
SONAGRAPH. A CARTOONIFIED SPECTRAL MODEL FOR MUSIC
COMPOSITION

Andrea Valle
CIRMA/StudiUm - Università di Torino

andrea.valle@unito.it

ABSTRACT

This paper presents SonaGraph, a framework and an ap-
plication for a simplified but efficient harmonic spectrum
analyzer suitable for assisted and algorithmic composition.
The model is inspired by the analog Sonagraph and relies
on a constant-Q bandpass filter bank. First, the historical
Sonagraph is introduced, then, starting from it, a simplified
(“cartoonified”) model is discussed. An implementation
in SuperCollider is presented that includes various utilities
(interactive GUIs, music notation generation, graphic ex-
port, data communication). A comparison of results in re-
lation to other tools for assisted composition is presented.
Finally, some musical examples are discussed, that make
use of spectral data from SonaGraph to generate, retrieve
and display music information.

1. INTRODUCTION

Access to spectral information is crucial for a large number
of audio-related practices spread along the sound/music
continuum, such as sound synthesis and processing [1, 2],
audio restoration [3], composition for acoustic instruments
(algorithmic/assisted composition [4, 5]), music informa-
tion retrieval [6]. The great majority of available appli-
cations are based on Fourier transform, as implemented
by the Fast Fourier Transform (FFT) algorithm. The ef-
ficiency (in computational terms) and the effectiveness (in
terms of results) of the FFT are well known. While data
gathered via FFT allow for reconstruction and manipula-
tion of the input signal (audio level), they are not imme-
diately suited for perceptual and music tasks, so that vari-
ous post-processing operations are needed to extract mu-
sic information [6]. In contrast to the audio level, this
higher level, both perceptual and musical, might be called
–following [7]– sound object level (see also [8]). Start-
ing from FFT data, in order to pass from the first level to
the second, a double conversion step has to be taken into
account, that concerns both time and frequency [6]. With
respect to FFT, time resolution is defined by the hop size
(the step size in which the window is to be shifted across
the signal), while the phenomenological one instead con-
centrates on a (not obvious) notion of sound event. The
other step is required to convert frequencies (in Hertz) into

Copyright: 2019 Andrea Valle. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

a pitch-based representation (a typical but not necessary
example being 12-TET). This step is notoriously problem-
atic because FFT samples frequency in a linear fashion,
while the tonotopic representation in the ear, thus at the
basis of musical practices, is logarithmic. This means that
half of the information output from an FFT concerns, in
perceptual terms, the highest octave, a quarter the second
octave, and so on. In essence, high frequencies are over-
represented and/or low frequencies are under-represented
[2]. Spectral information is typically inspected visually,
and many data visualization softwares and libraries are avail-
able to generate sonographic (i.e. spectrum over time) rep-
resentations. Well-known applications targeted at the mu-
sic domain are Sonic Visualiser [9], Acousmographe 1 , ianal-
yse5 2 : as they all rely on FFT, they all provide a sono-
graphic visualization based on a linear distribution of fre-
quencies. This issue is often partially solved by drawing
logarithmically the frequencies, but since the starting in-
formation is linear with respect to frequency, the result is
usually a sonogram that looks blurred in the low register
while becoming very detailed in the highest one. To sum
up, FFT spectral data are in principle too large and only
partially fitting if the sound object level is at stake. While
typically these issues are practically solved with satisfying
results, still they leave room for different designs.

