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Abstract 

During continuous perception, humans automatically segment their experience into discrete events. 
At the neural level, each brain region is thought to segment ongoing experience at its own preferred 
timescale. Previous studies have shown that event segmentation follows a temporal hierarchy in the 
brain, with regions higher in the hierarchy segmenting experience into events with a longer duration.  
The assumption is that incoming information is processed and then passed on to higher order regions 
as discrete units (or chunks), but little is known about how event boundaries are shared both within 
and across networks. To this end, we use Hidden Markov Models (HMMs) and functional connectivity 
analysis to study the timescales of event segmentation over the entire cortex and investigate how 
event boundaries are shared across regions and networks. We demonstrate that there is a distinct 
temporal gradient of information processing over the entire cortex, with particularly fast events in 
primary sensory regions and long periods of information integration in the precuneus and medial 
prefrontal cortex. We also show that event boundaries are shared between regions within functional 
networks, as well as across the temporal hierarchy between distinct networks. Finally, we observed 
that the traditional default mode and fronto-parietal networks fractionate into subnetworks with fast 
and slow event timescales, possibly reflecting functional specialization within these networks during 
naturalistic viewing. Together, these results provide the first complete overview of how event 
segmentation is organized in the human brain.  

 

Introduction 

Segmentation of information into meaningful units is a fundamental feature of our conscious 
experience in real life contexts. Spatial information processing is characterized by chunking spatial 
regions into objects (e.g. DiCarlo and Cox, 2007). In a similar way, temporal information processing is 
characterized by segmenting our ongoing experience into separate events (Kurby and Zacks, 2008; 
Newtson et al., 1977). Segmentation improves our understanding of ongoing perceptual input (Zacks 
et al., 2001) and allows us to recall distinct event from our past (Flores et al., 2017; Sargent et al., 
2013; Zacks et al., 2006). Recent work has shown that the end of an event triggers an evoked 
response in the hippocampus (Baldassano et al., 2017; Ben-Yakov and Henson, 2018), suggesting that 
events form the basis of long-term memory representations. Events that are identified in movie or 
auditory narratives are often very similar across individuals and can be segmented hierarchically on 
different timescales (Newtson and Rindner, 1979; Zacks et al., 2001). According to event 
segmentation theory (EST) perceptual systems spontaneously segment activity into meaningful 
events as a side-effect of predicting future information (Zacks et al., 2007). An event boundary occurs 
when the predictions become less accurate, which can be due to a change in motion or features of 
the situation such as characters, causes, goals and spatial location (Zacks et al., 2010).  

While much is known about temporal event segmentation on a behavioral level, its neural 
underpinnings remain largely unknown. Recent work aimed at examining event segmentation at the 
neural level has suggested that each brain region chunks experience at its own preferred timescale 
(Baldassano et al., 2017). This is in line with predictions from the hierarchical process memory 
framework, which posits that all brain regions accumulate information over time, but the timescale 
of this accumulation varies hierarchically (Hasson et al., 2015). Early sensory regions have short 
processing timescales (as fast as 10-100 ms) and along the cortical hierarchy, the timescales gradually 
lengthen up to the scale of seconds or minutes in areas like the angular gyrus and precuneus.  

This hierarchy of information accumulation has been demonstrated using movies and auditory 
narratives that have been scrambled at different timescales, for instance at the word, sentence, or 



paragraph level  (Hasson et al., 2008; Honey et al., 2012b; Lerner et al., 2011). This work has shown 
that higher cortical areas (e.g., precuneus, temporal parietal junction, and frontal eye fields) require 
more temporal context to respond reliably across participants. These regions also show slower 
resting-state fluctuations in electrocorticography (Honey et al., 2012b) and functional MRI data 
(Stephens et al., 2013), suggesting that a region’s preferred timescale of information processing is an 
intrinsic property of that region (i.e., not stimulus dependent). More recently, Baldassano and 
colleagues (2017) examined this temporal hierarchy using a different approach; they employed a 
modified version of Hidden Markov Models (HMM) to identify event structure in fMRI data of 
continuous movie viewing using a data-driven approach (Baldassano et al., 2017). They showed that 
neural event segmentation occurs on a timescale predicted by the hierarchical process-memory 
framework, ranging from short events in sensory regions to long events in higher order areas. 
However, they were only able to investigate event segmentation in a subset of cortical areas that 
responded consistently to the movie (across participants). Based on an analysis of four regions of 
interest they suggested that brain regions might share event boundaries in a hierarchical fashion, 
with the boundaries of faster events in regions lower in the cortical hierarchy nested within the 
boundaries of slower regions higher up the hierarchy.  

