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ABSTRACT
Analytic tools are useful for detecting pa�erns in education data
and providing insights about student performance and learning.
�is study compared six supervised learning algorithms (e.g., linear
regression, ridge regression, lasso, regression trees, random forests
regression, gradient boosted regression) and identi�ed features im-
portant for predicting student performance. �e dataset consisted
of N=1044 observations from two secondary schools in Portugal
[1]. Performance was assessed by �nal grades (range: 0-20) in two
courses, mathematics and Portugese. �e models were �t to train-
ing data with 27 independent variables and evaluated on a testing
subset. Overall, performance was lower for students in mathemat-
ics than Portugese. �e models selected a similar set of variables
as important for predicting performance: Mother’s education level,
student plans for higher education, and weekly study time were
positively related to predicted performance, whereas course sub-
ject, school educational support, and romantic relationships were
associated with decreased student performance. �e models dif-
fered in the number, weighting, order and importance given to
the predictor variables. Linear regression provided a model with
13 predictors. Ridge regression shrank the coe�cient estimates
toward zero; the lasso performed variables selection for a model
with 20 predictors. �ere was a tradeo� between model complexity
and interpretability. �e single pruned regression tree provided a
simple, interpretable non-linear model that branched on four fea-
tures. Random forests regression and gradient boosting reduced
over��ing, but were more di�cult to interpret. Advantages and
limitations of the di�erent models are considered. Applications
for educational data mining (EDM) and learning analytics (LA) are
discussed. 1

KEYWORDS
Predictive Modeling, Variable Importance, Learning Analytics

1 INTRODUCTION
Education institutions have generated very large amounts of stu-
dent data in recent decades due to dramatic increases in computing
speed and processing power [2, 3]. �e development and use of
analytic approaches for predictive modeling allows researchers and
educators to discover pa�erns in data and provide insights about
learning for e�ective decision making. Educational data mining
(EDM) and learning analytics (LA) are multidisciplinary �elds at
the intersection of learning science, social science, statistics, and
computer science that leverage big data to understand learning and
the environments in which it occurs [4, 5]. Predictive modeling
provides useful methods for analyzing the factors that contribute
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to student success and identifying individuals at risk for dropping
out. Evaluating di�erent predictive models and approaches to fea-
ture selection is useful for determining which approach is best for
predicting student performance.

Historically, education institutions have tracked student per-
formance, dropout, retention, and used analytic tools to identify
factors central to learning such as persistence and social integration
[6]. As extensive education datasets became available for analysis,
EDM/LA researchers have applied a diverse range of descriptive,
correlational, and predictive methodologies to discover potentially
useful pa�erns in the data for understanding learners and learning
in di�erent contexts [7]. �e �elds of EDM and LA both share
the goal of using research methods and predictive analysis to im-
prove student performance and instructional design [6, 8, 9]. EDM
research has focused more on the technical challenges of extract-
ing value from big data in education [10, 11], whereas LA takes a
more holistic, education-focused approach to learning that seeks
to inform and empower instructors and learners [12, 13]. Despite
di�erences in their respective origins and emphases, LA and EDM
are complementary approaches that use similar methodologies.

Together, EDM and LA represent an ecosystem of techniques for
gathering, processing, and acting on data to promote learning. �e
main analytic approaches used in these areas include discovery with
models (i.e. modeling), similarity grouping, relationship mining,
content analysis, and social network analysis (SNA) [5, 8]. �ese
procedures facilitate the preparation, measurement, and collection
of data about learning activities for subsequent analysis, interpre-
tation, and reporting. Student characteristics are o�en modeled in
terms of domain knowledge, motivation, metacognitive abilities (i.e.
thinking about thinking), learning strategies, a�itudes, and a�ect
[13]. Analyses of learner data and pa�erns identi�ed within these
data have been directed at predicting learning outcomes, recom-
mending resources, and detecting error pa�erns [14]. �e output
from EDM/LA research has provided insights for various stakehold-
ers, including learners, educators, and administrators. �is paper
focuses on predictive modeling of student performance as a form
of data-driven learning analytics.

1.1 Predictive Modeling
Predictive modeling involves a set of statistical procedures and
automated processes for extracting knowledge from data [15, 16].
Two main branches of predictive modeling are supervised learning
and unsupervised learning. Supervised learning problems involve
prediction about a speci�c outcome or target variable (i.e. course
grade) when examples of input/output pairs are available in the data.
If a dataset has no target outcome, unsupervised learning methods
(e.g. clustering) can reveal structure in unlabeled data. Clustering
can be used to group individuals based on similar learning pro�les.



In this study, student performance is analyzed as a supervised
learning problem based on �nal course grades.

Two main approaches for supervised learning problems are clas-
si�cation and regression. For a binary or categorical outcome that
is represented as a class label (e.g., pass, fail), a classi�cation model
will predict which class or category that new instances are assigned
to. When the target variable to be predicted is measured on a con-
tinuous scale (e.g. GPA), a regression model tests how a set of
a�ributes or features predicts the target outcome. Classi�cation is
the most commonly used data analytic method for modeling stu-
dents and their behavior and can include methods such as logistic
regression, support vector machines, naive Bayes, decision trees,
and neural networks [17].

�e present study compares several regression models of student
performance to identify the set of features that best predict student
performance. Each model was �rst trained on a set of input-output
pairs and then used to make predictions about new observations
that were previously set aside. Comparing di�erent predictive
models can help determine which model is best for a given problem
with the data available [18]. Past empirical �ndings indicate that,
in addition to course assessments (i.e. number of quizzes passed),
student engagement and participation in course activities are the
most in�uential predictors of �nal grades [11, 13]. A student’s sense
of belonging is also essential for engagement and improved course
satisfaction, which can in turn lead to reduced student dropout.