2. MAIN GOALS AND INTENDED USERS

SonaGraph is a spectral analyzer that, by means of a very
basic design, aims at providing a spectral representation in
form of a sketch, assuming that a sketch results in minimal
but correct, clear and relevant information about a certain
sound object. Because of its barebone structure, such an
analyzer is efficient as it performs a large data reduction.
While not fitted for audio manipulation (because of data
loss), it allows to gather and easily manipulate musically
relevant data from the musician’s perspective (i.e. at the
sound object level). Its design is inspired by the so-called
“cartoonification”, proposed in the audio domain in rela-
tion to the modelling of acoustic behaviour [10]. Cartooni-
fication is a procedure that leads to a drastically simplified
model that nevertheless remains consistent with some gen-
eral principles. SonaGraph is intended as a tool bridging
the audio level to the symbolic one by providing a simpli-
fied spectral data structure that can be easily understood
by musicians without a particularly deep knowledge of the

1 http://inagrm.com/en/showcase/news/203/
acousmographe

2 https://logiciels.pierrecouprie.fr

462

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672

Figure 1. Sonagraph tracings: large (left) and narrow
(right) bandwidth filter setting.

mathematics at the basis of more accurate methods and
frameworks (e.g. [11]). As spectral information is imme-
diately converted into pitch, standard music symbolic con-
cepts and operation (e.g. chords and the relative typical
manipulation) can be directly applied by the musician to
spectral data. Moreover, thanks to the one-to-one corre-
spondence between spectral data and music symbols, au-
tomated music notation can be generated easily while pre-
cisely representing the reduced spectrum. In the following,
the general framework is introduced, then an application is
presented. As musicians are the intended target, a compar-
ison with BACH [12], a state-of-the-art tool used by com-
poser in the same context (assisted composition including
spectral analysis and automatic notation transcription) is
provided. Finally, two musical applications are discussed.

3. THE ANALOG SONAGRAPH

The SonaGraph model is inspired by the Sonagraph, an
analog device initially developed at Bell Labs in telecom-
munication field [13] and commercialized by Kay Electric
from the ’50s. The Sonagraph allowed to plot a representa-
tion of sound spectrum over time (a “sonagram”). Its hard-
ware implementation was based on a bank of heterodyne
filters performing a multistep spectrum scan (thus, it did
not work in real time), connected to a stylus that burned
progressively (i.e. frequency by frequency) a special pa-
per foil [13, 14]. Time resolution depended on the (ad-
justable) rotation speed of the cylinder on which the paper
was drawn. Features of the Sonagraph were the possibility
of using two different bandwidths (large and narrow) and
the ability to plot frequencies in a dual mode, that is, lin-
early and logarithmically. Figure 1 shows two examples of
Sonagraph’s tracings for the same signal respectively with
large and narrow bandwidth setting for the filter bank, both
plotted with linear frequency (each tracing also includes
the signal’s amplitude envelope on top).
By making sound structure extensively accessible for the
first time, the Kay Sonagraph allowed fundamental advances
in two domains. The first is acoustic phonetics, starting
from the 1952 pioneering study of Jakobson, Fant and Halle
[15], that, by means of sonagraphic exploration, led to the
acoustic definition of phoneme (even if the very first use
can be traced back to 1947 [16]). The second is bioa-
coustics, and in particular ornithology. Once available,
the Sonagraph immediately became a fundamental instru-

ment for the study of bird singing as it provided visible and
annotable forms to represent the extraordinary variety of
ornithological phonations [14]. For Pieplow, this “golden
age” of the Sonagraph extended for more than forty years,
from 1951 to 1995 3 . A third application has been crucial
for the fate of contemporary music, and thus it is partic-
ularly relevant here. In the domain of acoustic analysis
of music instruments, Leipp made abundant and pioneer-
ing use of the Sonagraph to exemplify a vast set of acoustic
phenomena and music instrument behaviours [17]: Leipp’s
approach was a fundamental pivot for the reflection that
would lead during the ’70s Grisey and his companions to
the technical and aesthetic formulation of Spectralism [18].
The Sonagraph for the first time showed sound as a sort of
virtual score: a form of notation in which notes are re-
placed by continuous graphic elements [19]. Bridging or-
nithology and music, Mâche’s zoomusicological approach
largely relied on sonagraphic traces [20].
Indeed, since more than twenty years the Sonagraph has
been superseded by FFT-based softwares [14]. Interest-
ingly, Leipp [17] strongly supported the perceptual appro-
priateness of the sonagraphic display even if all his exam-
ples were plotted linearly. In the ornithological field, on
the contrary, Marshall insisted with equal emphasis on the
perceptual requirement of a logarithmic frequency display,
due to the tonotopic organization of the auditory system,
a feature common to all vertebrates, including both birds
and humans. For Marshall, linear frequency displaying
was simply “absurd” [21].