The aim of the current study was to characterize the temporal hierarchy of event segmentation over 
the entire cortex and to use network analysis to determine how events are shared across distributed 
networks throughout the cortex. We did this by using the HMM approach proposed by Baldassano et 
al. (2017) and adjusting their method for detecting the number of events that best characterizes each 
brain region (see figure 1). The employed dataset was part of the Cam-CAN project and consists of 
fMRI data from a large number of subjects who were presented with an engaging movie stimulus 
(Shafto et al., 2014). This dataset, in combination with the application of hyperalignment to optimize 
functional alignment (Guntupalli et al., 2016), allowed us to study event segmentation across the 
entire cortex for the first time, because this dataset shows reliable stimulus-driven activity 
(significant inter-subject correlations) over nearly all cortical brain regions (Geerligs et al., 2018). In 
addition, we were able to investigate whether neural events are shared across brain regions that are 
part of the same functional network, as well as across different networks at different levels of the 
temporal hierarchy. We hypothesized that events identified by participant ratings should be related 
to neural events at specific levels of the hierarchy, particularly in the default mode network 
(Baldassano et al., 2017; Zacks et al., 2001; Zacks et al., 2010). Finally, we expected that event 
timescales are associated with the neural dynamics of brain regions, as measured by their power 
spectrum (Honey et al., 2012b; Stephens et al., 2013) and we investigated whether the observed 
event timescales during movie watching are an intrinsic property of these brain regions that is also 
present in the resting state.  

 

Methods  

Participants 

We used the 265 adults (131 female) who were aged 18–50 (mean age 36.3, SD = 8.6) from the 
healthy, population-derived cohort tested in Stage II of the Cam-CAN project (Shafto et al., 2014; 
Taylor et al., 2017). Participants had normal or corrected-to-normal vision and hearing, were native 
English-speakers, and had no neurological disorders (Shafto et al., 2014). Ethical approval for the 
study was obtained from the Cambridgeshire 2 (now East of England - Cambridge Central) Research 
Ethics Committee. Participants gave written informed consent. 

 



Movie 

Participants were scanned (using fMRI) while they watched a shortened version of a black and white 
television drama by Alfred Hitchcock called ‘Bang! You’re Dead’. In previous studies, a longer version 
of this movie has been shown to elicit robust brain activity, synchronized across younger participants 
(Hasson et al., 2009). Because of time constraints, the full 25-minute episode was condensed to 8 
minutes with the narrative of the episode preserved (Shafto et al., 2014). Participants were 
instructed to watch, listen, and pay attention to the movie. 

 

fMRI data acquisition  

The details of the fMRI data acquisition are described in (Geerligs et al., 2018). In short, 193 volumes 
of movie data were acquired with a 32 channel head-coil, using a multi-echo, T2*-weighted EPI 
sequence. Each volume contained 32 axial slices (acquired in descending order), with slice thickness 
of 3.7 mm and interslice gap of 20% (TR = 2470 ms; five echoes [TE = 9.4 ms, 21.2 ms, 33 ms, 45 ms, 
57 ms]; flip angle = 78 degrees; FOV = 192mm x 192 mm; voxel-size = 3 mm x 3 mm x 4.44 mm), the 
acquisition time was 8 minutes and 13 seconds. In addition, 261 volumes of resting state data were 
acquired with a TR of 1970 ms and a TE of 30 ms (other specifications were the same as for the movie 
data) and high-resolution (1 mm x 1mm x 1 mm) T1 and T2-wieghted images were acquired.   
 
Data pre-processing 
The initial steps of data preprocessing for the movie data were the same as in Geerligs et al. (2018) 
and are described there in detail. In short, the preprocessing steps included deobliquing of each TE, 
slice time correction and realignment of each TE to the first TE in the run, using AFNI (version 
AFNI_17.1.01; https://afni.nimh.nih.gov). Then multi-echo independent component analysis (ME-
ICA) was used to denoise the data for each participant. ME-ICA is a very promising method for 
removal of non-BOLD like components from the fMRI data, including effects of head motion. Co-
registration followed by DARTEL intersubject alignment was used to align participants to MNI space 
using SPM12 software (http://www.fil.ion.ucl.ac.uk/spm). Pre-processing for the resting state data 
included slice time correction, realignment, co-registration and DARTEL intersubject alignment.  
 
Hyperalignment 
To optimally align voxels across participants in the movie dataset, we used whole-brain searchlight 
hyperalignment as implemented in the PyMVPA toolbox (Guntupalli et al., 2016; Hanke et al., 2009). 
Hyperalignment aligns participants to a common representational space based on their shared 
responses to the movie stimulus. Because the event segmentation model described below was 
applied to group averaged voxel-level data, good inter-subject alignment was essential. 
Hyperalignment uses Procrustes transformations to derive the optimal rotation parameters that 
minimize intersubject distances between responses to the same timepoints in the movie.  
 
A common representational space was derived by applying hyperalignment iteratively. The first 
iteration started by hyperaligning one participant to a reference participant. This reference 
participant was chosen as the participant with the highest level of inter-participant synchrony across 
the whole cortex (i.e. strongest correlations between the participants’ timecourses and the average 
timecourses from the rest of the group, averaged across voxels). Next, a third participant was aligned 
to the mean response vectors of the first two participants. This hyperalignment and averaging 
alternation continued until all participants were aligned. In the second iteration, the transformation 
matrices were recalculated by hyperaligning each participant to the mean response vector from the 

https://afni.nimh.nih.gov/
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first iteration. In a third iteration, the mean response vector was recomputed and this mean was 
defined as the common space. We then recalculated the transformation matrices for each 
participant to this common space. To align the whole cortex, hyperalignment was performed in 
overlapping searchlights with a radius of three voxels and a stepsize of two voxels between each of 
the searchlight centers. The individual searchlights were aggregated into a single transformation 
matrix by averaging overlapping searchlight transformations. These aggregated transformation 
matrices were used to project each participant’s movie fMRI data into the common representational 
space.  
 