1.2 Linear Models
1.2.1 Linear Regression. A general assumption of linear regres-

sion is that the target outcome can be represented as a linear func-
tion of the input features. �e standard linear model describes the
relationship between predicted target variable (Y) from a set of
features (X1 … Xp ), including some measure of error (equation 1).
�e predicted value of the target outcome can be thought of as the
weighted sum of the input features with the weights or coe�cients
(i.e., beta values) indicating the in�uence of a given feature on the
outcome. Ordinary least squares (OLS) regression miminizes the
distance (i.e., error) between the predicted values of Y and the ob-
served values in the dataset. If the number of observations (n) is
much larger than the number of features (p), OLS coe�cient esti-
mates will have low variance and perform well on test observations;
however, if the number of observations n is not much larger than
the number of features p, high variability in the OLS �t can result
in over��ing and poor prediction on the test observations. For
high-dimensional datasets (p >> n), the least squares coe�cient
estimate breaks down. �e simple linear model can be improved by
using alternative ��ing approaches that produce be�er prediction
accuracy and model interpretability [15].

Y = β0 + β1X1 + β2X2 + ... + βpXp + ϵ (1)

In many regression analyses, it is o�en the case that multiple
independent variables or features will not be correlated with the tar-
get outcome. �ree methods for improving the �t of linear models
are: (a) subset selection, (b) dimension reduction, and (c) regulariza-
tion (i.e.., shrinkage). Determining which set of features is best for
representing the predicted outcome is essential for model interpre-
tation. A straightforward approach to feature selection is to �rst

conduct a regression including all the independent variables and
then rerun the regression while excluding non-signi�cant variables
from the model. Another approach, termed regularization, includes
all p predictor variables, but constrains (i.e., regularizes) the coef-
�cient estimates of the independent variables by shrinking them
towards zero. Regularization reduces variablity, which improves
accuracy on the testing set with a slight increase in bias. Shrinking
the coe�cient estimates of irrelevant features toward zero reduces
over��ing and can aid model interpretation.

1.2.2 Ridge Regression: L2 Penalty. As with OLS, ridge regres-
sion seeks coe�cient estimates that �t the data well by reducing
error, but ridge regression introduces a shrinkage penalty (L2) that
has the e�ect of shrinking the coe�cient estimates towards zero.
When the tuning parameter (lambda) is set to zero, the shrink-
age penalty has no e�ect and ridge regression produces the least
squares estimates. As the value of lambda increases, the estimated
regression coe�cients approach zero [15]. �e advantage of ridge
regressions over least squares is based on the bias-variance tradeo�.
As the tuning parameter lambda increases, the �exibility of the
ridge regression decreases, leading to decreased variance but in-
creased bias. Lower variance is associated with reduced over��ing,
whereas higher bias can lead the model to miss relevant relations
between features and target outputs (under��ing). Ridge regres-
sion is o�en applied a�er standardizing the predictor variables so
that they are all on the same scale (e.g., M=0, SD=1). Ridge re-
gression performs well with high-dimensional datasets (p>>n) by
trading o� a small increase in bias for a large decrease in variance.
A disadvantage of ridge regression is that, because it includes all
predictors in the model, the penalty shrinks the coe�cients toward
zero, but does not set any of them exactly to zero. �is can create a
problem for model interpretation when working with a very large
number of features.

1.2.3 The Lasso: L1 Penalty. �e lasso and ridge regression have
similar formulations, but the lasso has a major advantage over ridge
regression as it produces simpler, more interpretable models based
on a subset of features. �e lasso uses the L1 penalty which has the
e�ect of forcing some of the coe�cient estimates to be equal exactly
to zero when the tuning parameter lambda is su�ciently large [16].
�e lasso performs variable selection and produces sparse models
based on a subset of features, which are generally easier to interpret
than ridge regression. �e lasso implicitly assumes that a number
of the feature coe�cients or weight truly equal to zero. In general,
the lasso performs be�er than ridge regression in situations where
a small number of features account for most of the variability in
the target outcome, and the remaining features have coe�cients
that are very small or equal to zero. By contrast, ridge regression
performs be�er when the target is a function of a large number of
predictors that contribute approximately equally to the coe�cients.
Cross-validation is used to determine which value of the lambda
parameter is optimal. In general, least squares regression (OLS)
performs well when the number of observations is larger than the
number of features (n >> p); however, ridge regression and the
lasso are preferred when working with a very large number of
predictors (p >> n).
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1.3 Non-Linear Models
1.3.1 Regression Trees. Decision tree models are widely used for

classi�cation and regression. Tree models are built on a hierarchy
of if-else questions that proceeds from a root node as the starting
point and continues through a series of decisions. Each node in
the tree represents either a question or a terminal node (i.e.,leaf)
that contains the outcome. In constructing the tree, the algorithm
searches through all possible decisions, or tests, and �nds a solution
that is most informative about the target outcome. �e recursive
branching process of tree based models yields a binary tree of
decisions, with each node representing a test that considers a single
feature. �is process of recursive partitioning is repeated until each
leaf in the decision tree contains only a single target. Prediction
for a new data point proceeds by checking which region of the
partition the new point falls into and predicting the majority in
that feature space. Tree based models require li�le adjustment and
are easy to interpret. A drawback is that they can lead to very
complex models that highly over�t data used to train the model. A
good strategy for building a regression tree is to grow a very large
tree and then prune it back to obtain a subtree that provides the
lowest test error rate. A good way to prevent over��ing is to use
pre-pruning to limit the maximum depth of the tree.