4. A CARTOONIFIED MODEL

The Sonagraph provides a reference for a “cartoonified”
model of spectrum analysis based on a filter bank. The
idea of a filter bank that extracts information from audio
signal is actually at the basis of the venerable technique
of the Vocoder, proposed at Bell Laboratories by Homer
Dudley in the late 1920s as a device for representing the
vocal signal (by means of an “encoder”) and then resyn-
thesizing it (through a “decoder” component) [22]. The
main issue with a filter bank technique is that it does not
respect the phase, which is crucial in signal reconstruction.
Hence the digital algorithm of the Phase Vocoder that, as
the name indicates, instead takes into account phase, and
can be seen as a filter bank interpretation of Fourier Trans-
form [23]. While FFT is the standard spectral tool in mu-
sic information retrieval [6], filter bank approaches to fre-
quency decomposition have been proposed as an alterna-
tive [24, 25]. Even if phase is required for signal recon-
struction (i.e. at the audio level), it can be discarded in
case of spectral analysis targeted at musical information
extraction (i.e. sound object level). In relation to this as-
pect, it can be observed that the typical output in terms
of musical information relies on standard music notation
(the so-called common practice notation, CPN). Thus, as
already discussed, if FFT data are gathered, a large data
reduction has to be performed in order to output CPN, and
various techniques have been proposed accordingly [6]. A

3 http://earbirding.com/blog/archives/1229

463

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672

cartoonified approach to the problem can be pursued by
reversing the perspective, that is, by starting from output
data, i.e. pitches. While MIDI protocol encodes pitches
in 27 values (0 − 127), typical musical data in CPN are
satisfyingly represented by means of a piano keyboard (88
pitches). In both cases, the amount of data is fairly lower
than typical FFT frequency resolutions. Following a car-
toonified approach, in the SonaGraph architecture (Figure
2) the analysis step is thus performed through a bank of 88
constant-Q bandpass filters, tuned logarithmically in rela-
tion to piano keys (Log filter bank). The rationale for such
a “musical” choice is to achieve a good compromise be-
tween the pitch resolution and the size of the bank, while
covering more than 4 KHz (precisely, 27.5 − 4186 Hz).
The filter bank has an overall tuneable resonance factor
Q (therefore a variable band depending on the central fre-
quency), on the model of the narrow/wide band distinc-
tion of the analog Sonagraph (but more general). Each fil-
ter is connected to an amplitude envelope follower (Amp
follower), as in Dudley’s Vocoder encoder. The output
signal resulting from amplitude following is slightly inte-
grated (Smoother: in fact, a sort of low pass filtering) to
eliminate too rapid variations. While this operation per-
manently compromises phase information, it provides a
clearer information on amplitude variation at the sound ob-
ject level (lower time resolution). Each filtered signal, once
smoothed, is then converted from linear amplitude to deci-
Bel (Converter) and sampled at a regular rate (Sampler).
The sampling rate (sr) determines the spectral time reso-
lution and can be adjusted (as in the variable speed of the
metal drum in the Sonagraph). Appropriate values for sam-
ple rate depend on the analysis’ goals and on the spectral
variation of the signal that is being considered: empirically,
values between 10 and 50 Hz (in this last case, already at
audio rate) provide a good compromise between the sound
object level and audio accuracy. For each sample, the Sam-
pler module returns a vector of 88 values estimated in dB
(hence on, bin), which is stored as a column in a 2D ma-
trix. In the latter, intuitively, rows represent the time do-
main, each containing the values of the sampled signal for
a single filter at rate sr. The two-dimensional signal thus
obtained can be analysed in real-time (Analyzer) or stored
(Archivist) and imported later. With respect to the audio
signal (and the FFT one), Analyzer takes into consideration
an extremely reduced data amount, making the implemen-
tation of operations on the single bin –and more generally
on subsets of the matrix– very simple and computationally
inexpensive, thus fitting real-time operations. For example,
one can easily investigate maxima and minima in spectral
regions by selecting certain frequencies or obtain informa-
tion about spectral peaks, e.g. ranking the first n frequen-
cies in relation to amplitude or with respect to a threshold
(i.e. frequencies with amplitude higher than t).
The SonaGraph cartoonified analysis framework is repre-
sented in Figure 2, region A, while region B depicts some
added functionalities. The frequency resolution is indeed
calibrated on the 12-TET system. The latter is intended
as a standard reference grid providing a uniform percep-
tual pitch sampling as codified by Western practice. But