Event segmentation Model 

To identify discrete events in the fMRI data, we used a variant of a Hidden Markov Model (HMM), 
created by Baldassano et al. (2017). The HMM models the brain activity as a sequence of hidden 
(unobserved) states. Each state is characterized by a specific mean activity pattern across voxels 
within a searchlight volume. In contrast to regular HMMs, this variant is constrained such that there 
are no recurring states. From one time point to the next, a brain region can either stay in the same 
state or jump to the next state. Therefore, the first time point of a brain activity timecourse is always 
in state 1 and the final timepoint is always is state K, where K is the total number of events. The 
inputs to the HMM consists of a set of z-scored voxel timecourses within a searchlight and a value for 
K (the number of states that needs to be estimated). In the context of the current project, we refer to 
these HMM states as events. 

 

Timescales of event segmentation 

We applied the event segmentation model in a searchlight to the hyperaligned data within the 
Harvard-Oxford cortical mask. Spherical searchlights were scanned throughout the brain with a step 
size of two voxels and a radius of three voxels. This resulted in searchlights with an average size of 97 
voxels (max: 123, IQR: 82-115), this variation in searchlight size was due to the exclusion of out-of-
brain voxels. Voxels were also excluded from the analysis if they had an intersubject correlation 
below r=0.35. Only searchlights with more than 15 voxels were included in the analysis. 

In each searchlight, the model was fit for varying numbers of events, ranging from K=2 to K=90. To 
determine the optimal number of events in each searchlight, we used 10-fold cross validation. In 
each fold, 9/10th of the data was used as the training set. These data were averaged across 
participants and the event segmentation model was applied to the averaged data to identify the 
event sequence for each value of K. Prior to averaging, the hyperaligned data were highpass-filtered 
with a cut-off of 0.008 Hz. The final 1/10th of the data was used as a test set to determine the fit of 
the identified event sequence.  

The following procedure was used to quantify the fit (see figure 1). First, we computed time-by-time 
correlation matrices for both the training and the test datasets. Each index in this matrix reflects the 
similarity of a searchlight’s activity pattern between two time points. However, for the training 
dataset, we first represented each timepoint within an event by the events’ mean activity pattern 
across voxels within the searchlight. Next, the correlation between the flattened training and test 
matrices was computed, excluding timepoints with a distance of 5 TRs or less. This correlation tells us 
how well the identified event structure in the training data represents the similarity between time 
points in the test data for a given searchlight. We will refer to this correlation between the training 
and test set as the ‘real boundary fit’ (blue line in Figure 1).  



As more events are modeled, the real boundary fit tends to increase. Therefore, to determine the 
optimal value of K for a given searchlight, the fit was compared to a baseline. This baseline was 
created by randomly reordering the event boundaries, while preserving the distribution of event 
lengths, and repeating the computation of the fit. This was repeated 500 times and an average 
baseline fit was computed (red line in Figure 1). This is referred to as the ‘random boundary fit’. After 
averaging the results across each of the 10 folds, the number of events with the highest difference 
between the real and random boundary fits (green line in Figure 1) was chosen as the optimal 
number of events for this searchlight. 

 

 

Figure 1: Depiction of the event segmentation and the procedure that was used to determine the 
optimal number of events for each region. In step 1, the training data is used to determine the event 
boundaries for a specific value of K, using the HMM event segmentation model. In step 2 the average 
event patterns are computed based on the training data and the correlation between the event 
patterns at each time point is computed, resulting in a time by time correlation matrix. In step 3, the 
time by time correlation matrix of the test set data is computed. In step 4, the correlation is computed 
between the two flattened halves of the correlation matrices computed in steps 2 and 3. Correlations 
between timepoints less than 5 TRs apart were not taken into account. In step 5, a baseline fit is 
computed by repeating steps 2 and 4 for a set of randomized event boundaries. In step 6, the 



difference between the real and the random fit is computed (green line). The optimum of this 
difference is used as the optimal timescale of this searchlight.   

 

To assess whether the detected even boundaries explained the data significantly better than 
expected by chance, we computed pseudo z-values for each value of K and each searchlight. This was 
done by subtracting the average random boundary fit from the real boundary fit, and dividing it by 
the standard deviation of the random boundary fit. This pseudo z-value was averaged across the 
different cross validation folds. Then it was converted to a p-value, using the standard normal 
distribution. P-values were Bonferonni corrected for all possible values of K. Across searchlights, we 
assessed significance by using the "two-stage" procedure by Benjamini et al. (2006) for controlling 
the false discovery rate (FDR) of a family of hypothesis tests. In all of the searchlights, the real event 
boundaries explained the data significantly better than the random event boundaries. 

