Virtual Screening with Molecular Forecaster

<u>Objective</u>: To identify commercially available compounds for USP5 zinc-finger ubiquitin binding domain (ZnF-UBD) with Molecular Forecasters (MFI) FITTED docking platform. Preliminary assessment of docking for USP5 ZnF-UBD with FITTED can be found <u>here</u>.

Methods & Results:

A. Compound Library Selection

ZINC15 commercially available compounds within the following tranches, and vendors was used for the virtual screening library:

- logP: -1 to 4
- Molecular Weight (MW): 200-375
- Vendors:
 - Acros (# of compounds: 14819)
 - Aksci (# of compounds: 190805)
 - Alfa (# of compounds: 34210)
 - Chemiprex (# of compounds: 15457)
 - Combiblocks (# of compounds: 81134)
 - Enamine (# of compounds: 94051)
 - Sial (# of compounds: 81134)
 - Synquest (# of compounds: 87903)

Please see sdf file for each vendor library in respective folder. A total of 607580 compounds were in the virtual screening library from 8 vendors.

- B. Molecular Forecaster: SMART, REDUCE, SELECT and CONVERT
 - SMART was used to prepare ligand files for docking by assigning rotatable torsion assignment (charges: DGH). See paramaters-smart.txt for keyword file.
 - REDUCE was used to filter the chemical library. See parameters-reduce.txt for keyword file. The following filters were applied for each vendor library:
 - Min charge: -1
 - Max charge: +1
 - Min MW: 3
 - Max MW: 500
 - Min logP: -10
 - Max logP: 4
 - Excluded functional groups:
 - Acyl chloride
 - Aldehyde
 - Alkyl bromide
 - Alkyl iodide

- Anhydride
- Azide
- Boronic acid
- Boronate
- Isocyanate
- Sulfonyl chloride
- Vinyl bromide
- Vinyl chloride
- Vinyl iodide
- Michael acceptor

Library of 607580 compounds was reduced to 505772.

- SELECT was used to create a subset of the library to remove similar molecules that have already been screened or experimentally tested. See paramaters-select.txt for keyword file.
 - A sdf file of experimentally tested ligands (USP5cpd.sdf) was used for selection of dissimilars with max tanimoto: 50

225665 compounds were selected for the final library.

- C. Molecular Forecaster: MATCHUP, PREPARE, PROCESS, CONVERT and FITTED
 - MATCHUP: superposes protein structures [PDB: 6DXH, 6DXT, 6NFT]. See parametersmatch-up.txt for keyword file
 - PREPARE: optimizes physiochemical properties. See parameters-prepare.txt for keyword file.
 - PROCESS: generates modified protein files for use with FITTED for docking
 - CONVERT: select_output.sdf files were converted from 2D molecules into 3D representations for docking with FITTED
 - FITTED: docking of ligands to protein. See parameters-fitted.txt for keyword file. See output folder for docking results and docked poses of ligands for each respective vendor library.
- D. Visual Inspection of Top Scoring Ligands
 - The docked poses of top scoring ligands from each vendor library was selected for visual inspection. Please see MFIlibraryselection.xlsx and MFI_top_scoring_ligands.sdf for top scoring compound information and docking scores.

Conclusions and Future Directions:

The MFI's flexible protein docking with MATCHUP and FITTED was used to virtually screen a library of 225, 665 commercial compounds. From the virtual screen, top scoring ligands from each vendor library were selected for visual inspection (total: 347). The majority of the top scoring ligands are fragments. Next, I will select scaffolds with interesting interactions in the binding pocket for ordering and experimental testing.

References

Therrien E., Englebienne P., Arrowsmith A.G., Mendoza-Sanchez R., Corbeil C.R., Weill N., Campagna-Slater V., Moitessier N. Integrating medicinal chemistry, organic/combinatorial chemistry, and computational chemistry for the discovery of selective estrogen receptor modulatorswith FORECASTER, a novel platform for drug discovery. *Journal of Chemical Information and Modeling* (2012), 52, 210-224

Moitessier N., Pottel J., Therrien E., Englebienne P., Liu Z., Tomberg A., Corbeil C.R. Medicinal Chemistry Projects Requiring Imaginative Structure-Based Drug Design Methods. *Accounts of Chemical Research* (2016), 49 (9), 1646-1657.