1.3.2 Random Forest Regression. A random forest is a collection
of decision trees that are each slightly di�erent, with each tree over-
��ing the data in a di�erent way. �is approach reduces over��ing
by building many trees and averaging their results. Randomness is
introduced into the tree building process in twoways: �rst, by draw-
ing a random subset (i.e. bootstrap sample) of the data, and second
by selecting a random subset of features at each node branch [19].
In building the random forest, the user must �rst decide how many
trees to build and the algorithm makes di�erent random choices
so that each tree is distinct [18, 20]. �e bootstrapping method
repeatedly draws random samples of size n from the dataset with
replacement. �e decision trees are built on these random samples
that are the same size as the original data, with some points missing
and some data points repeated. �e algorithm also selects a random
subset of p features, that are repeated separately at each node, so
that each decision at the node branch is based on a di�erent subset
of features. �ese two processes help ensure that all of the decision
trees in the random forest are di�erent.

1.3.3 Gradient Boosting. Similar to random forests, gradient
boosting is an ensemble approach that builds many smaller trees;
however, with each new tree the gradient boosting algorithm at-
tempts to correct for de�ciencies of the current ensemble. In con-
trast to random forests, gradient boosting grows smaller, stubbier
trees, and goes a�er bias [15, 16]. Gradient boosted regression trees
use strong prepruning, with shallow trees of a depth of one to �ve.
�us, each tree provides an estimate of part of the data. Combining
many shallow trees iteratively improves model performance. Gra-
dient boosting and random forests perform well on similar tasks
and data. A common practice is to �rst construct random forests
and then use gradient boosting to improve model accuracy [20].

1.4 Study Goals
�is project examines the relationships between student characteris-
tics, behavior, and performance. Data on student performance from
two secondary schools in Portugal was obtained from the UC-Irvine
machine learning repository (UCI-MLR) [1]. �e dataset included
information from a student survey and school grade records. �e
data were �t using several supervised learning regression mod-
els (described above). �e predictor variables of interest were de-
mographic features, family characteristics, and student behaviors
(e.g., weekly study hours, romantic relationships). �e di�erent
models explored various dimensions of student performance by:
(i) Analyzing the combination of factors that best predict student
performance, (ii) Selecting the variables most important for pre-
dicting performance, and (iii) Identifying the most accurate and
interpretable model of predicted student performance.

2 METHOD
2.1 Data
�e student performance dataset downloaded from the UCI-MLR
was saved as a data frame object in a python interactive notebook.
�e data was collected from two secondary schools in the Alentejo
region of Portugal during the 2005-2006 school year and contained
information from a questionnaire and school reports of student
grades [1]. �e sample consisted of 1044 students (56.6% female,
Mage=16.71 years, SD=1.19, Median=17 years, range=15-22). Age
was measured as a categorical variable (n=10 individuals between
the ages of 20 to 22 were included in the category: 19+ years).
�e dataset consisted of 30 independent variables, including demo-
graphic information, social/ emotional a�ributes, school-related
variables, and student behaviors (see Table 1). �e target variable,
student performance was evaluated on a 20 point scale as in other
European countries (e.g. France) at three points during the school
year (i.e., Grade1, Grade2, Grade3) for two courses: Mathematics
(n=395) and Portugese (n=649). �e target variable of interest was
the �nal course grade (G3). A binary dummy variable of student
performance was calculated based on the measure of �nal exam
grades (Pass: G3>10, Fail: G3<=10) for descriptive purposes.

2.2 Model Construction
2.2.1 Linear Regression (OLS). All models were constructed in R

(using Rstudio) [15]. A�er preliminary exploration of the data, the
sample was divided into the training set (n1=731) and testing set
(n2=313) using a 70 to 30 percent split. Each model was �rst �t to
training data and evaluated on the testing set. Student performance
was regressed on 27 independent variables shown in Table 1 using
the general linear model (OLS). �e regression model was run on
the training set with the full set of predictor variables; the model
was then rerun excluding all non-signi�cant predictors variables
from model. �e �nal model was then evaluated on a subset of
hold-out data in the testing set.

2.2.2 Ridge regression (L2 penalty). �e glmnet package was
used to �t the ridge regression and lasso models. �e glmnet()
function does not use model formula language, so the X matrix
of predictors and target vector Y were passed to the model. �e
model.matrix() function produced a matrix corresponding to the 27
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Table 1: Variables in the Student Performance Dataset [1]