 

Fast and slow regions 

To investigate whether some regions had significantly shorter or longer event durations than the 
average duration across the brain, we computed the optimal number of events within each of the 10-
folds for each searchlight. This set of 10 optima was the input to a Wilcoxon rank sum test, which was 
used to determine whether the observed optima in each searchlight were significantly different from 
the mean optima across all of the searchlights. P-values were corrected for multiple comparisons 
using FDR correction.  

 

Identification of functional networks 

In order to identify networks of regions that contained the same event structure, and not simply the 
same duration of events, we first calculated a matrix of Pearson correlations between the boundary 
vectors in each of the searchlights. Functional networks were then detected using a consensus 
partitioning algorithm (Lancichinetti and Fortunato, 2012), as implemented in the Brain Connectivity 
Toolbox (Rubinov and Sporns, 2010). An initial partition into functional networks was created using 
the Louvain modularity algorithm (Blondel et al., 2008), which was refined using a modularity fine-
tuning algorithm (Sun et al., 2009). This partitioning was repeated 1000 times, and all repetitions 
were combined into a consensus matrix. Each element in the consensus matrix indicates the 
proportion of repetitions in which the corresponding two searchlights were assigned to the same 
network. This matrix was used as the input for a new partitioning, until the algorithm converged to a 
single partition (such that the final consensus matrix consisted only of ones and zeroes). The 
procedure described above was applied for multiple resolutions (varying gamma between 1 and 3; 
Reichardt and Bornholdt, 2006). The most stable partitioning (highest normalized mutual information 
between solutions at different resolutions) was used as our final set of functional networks 
(gamma=1.8). For gamma values over 2.3, the modularity algorithm resulted in many single region 
partitions so these were not considered.  

We also investigated whether events may be shared in a hierarchical fashion, across different 
functional networks. To this end, we computed partial correlations between the averaged boundary 
vectors within each functional network, controlling for the boundary vectors in all other networks. P-
values were corrected for multiple comparisons using FDR correction. 



Comparison of event boundaries across regions and to human annotations 

Subjective annotations on the occurrence of event boundaries in the Cam-CAN movie dataset were 
collected by Ben-Yakov and Henson (2018). These annotations were based on sixteen observers who 
watched the movie outside the scanner and indicated with a keypress when they felt “one event 
(meaningful unit) ended and another began”. Only boundaries identified by a minimum of five 
observers were included, resulting in a total of 19 boundaries separated by 6.5–93.7 s.  

To compare the event boundaries across regions and to the human annotations, we computed 
Pearson correlations between boundary vectors. These boundary vectors contained zeros for within-
event time points and ones for moments where the current event did not match the subsequent 
event (i.e., event boundaries). For the comparison to human annotations, we refit the event 
segmentation model for each cortical region using the same number of events as in the human 
annotation (rather than using each region’s optimal timescale) to ensure that differences between 
regions were not driven by timescale differences. P-values were corrected for multiple comparisons 
using FDR correction.  

 

Power spectra 

To investigate whether the event timescales could be predicted from regional differences in neural 
dynamics (i.e., the speed at which populations of neurons within a given region oscillate; Stephens et 
al., 2013) we performed a spectral analysis. The voxel time series were normalized to unit variance to 
ensure that the spectra have the same integrated area. The power spectral density (PSD) was 
estimated using Welch’s method (Welch, 1967) with a Hamming window of width 50 TRs and 50% 
overlap. Next, we used the PSD to predict the event timescales across all searchlights (the lowest 
included frequency was 0.01 Hz). Because the PSD estimates were highly correlated across 
frequencies we decomposed the data using PCA. The PSD estimates were normalized to zero mean 
and unit variance within each searchlight before the PCA was performed. We used leave-one-
searchlight-out cross validation to determine how many principal components needed to be included 
in the regression to optimally predict the event timescales. In this cross validation, searchlights with 
voxels close to the left-out searchlight (with a Euclidean distance of three voxels or less) were 
excluded from the regression model estimation. PCA components were included in the regression 
model in the order of the percentage of variance they explained in the PSD data. We found an 
optimum of four principal components. These components were used to estimate a regression 
model based on the complete movie dataset. The obtained beta estimates were projected back to 
the original space by multiplying them with the PCA coefficients. Next, to investigate whether the 
estimated timescales were specific to the movie dataset, we used the same beta weights to predict 
the event timescales in the movie from the PSD in a resting state dataset.  
 

Data visualization 

In all analyses, p-values from the searchlights were projected to the voxel level and averaged across 
the searchlights that overlapped each voxel before they were thresholded using the FDR-corrected 
critical p-value (Benjamini et al., 2006). When projecting the results of the analyses to the voxel-level, 
we excluded voxels for which less than half of the searchlights that covered that voxel were included 
in the analysis. The excluded searchlights either had too few voxels or too few voxels with sufficient 
inter-subject correlation (see section Timescales of event segmentation). Data were projected to the 
surface for visualization, using the Pysurfer and Caret toolboxes.  