filter 1

filter 88

ampl 1

ampl 88

lag 1

lag 88

db 1

db 88

t
0 1 2

88

1

....

....

Log filter
bank

Amp
follower

Smoother Converter

Sampler

audio signal

Analyzer

Music notation
generator

Synthesizer

Plotter

GUI

Archivist

log file

ps/pdf

ps/pdf

Q

sr

bin:

MIDI converterSMF

MIDI out

 A

 B

Figure 2. SonaGraph architecure.

the filter bank can be easily modified, e.g. it can be tuned
by providing an array of frequencies rather than a uniform
half-tone step (see [26] for a discussion on the relations be-
tween spectrum and tuning) or it can be expanded/reduced
in size. As an example, to reach a quarter-tone resolution,
the bank can be doubled in size in order to double resolu-
tion, or, in a non real-time fashion, two filtering processes
can be run with different tunings, then gathered data can
be properly assembled.

5. APPLICATION DESCRIPTION

The SonaGraph framework has been implemented as a set
of classes for the SuperCollider audio and music program-
ming environment [27, 28]. The latter provides sound pro-
cessing capabilities via its audio server component, but
also GUI programmable elements, MIDI support and a high
level OOP language to manipulate spectral data, thus seam-
lessly bridging audio and sound object level. Moreover,
other functionalities are available via internal access to the
Unix terminal. All the functionalities represented in Fig-
ure 2 are encapsulated in the classes described by Figure
3: boxes represent classes while operations are indicated
by labels written in plain text. Underlined text indicates
the three main operation metacategories: analysis, integra-
tion/communication and graphic export.

SonaGraph is the main class, providing general audio man-
agement (including resynthesis), sampling, analysis, archiv-
ing. In relation to Figure 2 it implements section A plus
Synthesizer and MIDI converter from section B. It also
provides a common unified method interface for the other
classes (integration, in relation to Figure 3). The filter bank
is implemented via second order band pass filters, with a
default (but modifiable) very high Q (= 1000), that has
proven effective. Other audio functionalities include a fun-
damental frequency detection analysis (implementing the
Tartini algorithm [29]), synced to the same sampling rate
of the Sampler, and a bank of sine oscillators and a vir-
tual piano instrument, both to resynthesize spectral data as
a control step (Synthesizer in Figure 2). SonaGraph also
includes MIDI support, both in terms of real-time MIDI

464

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672

SonaGraph

HarmoSpectrum HarmoEvent

SonaGraphLilyPsSonaGraph

SonaGraphGui interactive gui

LilyPondPostScript

spectral event splittingspectral processing/GUI

Audio
MIDI

Terminal

analysis

integration/communication

graphic export

Figure 3. SonaGraph classes.

 pitch

 pitch

Figure 4. SonaGraph interactive GUI (top) and Praat (bot-
tom).

communication (e.g. to MIDI synthesizers, as those sup-
ported by DAWs) and Standard MIDI File (SMF) creation.
The SMF export creates voices by selecting rows in the
sonogram. In order to simplify the MIDI file structure, a
voice grouping algorithm is applied, so that consecutive
pitches having an amplitude greater than a selected thresh-
old are grouped together in a single note.