Target Variable

Final course grade (0=Lowest, 20=Highest) G3

Predictor Variables

1. Sex (0=Male,1=Female) SEX
2. Age (15, 16, 17, 18, 19+ years) AGE
3. Home address type (0=Rural, 1=Urban) AREA
4. Family size (0=�ree or less, 1=More than three) FAMSIZE
5. Parents’ cohabitation status (0=Separate, 1=Together) PARENTS
6. Mother’s education (0=None, 1=Primary, 2=Grades 5-9, 3=Secondary, 4=Higher education) MEDU
7. Father’s education (0=None, 1=Primary, 2=Grades 5-9, 3=Secondary, 4=Higher education) FEDU
8. Mother’s job (0=At home, 1=Other, 2=Civil Services, 3=Health Care, 4=Teacher) MJOB
9. Father’s job (0=At home, 1=Other, 2=Civil Services, 3=Health Care, 4=Teacher) FJOB
10. Student’s guardian (0=Other, 1=Father, 2=Mother) GUARDIAN
11. Time from home to school (1=¡15 min, 2=15-30 min, 3=30-60 min, 4=¿60 min) TRAVEL
12. Weekly study time (1=¡2 hours, 2=2-5 hours, 3=5-10 hours, 4=¿10 hours) STUDY
13. Extra educational support (0=No, 1=Tes) SCHOOLSUP
14. Family educational support (0=No, 1=Tes) FAMSUP
15, Paid extra subject classes (0=No, 1=Tes) PAID
16. Extra-curricular activities (0=No, 1=Tes) ACTIVITIES
17. Wants to take higher education (0=No, 1=Yes) HIGHER
18. Internet access at home (0=No, 1=Tes) INTERNET
19. In a romantic relationship (0=No, 1=Tes) ROMANTIC
20. �ality of family relationships (1=Very Bad, 5=Excellent) FAMREL
21. Free time a�er school (1=Very Low, 5=Very High) FREETIME
22. Going out with friends (1=Very Low, 5=Very High) GOOUT
23. Workday alcohol consumption (1=Very Low, 5=Very High) DALC
24. Weekend alcohol consumption (1=Very Low, 5=Very High) WALC
25. Current health status (1=Very Bad, 5=Very Good) HEALTH
26. Number of school absences (Count range: 0 to 93) ABSENCES
27. Course subject (0=Portugese, 1=Mathematics) COURSE

predictors and automatically transformed any qualitative variables
into dummy variables. �e alpha parameter in the glmnet() func-
tion determines what kind of model is �t: alpha = 0 is used to �t
ridge regression. It is important to select an appropriate value of the
parameter lambda, as the algorithm generates a di�erent set of coef-
�cients for each value of lambda. By default, the glmnet() function
performs ridge regression for an automatically selected range of
lambda values (e.g. 100). �e glmnet function also standardizes the
variables so they are all on the same scale. �e shrinkage penalty
is applied to every feature, but not the intercept.

2.2.3 The Lasso (L1 Penalty). �e Lasso model was �t using
the glmnet() function with alpha=1. �e model automatically cal-
culates correlation estimates for a wide range of lambda values.
Cross-validation was used to select an optimal value of the tuning
parameter lambda. �e lasso is similar to best subset selection as it
tries to �nd the set of coe�cient estimates that leads to the small-
est error (RSS). In terms of the bias-variance tradeo�, the lasso is
qualitatively similar to ridge regression. As the value of lambda
increases, the variance decreases and bias increases somewhat.

2.2.4 Regression Trees. �e regression tree model of student
performance was �t to the training data using the rpart() function
in R, with all 27 independent variables. �e decision tree uses
recursive binary spli�ing to construct a large tree on the training
data. Cross-validation was used to determine the optimal tree
complexity. �e model was prepruned to a maximum depth of 3,
which means the algorithm split on three consecutive features.

2.2.5 Random Forests Regression. �e random forest model was
�t using 1000 trees, with all of the features considered at each node
to determine the randomness of each tree. In general, random
forests work well without very much parameter tuning or scaling
of data. �e important parameters for the random forests algorithm
are the number of sampled data points and the maximum number
of features; the algorithm can look at all of the features in the
dataset or a limited number. A high value for maximum-features
will produce trees in the random forest that are very similar and will
�t the data easily based on the most distinctive features, whereas a
low value will produce trees that are very di�erent from each other,
which reduces over��ing.
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Table 2: Correlation Matrix of Previous Course Failures and
Course Grade Variables

Variable Failures Grade 1 Grade 2 Grade 3

Failures 1.00 0.37*** 0.38*** 0.38***
Grade 1 1.00 0.86*** 0.81***
Grade 2 1.00 0.91***
Grade 3 1.00
Note. *** p<0.001

2.2.6 Gradient Boosted Regression Trees. In addition to pre-
pruning and the number of trees, an important parameter for gra-
dient boosting is the learning rate which determines how strongly
each tree tries to correct for mistakes of previous trees. A high
learning rate produces stronger corrections, allowing for more com-
plex models. �e gbm package was loaded, and the gbm() function
was called on student performance (�nal grade) using the Gaussian
distribution, with 1000 shallow trees, a shrinkage parameter = 0.01,
and interaction depth of 4 splits.

0 1 2 3

failures

0.0

0.2

0.4

0.6

0.8

1.0
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No
Yes

Figure 1: Proportion of Passing or Failing Final Grades as a
Function of Previous Course Failures

3 RESULTS
3.1 Exploratory Data Analysis
Preliminary examination of the data revealed signi�cant inter-
correlations between the course evaluation variables Grades 1,
Grade 2, and Grade 3 which accounted for signi�cant portions
of variance in the target outcome (see Table 2). In addition, pre-
vious course failures was signi�cantly correlated with all three
course grade measures. To address the issue of multicolinearity,
Grade 1, Grade 2, and past course failures were not included in the
regression analyses reported below.