 



Results 

Temporal hierarchy 

The optimal number of events differed greatly between searchlights, from as few as 14 to as many as 
60 in the fastest regions (see figure 2A). Most searchlights showed average event durations between 
10 and 30 seconds per event. However, we also observed that even regions with a slow timescale 
could show fast event transitions in some cases (see figure 2C). To determine whether regional 
differences in event duration were reliable, we performed statistical tests, comparing each 
searchlight’s optimal number of events to the average number of events across searchlights. The 
results show that event duration estimates are highly similar across cross validation folds and that 
there is reliable variability in the number of events across the brain (see figure 2B). 

Figure 2A shows that there were particularly fast transitions between stable activity patterns in visual 
cortex and less so in auditory cortex. Event transitions were slower in areas further up the ventral 
visual stream, such as the inferior occipital gyrus and the fusiform gyrus, as well as down the dorsal 
visual stream in the intraparietal sulcus. Similar event durations were found in the inferior frontal 
gyrus. Particularly slow event transitions were observed in high level-regions such as the medial 
prefrontal gyrus and the temporal pole, precuneus, the inferior temporal gyrus, the insula as well as 
medial parts of the precentral gyrus. 

For the subset of regions investigated in previous work, we observe a strong correspondence to our 
findings (Baldassano et al., 2017; Hasson et al., 2008; Lerner et al., 2011). Some brain areas showed 
speeds that did not align with the expected hierarchy. For example, in V1 searchlights were slightly 
slower than other searchlights in visual cortex. This is visible on the medial plane of the left 
hemisphere in figure 2A. This effect was also observed by Baldassano et al. (2017).  It seems likely 
that this is due to restrictions in the frequency of event changes that can be observed with our long 
interscan interval (2.47 seconds) or with fMRI data in general, due to the slow BOLD response. 
Therefore the slower timescale in V1 may reflect aliasing of faster neural events.  

 



 

Figure 2. A. The optimal number of events varied greatly across regions, with many events in the 
visual and auditory cortices and few events in the association cortex, such as the medial prefrontal 
gyrus and precuneus. Parts of the correlation matrices for three selected searchlights are shown in 
the insets, representing approximately 2.5 minutes of the movie. The black lines in the upper 
triangular part of these insets are the event boundaries that are detected by the model. B. The 
regions with significantly faster or slower than average timescales are depicted (FDR-corrected p-
value<0.05). C. Shows the distribution of event durations for regions grouped according to the 



optimal number of events detected in each region. D. Shows the percentage of searchlights that show 
a neural event simultaneously at each TR over the time course of the movie.  

 

Event networks 

Next, we investigated whether event boundaries (and not just event durations) are shared across 
regions. The results in figure 2D suggest that at some points in time, event boundaries are shared 
between large numbers of brain regions across the temporal hierarchy. To identify networks of brain 
regions that shared event boundaries, we computed the Pearson correlation between the boundary 
vectors of each searchlight and used modularity maximization to identify networks. We found that 
event boundaries are shared within long-range networks that resemble the functional networks that 
are typically identified based on (resting state) timeseries correlations (see figure 3A). These include 
the auditory network, the dorsal attention network, the motor network and a lower-order and 
higher-order visual network. The higher order visual network consisted of higher order visual regions 
in the dorsal as well as the ventral visual stream, extending into inferior temporal as well as super 
occipital and parietal gyri. We also observed a network composed of the left and right temporo-
parietal junctions, which is not typically observed as a separate functional network. In addition, we 
identified the fronto-parietal (FPN) and default mode networks (DMN), both of which were 
fractionated into two parts with differing events durations. These fractionated components have 
different spatial topographies but also show a lot of spatial overlap. This is possible because we used 
overlapping searchlights and each searchlight was part of a particular functional network. Figure 3a 
visualizes for each voxel, which functional network label occurs most frequently for searchlights 
overlapping that voxel. In contrast, the full extent of each of the functional networks can be seen in 
figure 4.  

The fractionation of the DMN into slow and fast subnetworks, closely resembles the previously 
observed decomposition into an anterior and a posterior DMN (Andrews-Hanna et al., 2010; 
Damoiseaux et al., 2008). The slow-DMN resembles the anterior DMN and is most strongly present in 
the medial prefrontal cortex. The fast-DMN resembles the posterior DMN and is most strongly 
present in the precuneus and angular gyri. The difference in event durations between the slow and 
fast FPN was even more pronounced than for the slow and fast DMN (see figure 3C). The fast-FPN 
overlaps with the salience network, in the anterior insula and the anterior cingulate cortex, but 
extends further into the dorsolateral prefrontal cortex, while also encompassing the left superior 
parietal lobule. The slow-FPN is located in the inferior parietal lobule and supramarginal gyrus, while 
also extending into the middle frontal gyrus and posterior insula.  

The spatial overlap between the fast- and slow DMN and the fast and slow FPN (see figure 4) 
suggests that overlapping searchlights can belong to different functional networks with different 
event timescales. This may indicate that brain regions can have multiple preferred timescales for 
event segmentation. This is supported by the final fit plots shown in figure 3B. In the FPN both the 
slow and the fast subnetwork show the same peaks at K=21 and K=40. However, in the fast FPN the 
latter peak is more prominent while the opposite is true for the slow FPN.  