The SonaGraphGui class supports an interactive GUI for
inspection and playback of the analyzed sound. Its aim is
to help the exploration of gathered data both visually and
aurally. Mainly inspired by Praat GUI 4 , it provides a scal-
able window showing the sonogram (top) and the wave-
form (bottom), and including also a visualization for the
estimated fundamental pitch. Figure 4 shows the Sona-
Graph GUI (top) an the Praat GUI (bottom) for the same
signal (a voice sample: formants are apparent) for sake
of comparison. In the SonaGraph GUI, mouse-pointing
in the window results in a vertical red line indicating the
selected bin and a horizontal one showing the frequency.

4 http://www.praat.org/

Figure 5. HarmoSpectrum GUI.

Figure 6. HarmoEvent onset data in the GUI.

On the left of the vertical line, time is indicated (in Fig-
ure 4: 0.368), on the right MIDI pitch (50), note (D4)
and frequency (146.83) are shown for the selected point.
Space bar allows to start/stop source playback from the se-
lected bin. While clicking, a synthesized short piano note
is generated to provide a reference for the pointed pitch. A
threshold for amplitudes can be set, so that values under the
threshold are not shown. In the SonaGraph GUI, pitches in
red indicate the fundamental pitch estimation (like the blue
line in the Praat GUI, in both cases a label has been added
to the GUIs in Figure 4 to help the reader). Note that for-
mants are highly visible in a speech sound (and help com-
parison between the GUIs), but they do not coincide with
the fundamental pitch.
The HarmoSpectrum class features all the methods for spec-
trum processing, including interactive GUI and music no-
tation generation. Conceptually, it operates on a single bin
while operations on multiple bins (i.e. selecting a bin range
representing more time samples) are handled by SonaGraph
by averaging amplitudes and passing the averaged single
bin to HarmoSpectrum. Data are available to the Super-
Collider language for further manipulation and can be ex-
plored visually through an interactive dedicated GUI (Fig-
ure 5, left). The GUI shows the spectral envelope for the
selected, averaged spectrum (bins 40 to 50 from Figure 4,
left): each component is labelled with MIDI note (top) and
symbolic name (bottom), while octaves are indicated by
vertical lines. By clicking on the window, a piano note
is played back for the selected pitch as a reference. As it
can be seen from spectral peaks in Figure 5, left, the most
prominent pitches in MIDI notation are 47, 48, 50, 51, 52,
60 (49 is just under the selected threshold). Given an am-
plitude threshold, they can be viewed directly in musical

465

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672

Figure 7. Generated notation imported into GUI.

notation by invoking a dedicated method that exploits the
LilyPond environment for notation description and type-
setting [30]. The method writes LilyPond code on a tempo-
rary file, renders it by calling the LilyPond executable via
Unix terminal, and loads the rendered image into a window
(Figure 5, right). By clicking on the window, the chord is
played back using a synthesized piano. The LilyPond code
can be written on a user-specified file so to remain acces-
sible for further usage.
HarmoEvent performs some basic operations on sonogram
evolution over time in order to recognize discontinuities.
As the only information is the spectral one, it detects an
“event” by comparing the difference between averaged am-
plitudes of adjacent bins. Two parameters are available:
a threshold value for minimum amplitude difference, and
minimum distance (in bins) between events. While very
crude, this operation implements a typical approach to on-
set detection by spectral-based novelty function (or spec-
tral flux, [6]). Once detected, events can be automatically
visualized in the GUI (see vertical orange lines in Figure
6, that also demonstrates different displaying threshold and
ratio with respect to Figure 4). A segmentation procedure
is available that split the signal between adjacent onsets,
thus obtaining event sub-signals: it applies a minimum en-
velope to avoid clicks, and exports the resulting event sig-
nals to audio files.
As already discussed, CPN visualization and export are
crucial in bridging spectral content to music application.
Following the model discussed for HarmoSpectrum, Son-
aGraphLily manages the mapping from sonographic data
(rather than spectral snapshots) to music notation by gen-
erating LilyPond code. It creates LilyPond text source
files, renders them as graphic files and –if needed– loads
them into GUI for real-time playback. Automatic gener-
ation of notation is a complex topic, and various heuris-
tic approaches have been proposed [31, 32]. In our case,
the threshold setting for filtering out lower amplitudes is

time (seconds)