Table 3 provides descriptive statistics for selected a�ributes. Chi-
squared tests of independence were used to compare the proportion
of students who received passing and failing grades by a�ribute.
�ere was no relationship between performance and sex; males

Table 3: Summary Table of Student Performance by Final
Course Grade (Pass>=10, Fail<10) for Selected Variables

Pass Fail
A�ribute N % N %

Total 661 63.3% 383 36.7%

Male 277 61.1% 176 38.9%
Female 384 65.0% 207 35.0%

Course
Portugese 452 69.6% 197 30.4%
Math 209 52.9% 186 47.1%

Mother’s Education
Higher Ed 235 76.8% 71 23.2%
Secondary 143 49.5% 95 32.9%
Grades 5 to 9 180 75.6% 109 45.8%
Primary 98 47.5% 106 52.5%
None 7 77.8% 2 22.2%

Higher Education Plans
Planned 640 67.0% 315 33.0%
No Plans 21 23.6% 68 76.4%

School Support
Received 63 52.9% 56 47.1%
None 598 64.6% 327 33.4%

Study Time
More than 10 hrs. 45 72.6% 17 27.4%
5 to 10 hrs. 123 75.9% 39 24.1%
2 to 5 hrs. 321 63.8% 182 36.2%
Less than 2 hrs. 172 54.3% 145 45.7%

Romantic Relationship
Yes 221 59.6% 150 40.4%
None 440 65.4% 233 34.6%

Internet Access
Yes 543 65.7% 284 34.3%
None 118 54.4% 99 45.6%

and females did not di�er signi�cantly in performance (p=0.20).
Student performance did vary according to mother’s level of edu-
cation (p<0.05), but as seen in Table 3, the relationship between
performance and mother’s education was non-linear. Performance
also varied signi�cantly by course subject (p<0.001); more than
two-thirds of students in the Portugese course successfully passed,
whereas just over half of students in the mathematics course re-
ceived a passing grade. �e relationship between student perfor-
mance and plans for higher education was signi�cant (p<0.001).
Two-thirds of students with plans for higher education received a
passing grade, whereas less than one-quarter of students with no
plans for higher education passed their course. Extra educational
school support was signi�cantly related to performance (p<0.001).
Just over half of students who received extra educational support
at school received a passing grade compared to nearly two-thirds
of students who did not receive extra support.
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Table 4: Coe�cient Estimates for Regression Models of Student Performance on Training Set and Testing Set

Training Set Testing Set

Variables Coe�cient S.E. t-value Coe�cient S.E. t-Value

Intercept 13.289*** 2.166 6.14 6.955* 3.629 1.92
Course -2.225*** 0.261 -8.53 -1.162*** 0.445 -2.61
Mother’s Education 0.485*** 0.122 3.97 0.473** 0.213 2.25
Go Out with Friends -0.442*** 0.114 -3.89 -0.097 0.178 -0.55
Higher Ed 1.695*** 0.487 3.48 4.101*** 0.772 5.31
School Support -1.435*** 0.416 -3.45 -1.481** 0.647 -2.29
Health -0.262*** 0.088 -2.97 -0.008 0.152 -0.05
Study Time 0.454*** 0.156 2.91 0.893*** 0.260 3.43
Internet Access 0.819** 0.321 2.55 0.420 0.542 0.77
Family Relations 0.340** 0.140 2.43 -0.096 0.215 -0.45
Romantic Relation -0.600** 0.266 -2.26 -1.127** 0.461 -2.45
Age -0.250** 0.114 -2.20 -0.034 0.191 -0.18
Family Size -0.500* 0.278 -1.80 -0.594 0.458 -1.30
Father’s Job 0.278* 0.145 1.92 -0.050 0.245 -0.20

n 730 314
F-Value 15.41*** 5.96***
df (13, 716) (13, 300)
R2 0.219 0.205
Adj. R2 0.204 0.171
Resid. S.E 3.396 3.643
Note. Signi�cance levels *<0.10 **<0.05 ***<0.01

As expected, weekly study time was signi�cantly associated with
student performance (p<0.001). �e proportion of passing and fail-
ing grades signi�cantly di�erent for students who studied 5 hours
or more per week compared to students who studied less than 5
hours per week. �e association between romantic relationships
and student performance was marginally signi�cant (p<0.06). �e
proportion of passing and failing grades was signi�cantly di�er-
ent for students in a romantic relationship than students not in a
romantic relationship. �e relation between internet access and
student performance was also marginally signi�cant (p<0.06). �e
proportion of passing and failing grades was signi�cantly di�er-
ent for students with access to the internet at home compared to
students without home internet access (p<0.05).

3.2 Linear Regression and Regularization
3.2.1 General Linear Model. Student performance was �rst re-

gressed on the 27 independent variables (Table 1) with the training
set; this regression was statistically signi�cant and accounted for
19.7% of the variance in the predicted value of student performance,
taking into account the number of independent variables, F (27, 702)
= 7.62, p < 0.001 (R2=0.227, adjusted R2=0.197). �e regression
model was rerun, excluding the non-signi�cant predictors, and this
regression also yielded a signi�cant relationship between student
performance and the independent variables, accounting for 20.4%
of the variability in predicted performance, F (12, 717) = 21.79, p <
0.001 (R2=0.219, adjusted R2=0.204). An ANOVA test showed no
signi�cant di�erence between the two models (F< 1.0, p = 0.91) and
the simpler model with thirteen predictor variables was retained

as the �nal model. �e estimated coe�cients, standard error, and
t-value on the testing set (ranked by t-Value) are presented in the
le� side of Table 3.

�e �nal model was evaluated on the testing set and the regres-
sion yielded a signi�cant relationship between student performance
and the independent variables, accounting for 17.1% of the vari-
ability of the predicted value of student performance, taking into
account the number of independent variables, F (13, 300) = 5.96, p <
0.001 (R2=0.205, adjusted R2=0.171). As shown in Table 3, 6 of the
13 independent variables in the testing set were signi�cant, which
suggests that the model was over�t to data in the training set, �e
predicted values of student performance are be explained by the
combined e�ect, or weighted average, of the coe�cient estimates
and the observed values for each signi�cant independent variable
in the model (Equation 2).