Although regions within functional networks tend to operate on a similar temporal scale, we see that 
there is also a lot of variability in event duration within networks (see figure 3C). This suggests that 
the correlations between event boundaries are not simply driven by a similarity in the number of 
events, but rather by a similarity in the event timings. Searchlights within the auditory and lower-
level visual networks show particularly high variability in time-scales. As expected, the higher-order 



visual network shows longer event durations than the lower-order visual network. Strikingly, events 
in the motor network are also rather slow.  

 

 

Figure 3. A. Visualization of the detected functional networks. The network label at each voxel is 
determined by the functional network that occurs most often in all the searchlights that overlap with 
that voxel. B. The final fit lines of each of the functional networks. The line thickness indicates the 95% 
confidence interval around the fits of all the searchlights in the network. The median number of 
timepoints in each network is indicated by the circle. C. Visualization of the event durations within 
each network. Each searchlight is shown as a dot. The bars show the mean and standard deviation 
around the mean for each network. D. A graph visualization of the partial correlation between 
networks is shown (controlling for the boundary vectors in all other networks). The thickness of the 
line corresponds to the strength of the partial correlation. All lines are significant after FDR-correction 
for multiple comparisons. TPJ=temporo-parietal junction, DMN=default mode network, FPN=fronto-
parietal control network, DAN=dorsal attention network 

 



We also investigated whether events may be shared in a hierarchical fashion, across different 
functional networks. This was done by computing partial correlations between the average boundary 
vectors in each network, controlling for the boundary vectors in all other networks. We found 
evidence that events were indeed shared across different networks, in a way that closely aligns with  
the hierarchical organization of these different networks (see figure 3D). For example, the lower-level 
visual network shares boundaries with the higher-level visual network, which in turn connects to the 
fast-FPN and the dorsal attention network. The fast-FPN also receives input from the auditory 
network. Also, the fast and slow-DMN are connected to each other, and the fast-DMN is in turn 
connected to the TPJ network.   

 

Figure 4: Separate visualizations for each of the identified functional networks. The color indicates the 
percentage of overlapping searchlights at each voxel that is assigned to that particular functional 
network. TPJ=temporo-parietal junction, DMN=default mode network, FPN=fronto-parietal control 
network, DAN=dorsal attention network 



Annotated event boundaries 

The HMM identified event boundaries in a data-driven manner, but do these event boundaries 
corresponded to the subjective event boundaries identified by participants outside the scanner (Ben-
Yakov and Henson, 2018)? Subjective event boundaries were determined by asking participants to 
indicate when they felt one event (meaningful unit) ended and another began. We found that a 
number of brain regions showed significant alignment to these subjective event boundaries (see 
figure 5A). Most prominently, in the right middle temporal visual areas (area V5), but also in most 
areas of the default mode network, including the medial frontal gyrus, precuneus and right angular 
gyrus and the right middle frontal gyrus. The results were highly similar when we estimated the 
event boundaries in each region using a fixed number of events that was the same as the number of 
subjective events (k=19). When we investigated the association on the network level (using the 
average network event time course), we found that there was a significant correlation between the 
subjective events and the neural events in the lower and higher order visual networks and the TPJ. 
The strongest correlations were observed with the fast and slow DMNs.  

 

Figure 5. A. Correlation between the neural event boundaries identified in the fMRI data and the 
subjective event boundaries identified by participants outside the scanner. B. Correlation between the 
mean event timecourses in each of the functional networks and the subjective event boundaries.        
C. Illustration of events in representative searchlights within functional networks. The representative 
searchlights were chosen because they showed the strongest correlation with the average event 
timecourses in their respective networks. * indicates a significant correlation after Bonferonni 
correction for multiple comparisons. 

 

Reflection of timescales in power spectra of brain regions 

Previous studies have shown that the temporal hierarchy we observed using the event segmentation 
model, is also reflected in regional differences in neural dynamics (Honey et al., 2012b; Stephens et 
al., 2013). Therefore, we investigated whether regional differences in the power spectrum of the 
fMRI signal were related to the event timescales shown in figure 2A. We found a significant amount 
of the variance of regional event timescale differences could be explained by differences in power 



(r=0.48, p<0.001). Regions with faster event timescales showed higher power in the frequency range 
between 0.03-0.045 Hz (see figure 6A).  

 

 

Figure 6. A. Beta values for the prediction of event duration from PSD in the movie dataset (see 
methods section on power spectra). B. Estimated event timescales based on PSD data in the movie 
dataset. C. Generalization of movie PSD model to resting state, by applying the beta estimates shown 
in A.  

Figure 6B shows the event timescale estimates based on the PSD data. There are many similarities to 
the results shown in figure 2A, such as the fast event timescales in the visual system and the slow 
timescales of the medial prefrontal cortex and anterior temporal lobes. However, we also see some 
striking differences, primarily in the rather fast timescale of the precuneus and slow timescales in the 
auditory cortex. These results suggest that regional differences in power spectra may contribute to 
the observed event timescales, but do not fully explain them.  