0 1

Oct Hz

9 4186.01

8 2093

7 1046.5

6 523.25

5 261.63

4 130.81

3 65.41

2 32.7

Figure 8. A PostScript rendering.

crucial in order to avoid cluttered notation. Two solutions
are provided by the SonaGraphLily class. In the first case,
voices are created from sonogram pitch rows and displayed
on separate staves. While this visualization is useful from
an analytical point of view, the number of voices may esca-
late quickly (with default values, up to 88), thus becoming
visually unmanageable. A second solution groups notes
according to a standard piano notation, with much more
(but potentially too much) compact results. For sake of
comparison, Figure 7 shows for the same audio sample
(again, the one from Figure 4) the two notations as loaded
in the GUI. As in SMF export, a voice grouping algorithm
is applied (not applicable in Figure 7). The voice-based
notation window (Figure 7, top) has been cut to 7 voices
(of 16) for sake of readability. The transcription algorithm
transparently maps the sonogram’s time resolution by as-
signing a semiquaver duration value to each bin. Tempo
is thus calculated by taking into account the sample rate
(here, 12 Hz = 12/4× 60 = 180 bpm), while meter is set
to 4/4. In Figure 7, the rendered notation files are loaded
into a GUI, that allows for playback using both synthesized
piano (for note data) and the original audio sample (as a
comparison), providing also a crossfade slider for variable
mixing (spec/snd, spectrum vs sound).
Finally, the PsSonaGraph class is dedicated to graphical
export of the sonogram, using the standard (but customiz-
able) grey scale for plotting amplitudes of frequencies over
time. It creates a PostScript file [33] from analysis data
with adjustable graphic parameters, and converts it into
PDF format via terminal utilities. Figure 8 shows a PostScript
output from the sonogram in Figure 4, by setting a higher
amplitude threshold. It includes reference octave and fre-
quency annotations at each side of the red lines.

6. A SHORT ANALYTICAL COMPARISON

Although cartoonified, to an informal perceptual apprecia-
tion the frequency resolution of SonaGraph provides use-
ful and adequate clues on the spectral information of the
sound taken into account, even if the model per se is un-
doubtedly oriented specifically towards harmonic informa-
tion. In order to further verify the results, in this section
two automatic transcriptions from spectral data over time

466

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672

!!!! "!!
!! !! !!!!#

!!! #
$
!! "##

!! !!!!!!% " ! #"
& ! "

$
! = 750 '!(!!# ! ''!!"!!!) '

!!
!!!!# !!"" # '

!!!! '
!!!!!*

!!!!!$
!!!!

''
!
!!!!! ! !!!

!!
'!

" ''' ! !!!
''

&5 '
!!!! !

!!! !!!
" ' !!!!!
' !!!!!!!+ '+ !!
!!!

!!!
!!!!

+ !!!!!!
!!!!

''''
!!!!

!! !!!!
####

!!!!
''''
!!!!

!!
!* '''''!
!!!!

!!!!!!&8 ! !!!!"
! !'!

!!!!
! !! ! !!!

#####
!
!

"!!!!! !

!!!
'''
!!!

###! !!!
!

,!(! '!! '! !!!!!!! ! !!" !!! !!
!

! !!
!"

12 & !
!

--
- !!!!!! !

!
!!!! !!!

!
!"! !

##
" ##

!!!"!
!!!

! !!!!
'''
!!!'.!!

''
!* ,!

!!!!
"!

!!!!!
!!!
!

" !!!!! ! '!
!
!

!!!!
!!!17 & '

!!!!
*!!!!
''

!
!

!
!