Y = 6.955 − 1.162(Course) + 0.473(MotherEd) + 4.101(HiдherEd)
+0.893(StudyTime) − 1.481(SchoolSupport) − 1.127(RomanticRel)

On the testing set, there was a 1.16 decrease in predicted perfor-
mance for students in the math course compared to students in the
Portugese course, controlling for all other independent variables.
A unit change in mother’s level of education was associated with
a 0.47 increase in predicted student performance, controlling for
all other variables. Students with plans to pursue higher educa-
tion had a 4.10 higher predicted �nal grade than students with
no plans for higher education, controlling for other variables. A
one-unit change in weekly study time resulted in a 0.89 increase in
predicted student performance, holding constant the e�ect of other
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variables. Students receiving school support had a 1.48 lower pre-
dicted �nal course grade than students who did not receive school
support, holding all other variables constant. Finally, there was a
-1.13 decrease in predicted performance for students in a romantic
relationship compared to students not in a romantic relationship,
controlling for all other independent variables.

Figure 2: Coe�cient Estimates for the Ridge Regression
model (L2 Penalty) as a function of the log Values of Lambda

Figure 3: Coe�cient Estimates for the Lasso Regression
model (L1 Penalty) as a function of the log Values of Lambda

3.2.2 Ridge Regression (L2 Penalty). Figure 2 plots the coe�cient
estimated from the ridge regression model (L2) as a function of the
log values of lambda (x-axis). As the values of lambda become
very large, the model shrinks the coe�cient values of non-relevant
predictor variables towards zero, but the values are never exactly

Table 5: Coe�cient Estimates for Ridge Regression and the
Lasso Model of Student Performance using Best Value of
Lambda from Cross-Validation

Ridge (L2 Penalty) Lasso (L1 Penalty)

Best lambda (CV) 0.819 0.071
MSE 13.779 13.895

Predictor Variables Coe�cients Coe�cients

Intercept 13.498 12.899
Course -1.801 -2.058
Higher Ed 1.390 1.534
School Support -1.148 -1.121
Internet Access 0.602 0.614
Romantic Relation -0.487 -0.461
Family Size -0.447 -0.353
Study Time 0.345 0.353
Mother’s Education 0.326 0.403
Going Out -0.280 -0.316
Family Relations 0.274 0.247
Family Support -0.258 -0.152
Area (Urban/Rural) 0.242 0.192
Age -0.223 -0.196
Father’s Job 0.209 0.205
Health -0.203 -0.199
Weekly Alcohol Cons. -0.130 -0.113
Mother’s Job 0.127 0.066
Travel Time to School -0.109 -0.053
Parents Rel. Status 0.258 0.045
Daily Alcohol Cons. -0.072 -0.029
Sex 0.118 0.
Paid Extra Classes -0.050 0.
Extra Activities 0.015 0.
Free Time -0.062 0.
Absences 0.002 0.
Father’s Education 0.046 0.
Student Guardian -0.052 0.

equal to zero. Cross-validation was used to obtain the best value
of lambda, which was, λ = 0.819 (lnλ = -0.200). As shown in Figure
2, the predictors with the highest coe�cient values were course
subject (27), students’ plans for higher education (17), extra school
support (13), and internet access at home (18). �e ridge regression
(L2) was rerun using the best value of lambda from cross-validation
with all 27 predictor variables with coe�cient estimates shown
in Table 5. �e ridge regression model had a mean squared error
(MSE) of 13.78.

3.2.3 The Lasso (L1 Penalty). Figure 3 plots the estimated coef-
�cients from the lasso (L1) regression as a function of the log value
of lambda, with the number of associated features listed across
the top of the plot. �e plot shows that as the values of lambda
increase, the L2 penalty shrinks many of the coe�cient values to
be equal exactly to zero. Cross-validation was used to obtain the
best value of lambda, λ = 0.071 (lnλ = -2.65). �e lasso model was
rerun using the optimal value of lambda selected by cross validation

7



with 20 predictor variables; the model had a mean squared error
(MSE) of 13.895 and accounted for approximately 20 percent of the
variability in student performance. Similar to the ridge regression,
the predictors with the highest coe�cients were course subject
(27), plans for higher education (17), extra school support (13), and
internet access at home (18). �e error from the lasso model is
very similar to the ridge regression, but the lasso has an advantage
over ridge regression in that the resulting coe�cient estimates are
sparse and the model selected a subset of the predictor variables.

3.3 Decision Tree Models

Figure 4: Regression Tree Model of Student Performance on
the Traing Set (n=700)

3.3.1 Regression Trees. �e decision tree model was �t to the
training set, with a maximum depth of 3; Figure 4 shows the re-
sulting regression tree with course subject as the root node and 7
terminal nodes. Course subject was a dummy variable; the branch
to the le� represents students in the mathematics course (39%) and
the branch to the right represents students in the Portugese course
(61%). In addition to course subject, the algorithm split on mother’s
education level, weekly study time. student absences, and age in
constructing the tree. �e values of student performance ranged
from 5, for students in the mathematics course with no absences
who were 18 years or older, to 13 for students in the Portugese
course whose mother’s had some higher education. �e regression
tree model was evaluated on the test set (maximum depth=3) which
yielded a tree with plans for higher education (rather than course
subject) as the root node and 6 terminal nodes (see Figure 5). �e
MSE for the regression tree on the testing set was 16.385.