To determine to what extent timescale estimates depend on the stimuli that were presented, we 
also applied the same beta estimates to a resting state dataset from the same set of participants. 
Figure 6C shows the resulting event timescale estimates. The estimates in resting state showed a 
weak but significant association with the original event timescales (r=0.14, p<0.001) and a moderate 
correlation with the estimated event timescales in the movie data (r=0.53, p<0.001). The hierarchy 
from fast events in primary sensory regions to slow events in association cortex was not evident 
when the timescales were estimated based on the resting state PSD. Regional differences in 
estimated event timescales were also less pronounced in resting state. However, we do still see 
particularly slow events in the medial prefrontal cortex and anterior temporal lobes. These results 
suggest that visual and auditory stimulation are a prerequisite for observing the temporal hierarchy 
we describe in this paper and that this hierarchy only partly reflects an intrinsic property of brain 
function that is also present in the resting state.   

 

Discussion 

We used a narrative stimulus to investigate the time scale and the nature of event segmentation in 
the brain. Our results demonstrate that there is a distinct temporal gradient of information 
processing over the entire cortex, with particularly fast events in primary sensory regions and long 
periods of information integration in the precuneus and medial prefrontal cortex. Event boundaries 
are shared across long-range functional networks and some events are shared across the temporal 
hierarchy between distinct functional networks. The validity of the neural events we identified was 
supported by their correspondence to subjective event boundaries in the precuneus, angular gyrus, 
medial prefrontal cortex and area V5.  

 

Event timescales across the entire cortex 

While previous studies have been able to show regional differences in the time scale of information 
processing across part of the cortex (Baldassano et al., 2017; Hasson et al., 2008; Honey et al., 2012a; 
Lerner et al., 2011; Stephens et al., 2013), here we were able to reveal event timescales across the 
entire cortex for the first time. Our results provide converging evidence for the hierarchical process 
memory framework (Hasson et al., 2015), showing that the timescales of information accumulation 
vary along the cortical hierarchy from early sensory regions on one extreme and the default mode 
network on the other extreme. The slowest timescales were observed in the anterior default mode 
network, particularly the medial prefrontal cortex. The default mode network has tight links with 
episodic memory systems in the medial temporal cortex and is involved in social reasoning and 
processing of an unfolding narrative (Andrews-Hanna, 2012; Van Kesteren et al., 2012; Simony et al., 
2016; Spreng et al., 2009; Spreng et al., 2010). In line with previous work, we found that event 
boundaries in many parts of the default mode network overlapped with subjective events identified 
by participants (Baldassano et al., 2017; Speer et al., 2007). Together, these results suggest that this 
slowest timescale of event segmentation in the default mode network aligns with the mental 
narrative that participants create based on the movie, which is consequently stored in episodic 
memory (Ben-Yakov et al., 2013; Ben-Yakov and Henson, 2018). 

Another region that showed particularly slow information processing is the insula. This area has 
previously been shown to integrate information about temporal duration over multi-second intervals 
(Wittmann et al., 2010). It has been hypothesized that the insula creates the experience of duration 



by integrating the representations of successive emotional moments over time with interoception 
(Craig, 2009).  

 

Events are shared across brain regions 

Our results show for the first time that neural events are shared across brain regions in distinct 
functional networks. These networks show a strong resemblance to the functional networks that are 
typically identified using regular functional connectivity analyses (c.f. Power et al., 2011; Yeo et al., 
2011). Because neural event boundaries are defined as a regional shift in brain activity patterns, 
these results suggest that different brain regions that are involved in similar (cognitive) functions 
tend to show such shifts at the same time. Critically, network analyses also revealed that the DMN 
and FPN fractionate into faster and slower sub-networks, with differing spatial topographies.  

 The slow DMN we identified resembles the anterior DMN (Andrews-Hanna et al., 2010; Lei et 
al., 2014) and is particularly prominent in the medial prefrontal cortex. The medial prefrontal cortex 
has been related to self-referential mental thought, affective processing and integrating current 
information with prior knowledge (Benoit et al., 2014; Van Kesteren et al., 2012; Northoff et al., 
2006). Therefore, in the context of the movie stimulus, this subnetwork is most likely involved in 
building a narrative by integrating incoming information with previous knowledge/schemas, which 
may be a slow process. In contrast, the fast DMN resembles the posterior DMN which engages in 
episodic memory retrieval through its connectivity with the hippocampal formation (Andrews-Hanna 
et al., 2010). It has been proposed to be involved in forming mental scenes or situation models 
(Ranganath and Ritchey, 2012). Thus, faster events in the posterior portions of the DMN may reflect 
the construction of mental scenes of the movie and/or retrieval of related episodic memories.   

The fast FPN covers the salience network and extends beyond that into the dorsolateral 
prefrontal cortex. It is connected most to the DAN and the higher visual network, as well as the 
auditory/language network. Given the role of the FPN in attentional and cognitive control (Shulman 
and Corbetta, 2012; Vincent et al., 2008) and the role of the salience network in the selection of 
relevant, rewarding or emotional stimuli and switching between cognitive resources (Seeley et al., 
2007; Uddin, 2014), our results suggest that the fast FPN is contributing to maintaining attention to 
the auditory and visual stimuli in the external environment. In contrast, the slow FPN is more 
dominant in lateral parietal areas, but also covers the dorsolateral prefrontal cortex. It is interposed 
between the DAN and slow DMN, suggesting that it may be more involved in inward attention and 
forming event models or an understanding of the film.  

