the limitations of the floating-point number system
used in computers. In IEEE 754 floating-point arithmetic (IEEE Standards Board 1985),
which is used by nearly all modern computers, double-precision floating point provides about
15 decimal digits of precision. But PF (10,20)(100) = 1 − 7.8 × 10−15 and nearby p values
have a useful precision of only 1 or 2 digits; the other 13 digits are all 9’s. (IEEE 754
arithmetic is actually binary rather than decimal, but the difference is not essential here.)
Furthermore, the only distinct floating-point numbers just below 1 are approximately 1 −
1 × 10−16, 1 − 2 × 10−16, 1 − 3 × 10−16, et cetera; these p values correspond to z values of
8.2095, 8.1259, 8.0766, . . . , which are the ordinates of the last few stairsteps.

The solution is to reformulate the calculation when x is large so as to compute q = 1 − p
rather than p, since q will be near zero and all significant digits will be available. To do this,
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we use the symmetry relationships

PF (ν,ω)(x) = 1− PF (ω,ν)(1/x) (2)

for the F distribution (Johnson, Kotz, and Balakrishnan 1995, p. 322) and

PN (z) = 1 − PN (−z) (3)

for the normal distribution (Johnson, Kotz, and Balakrishnan 1994, p. 81). Using these
relationships, the F -to-z transformation becomes

q = PF (ω,ν)(1/x)

z = −P−1
N (q) . (4)

Note that the degrees of freedom ν and ω must be interchanged. The dashed line in Figure 1
shows the F -to-z transformation computed using this alternate formula.

It should be noted that the alternate formula just derived will show defects similar to that
of the original formula when x is very small. If it is necessary to compute the transform
accurately for both large and small x values, the original formula (1) should be used for small
x and the alternate formula (4) for large x. The ideal crossover point is p = 0.5, which
corresponds to

x = P−1
F (ν,ω)(0.5) . (5)

Transforming a t variate into a z variate encounters similar problems for large arguments, as
seen in Figure 2 for ν = 10 degrees of freedom, and can be solved in the same manner. In
this case, the appropriate symmetry relationship is

Pt(ν)(t) = 1− Pt(ν)(−t) (6)

which follows from the fact that the t density function is symmetric around zero (Johnson
et al. 1995, p. 363). Then the appropriate computation for t > 0 is

q = Pt(ν)(−t)
z = −P−1

N (q) . (7)

The naive approach

p = Pt(ν)(t)

z = P−1
N (p) (8)

remains appropriate for t < 0. The ideal crossover point p = 0.5 for the t-to−z transform
corresponds exactly to t = 0, and is independent of ν. Figure 2 shows the t-to-z transform
computed by the naive and alternate approaches, using the tcdf and norminv functions in
MATLAB.

A MATLAB implementation of these algorithms which is efficient for large arrays involves
some subtleties. It is very inefficient, by a factor of 10 or more, to loop over the elements of
the array and use an if statement to select the appropriate formula for each element because
of the interpreter overhead for each statement; it is better to create a logical (boolean) array
which indicates for each element whether it is large or small, and to use this as an array index
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Figure 2: The solid line shows the t-to-z transform (for 10 degrees of freedom) computed
using the naive algorithm; the dashed line shows the same transform computed using the
algorithm recommended in this paper.

to select the appropriate elements for each formula. Blocking the computation to minimize
cache traffic can provide a moderate additional improvement in performance (about 30%),
but only if the blocking factor is set appropriately for the actual cache size of the platform.
Always setting the crossover point (5) in the F -to-z calculation to x = 1.0 provides about
a 4:1 speedup if the number of degrees of freedom is a vector, but will reduce the accuracy,
especially if ν and ω are very different. The specific efficiency improvements quoted are for an
Intel 3.0 GHz Xeon processor running Linux, and can be expected to vary for other platforms.

MATLAB functions that efficiently implement both these transforms are available in the files
that accompany this paper. The file f2z.m implements an unblocked algorithm for the F -
to-z transform; f2z_bloc.m a blocked algorithm that is more efficient but only if tuned to
the particular computer. The file t2z.m implements an unblocked algorithm for the t-to-z
transform, and t2z_bloc.m a blocked algorithm.
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