As seen in Figure 5, from the root node of plans for higher ed-
ucation, the algorithm split at nodes for mother’s education level,
area (urban / rural), course subject, and student absences in con-
structing the tree. Following the right branch from the root node,
students with plans for higher education (91%) had a mean pre-
dicted performance of 12, whereas on the le� branch, students with
no plans for higher education (9%) had a mean predicted perfor-
mance of only 7. For students with plans for higher education, the
next split on mother’s education level: Following the branch to the
right, students whose mothers had 5th grade level of education or

Figure 5: Regression Tree Model of Student Performance on
the Testing Set (n=314)

higher (74%) had a mean predicted performance of 12. Following
this branch to the next node of area, on the right branch students in
urban areas (55%) had a mean predicted performance of 13, whereas
students in rural areas (19%) had a mean performance of 11. On
the le� branch, students whose mother’s had a�ended secondary
school or lower (17%), the mean predicted performance was 10. �is
branch split next on course topic, and students in the Portugese
course (12%) had a mean predicted performance of 11, whereas the
mean performance for students in the mathematics course (5%) was
8.2. For students with no plans for higher education (9%), the next
node split on absences, where the mean predicted performance for
students with no absences (5%) was 9.1, and students with one or
more absences, had a mean predicted performance of 4.6.

3.3.2 Random Forests Regression. �emean squared error (MSE)
for the random forests regression was 6.278, which indicates be�er
performance for RF than a single decision tree. �e random forests
(RF) algorithm provides feature importance as a model summary;
for regression, this is measured in terms of percent increase in MSE.
�e le� side of Table 6 provides the feature importance for the
RF regression sorted by percent increase in MSE. �e algorithm
selected mother’s education as the most informative feature for
predicting student performance (�nal grade). In contrast to the
single decision tree, number of absences and area (urban/rural)
were selected as the second and third most important features in
the model. Plans for higher education and course subject were also
among the most in�uential predictor variables in the random forest
model, but these variables were not given as prominent a position
as in the single tree.

3.3.3 Gradient Boosted Regression. �e mean squared error
(MSE) for the gradient boosted regression tree model was 18.124.
Feature importance for the gradient boosted regression trees is
presented on the right side of Table 6. Absences and course subject
were selected as the two most important features for predicting
student performance. �e algorithm selected mother’s education
level, student age, going out with friends, and weekly study time
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Table 6: Feature Importance for Random Forests Regression and Gradient Boosting Model

Model

Random Forests Gradient Boosting

Predictor % Increase MSE Predictor Relative Importance

Mother’s Education 1.368 Absences 16.754
Absences 0.884 Course 11.151
Area (Urban/Rural) 0.592 Mother’s Education 7.926
Higher Education 0.575 Age 7.460
Course 0.481 Go Out w/ Friends 5.566
Weekly Alcohol 0.473 Study Time 4.618
Mother’s Job 0.463 Health 3.942
Father’s Education 0.399 Free Time 3.284
Go Out w/ Friends 0.389 Family Relations 3.213
Daily Alcohol 0.373 Weekly Alcohol 3.150
Age 0.370 Daily Alcohol 2.848
School Support 0.347 Extra Activities 2.635
Study Time 0.321 School Support 2.550
Sex 0.318 Higher Education 2.544
Father’s Job 0.278 Father’s Job 2.522
Free Time 0.272 Guardian 2.124
Internet Access 0.204 Father’s Education 2.059
Family Relations 0.181 Family Size 1.960
Extra Activities 0.179 Romantic Relation 1.889
Travel Time 0.122 Internet Access 1.875
Guardian 0.121 Sex 1.776
Family Size 0.112 Family Support 1.762
Family Support 0.103 Travel Time 1.761
Health 0.097 Mother’s Job 1.757
Romantic Relation 0.093 Paid Extra Courses 1.430
Paid Extra Courses 0.075 Area (Urban/Rural) 1.105
Parents’ Relation 0.056 Parents’ Relation 0.345

as the next most informative variables, in descending order of im-
portance. Plans for higher education was not selected among the
most important variables for predicting student performance in the
gradient boosted model.

4 DISCUSSION
�e di�erent models identi�ed many of the same variables as impor-
tant for predicting student performance: course subject, mother’s
education, student plans for higher education, weekly study time,
school support, absences, going out with friends, and romantic
relationships. Overall, the performance of students in mathematics
was lower than students in the Portugese course, likely owing to
the a di�erence in the di�culty of the subject material. �e models
di�ered in the number, weighting, order, and importance given to
selected predictors. With linear regression, the predicted outcome
is based on the weighted average or combination of all the predictor
variables. �e OLS linear regression identi�ed thirteen regressor
variables in the training set, of which, only six were signi�cant
predictors of student performance in the test set, which indicates
over��ing. Mother’s education level, student plans for higher ed-
ucation, and weekly study time were associated with improved

performance, whereas course subject, school support, and romantic
relationships were related to decreased performance. �e ridge re-
gression reduced model error by shrinking the coe�cient estimates
towards zero, but with slightly higher bias and risk of under��ing.
�e lasso model performed variable selection by shrinking the co-
e�cient values of seven non-relevant predictors to exactly zero,
which yielded a model with a subset of twenty features. Although
the lasso model was simpler than ridge regression, the �nal OLS
model was more parsimonious than the lasso.