Another interesting difference between our event-based functional networks and the typical 
resting state functional architecture, was the separate network involving the right and left TPJ that is 
typically not observed. The TPJ is thought to be responsible for mentalizing or theory of mind, which 
involves making inferences about the beliefs, desires, and emotions of other people and narrative 
comprehension (Schurz et al., 2014; Xu et al., 2005; Young et al., 2010). The precuneus and medial 
prefrontal cortex are also involved in these functions, in line with the connection we observed 
between the TPJ network and the posterior DMN network.  

Events were not only shared within networks but also between networks. This suggest that 
some events occur across the temporal and cortical hierarchy, with a subset of the event boundaries 
in low-level processing areas also shared with high-level processing regions. At the highest levels of 
this hierarchy, the event boundaries align with subjective experience. Our analyses revealed that 
event boundaries are shared between networks in close alignment with interconnected functions 



between those particular networks. For example, the low-level visual network shared event 
boundaries with the higher-level visual network, which in turn shared event boundaries with the 
dorsal attention network and the fronto-parietal network.  

 

Event timescales and power spectra 

In correspondence with earlier work (Honey et al., 2012b; Stephens et al., 2013), we showed that 
regional differences in event timescales were related to regional differences in the power spectra 
during movie watching. However, much of the variance in event timescales could not be explained by 
the power spectra and for some regions, such as the precuneus and the auditory cortex, predictions 
from the power spectra diverged strongly from the actual event timescales. One reason for this 
discrepancy may be that even regions with a very slow timescale can show rapid event transitions. 
The timescales of event processing are not dominated by one particular frequency, but rather occur 
within a distribution, which is quite narrow in primary sensory regions and broad in areas like the 
medial prefrontal cortex, where both long and short events can occur. 

We also investigated whether the association between power spectra and event timescales 
generalized to resting state data. The predicted event timescales were significantly correlated 
between the movie and the resting state data and we found that the resting state data power 
spectra were also predictive of the event timescales during movie watching. This is line with previous 
work that has also shown that timescales of information processing generalize to resting conditions 
(Honey et al., 2012b; Stephens et al., 2013). However, the correlation between the event timescales 
and resting state power spectra was weak and inspection of the predictions from resting state 
showed that the expected fast information processing of primary sensory regions was lacking in rest. 
In fact, the fastest information processing in rest was observed over the motor cortex and in medial 
occipital and parietal areas (including the precuneus). This suggests that the timescales of 
information accumulation may be driven to a large extent by the nature of sensory input and the 
cognitive demands that are placed on the participant.  

Across all brain regions, the event timescales we observed in the current study were faster than 
those observed by Baldassano et al. (2017). While they observed average event durations in the 
range of 40 seconds to 5 minutes, average durations were in the range of 8 to 34 seconds in our 
study. This may be due to the different fitting procedure that was used. While Baldassano et al. 
(2017) used a procedure that aimed to maximize within-event similarity and minimize between-
event similarity, we aimed to identify events such that the correlation between the event signatures 
were most representative of the full temporal correlation matrix (see figure 1). Therefore, our fitting 
procedure did not penalize correlations between distinct events and may therefore have resulted in 
a larger number of events. The nature and duration of the stimulus (50 minutes in Baldassano et al. 
and 8 minutes in our study) may also have played a role.  

  

Real life experience 

Although event segmentation is thought to be a pivotal aspect of how information is processed in 
real life  (Zacks et al., 2007), it is often not considered in experimental settings, where events are 
predetermined by the trial or block structure. This study and previous work (Baldassano et al., 2017) 
shows that we are now able to investigate brain activity as it unfolds over time in a way that is much 
more similar to our daily life experience than typical cognitive neuroscience experiments. This opens 



the door for investigations of neural differences during narrative comprehension between groups of 
participants, such as participants with autism who may have trouble distinguishing events that 
require them to infer the state of mind of others (Baron-Cohen, 2000; Hasson et al., 2009), or 
participants with Alzheimer’s disease, who may have trouble encoding particular events in memory 
(Zacks et al., 2006).    

This approach also allows us to show at which levels of the cortical hierarchy neural events 
align with subjective event experience or with objectively defined events. This occurs not only in the 
default mode network regions discussed previously, but also in area V5, suggesting that movement 
cues may be one important indicator of perceived event boundaries (in line with Zacks et al., 2001).   

 

Conclusion 

Using a unique dataset in combination with a novel model fitting procedure, we were able to show 
the timescales of neural events across the entire cortex. These timescales were not fully predicted by 
the regions’ power spectra and generalized poorly to resting state data. We found that neural events 
are shared across brain regions that are typically part of the same functional network, while specific 
events are also shared across the temporal hierarchy between distinct functional networks. In 
addition, we observed that known functional networks such as the DMN and FPN fractionate due to 
differences in the timescales of event segmentation. These results shed new light on how the brain 
processes information in real life contexts.  
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