�e single regression tree provided a simple model that is easy
to interpret and gives the mean predicted value of student per-
formance at each node. �e algorithm selected course subject as
the root node in the training set and branched on mother’s ed-
ucation, weekly study time, absences, mother’s job, and student
age as key nodes for predicting performance. In the testing set,
plans for higher education was selected as the root node (which
may indicate over��ing) and the algorithm branched on mother’s
education, residence area (i.e., rural, urban), course subject, and
student absences as key nodes. Predicted performance was highest
among students from urban areas, whose mothers had a�ained at
least a 5th grade education, with plans for higher education. �e
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lowest predicted performance was found among students who had
one or more absences, with no plans for higher education. Random
forests regression corrected for over��ing by constructing many
trees and averaging across the predicted values. Feature impor-
tance in the random forests model identi�ed mother’s education
as the most informative variable, followed in descending order by
student absences, residence area, plans for higher education, course
subject, weekly alcohol consumption, and mother’s job. A surpris-
ing �nding is that the gradient boosted model had a higher error
than the random forests regression, given that the gradient boosted
algorithm tries to correct for mistakes in previous trees in an itera-
tive process. In terms of feature importance, the gradient boosted
model selected student absences as the most informative feature
for predicting performance, followed by course subject, mother’s
education, student age, going out with friends, and study time.

4.0.1 Limitations. A limitation of the present study is that vari-
able importance is not a well-de�ned concept and lacks a theoreti-
cally based quantitative metric [21]. �e linear regression model
uses signi�cance tests to select the regressors that best predict the
target outcome, with non-signi�cant variables excluded from the
�nal model. In this sense, the t-value provides a measure of the
importance of a given predictor, and model construction involves
a form of variables selection. With random forests, node purity
measures branch homogeneity for classi�cation tasks, whereas
MSE reduction is used for variable selection on regression tasks.
Variable importance with random forests is a�ected by the number
of categories and scale of measurement of the predictor variables
[22], but it does not provide a direct indication of the true impor-
tance of the variable. In addition, variable importance with random
forests can be biased when predictors are measured on di�erent
scales or vary in number of categories. Given that much of student
data collected by educational institutions is measured on di�erent
scales, researchers typically transform variables of interest to the
same scale. Transformed variables must be converted back to their
original scales for meaningful interpretation of the relationship
between the predictors and the target outcome. Furthermore, it
may not be feasible to assess the broad construct of learning using
a single measure of performance such as a �nal course grade. A
comprehensive analysis of predicted student performance could
include multiple dependent measures.

4.0.2 EDM and Learning Analytics. �is study revealed several
demographic characteristics that play an important role in predict-
ing student performance. It can be di�cult to obtain student infor-
mation from educational institutions owing to privacy protections
and con�dentiality of student data. �is study used archived data
from a public repository (UCI-MLR) that included information from
both school records and a student survey. Where potential bias in
self-report data is a concern, assessing student behaviour on online
learning platforms can provide a more direct measures of student
performance. Education data mining (EDM) and learning analytics
(LA) developed out of the increase in big data in education and shi�
toward online learning. Much LA/EDM research data is collected
within a learning management system (LMS), virtual learning envi-
ronment (VLE), or massive open online course (MOOC). One of the
most widely known platforms for tracking student performance by
analyzing LMS data is the Course Signals program [23]. In addition

to grades, course signals combined student demographic informa-
tion, academic history, and student interaction on the Blackboard
LMS to track performance. A predictive algorithm was used to
calculated the likelihood of student success based on performance,
e�ort, history, and student characteristics. Course signals provided
students with real-time feedback about their status in the LMS as
tra�c indicators (i.e., red, yellow, green). �e assessment allowed
instructors to enact interventions for high risk students via emails,
texts, or face to face meetings with referrals to academic advising
and student resource center. Courses that implemented the signals
program and provided feedback showed an increase in satisfactory
grades, decrease in withdrawals, and improved retention.

4.0.3 Student Performance, A�ect, and Motivation. Learning is
a complex phenomenon that is not always directly observable and
o�en inferred from behavior. In addition to quantitative measures
of online activities, ideally, a meaningful analytics system could
include qualitative measures of students’ a�ective states (i.e., bore-
dom, frustration, confusion) or motivation to model engagement
in learning activities [24, 25]. LA/EDM researchers has also in-
vestigated interactions among learners online [26]. �eories of
Social learning demonstrate the importance of collaboration in
learning [27]. From a social constructivist perspective, knowledge
is constructed through interaction with more knowledgeable part-
ners, including parents, siblings, teachers, or peers. Sociologists
have investigated the structure of connections in social networks
[28]. Social network analysis (SNA) provides a useful methodology
for exploring the role of collaboration in learning and visualizing
connections among learners [4]. Past research has revealed that
individual di�erences in students metacognitive abilities (i.e., self-
awareness, self-re�ection), disposition, experience, and motivation
are in�uential for developing learning relationships [9, 13? ]. Fu-
ture research could help our understanding of the relations among
students that contribute to performance.

5 CONCLUSION
Predictive modeling o�ers a set of analytic tools for detecting pat-
terns in education data and understanding the factors that con-
tribute to successful learning. �is study compared six supervised
learning models of student performance that varied in complexity
and interpretability. Simpler models provided solutions that are
easier to interpret but prone to over��ing, whereas more complex
models reduce over��ing and decreased error, but are more di�cult
to interpret. A general conclusion is that comparing the results of
several models provides a more complete picture of factors that con-
tribute to student performance than examining any single model.
LA/EDM research is increasingly focused on learning outcomes
in online platforms. Merging data from LMS or online learning
platforms with institutional data about student demographic char-
acteristics can provide a be�er understanding of student learning
and the conditions in which it occurs [29, 30]. Although student
absences or past failures are powerful indicators of future perfor-
mance, motivational factors, such as a student’s future orientation
toward higher education can reveal a great deal about his or her
motivation to succeed. Using a data-driven approach to learning an-
alytics based on student pro�les and LMS activity can also facilitate
early detection of at-risk students. �ese e�orts may help inform
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decision making and policy e�orts to address student retention and
allocation of resources to improve successful learning outcomes.
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