"!
!

!!
!

* ''
'
!!
!/!*!., '!

!!!

' !!!!
!!!!!

!!
!

"
!

!!
! /**'' !'

!!!!!
' !!!!!

!
! ,#*!

!!
!
!!!

!! !""* !
!!

!
!

21

!
"

& !!
!

'!
!!
!

!
!

+ !.
####

!!!!
+

.
!

!
!! (!!

!!
!!

! !! !" !! '!!
!
''
''"
! !
! ' !!* ' !'''! !!' !!!" !!! !!!! '.,

!!
--
-- !! ! !!!! .

' !!
25 &

" !!!
!!!"!!

'''''
'
!!!!
!
!!!!

'
!!!!
!
'''''

" !
! ' !!!!! !!!!!!

! '
!!! ''''

'!! "! ''! !" ! !'
!!!

!!"
''' !!!
!! !!'

!!!! !!!!!! " !!!!
! ! !!" !!

!!!! !! '''"" "
--
-

&
!

30

'''' ! !!"
!!! !!

!
''
'"
##
#

##
#

!!"" !! "!! !! !!
!

!!! !!

!!
! '''!!

!!!!
!!!! ! ''! !! !!

''
'
!!!' !!!!!!

!!! ! '
!!!*

!
'''''
!!!! '!!!!!! !!''! !!!!' !!!

&35

!!!!" '
!!!! ' !
!!!!"""

'' ! !! !" !!!!!
' !!!" !! " !' !!!!!!!'! '!!!!

!!
"
!
!!
!!!!

" !!!!!!!
!!!!!!!

"##" ! ''''
!!!

)
!!!!! !

!
!!

!!
!!!!
!!
!!!

!!
!!!39 "& !" !

! !!!
''
''''

" !
!!!
'
''! !!! '''

!
!!! ! !!!

!!
!! !

"
!!
!!! !!"

!

!
!
!

"

!
!

"

!
!
!!

"

!
!!

" !

"

!

"

#
!
!
!

"

#

#

!
!

"

!
!
!!$

!
!
!!

"

" "

"

! % !!
! !!$&

$!

"

!" ! !
!

"

!
!

!
!

" "

!
!
!!

!

"

!
!

"

$

"#
! !

!

"

!

"

! = 750
!

"

$
!

"

! !

"

#!
!

!
!$

!
!
!!

"

#

$
##
#

!
!
!!

"

!
!

"

!'
!
!!

"

##
#

!

!
!
!!

""

!

"

!
!

!

"

!!!
!!

!
!!

!
!

"

#
#$

!"

" "

!
!!

"

!
!!

"

!
!!
!
!!

"

!!
!

"

!
!!

"

!! !

"

##
!
!!
#
##

!
!!

"

!
!!
!

!!
!

"

!
!!
!

!
!!
!

"#

!
!
##
#
!!
!

"

7

!
$!

"

#
##!
!
!!

! !
!!
!

" "

!!

"

!
!
!!
!

!
!!
!

"

!!
!!
!

"

!
! (!

!
!!
! !

!!!
!! !

(

"

!!!
!

"

"

"

"!

" "

(

"

"

"

! "
!!

" "

#!$

!

""

!

$!

!
!! " !

"

!$$

"

!
!!

!
!!

"

!!#

"

!
!!

#
##
!
!

"

!
!!!!

!#
#

)

"

!!!
!!

"

(!

"

!!
!
!!
#
##
!
!!
!

"

!
!

*
$
$
!
!

"

!

"

!
)

13

!
#

+

"

!#! !(
$

!

#

#

"

!

!

"

!
!

! !

!

"

!

$!

!
!!
!

"

!

"

!
!

$

"

!
!
!

!!

! #!

"

!
!!
!

#

"

!!
!!
!

##
#

#

!!
!!
!

"

!
!!
!

"

!!
!!
!

"

!

!

$ #

#

!

!
+

"

!#!

"

!

"

!

"

!$

"

!

"

!
!

#
#
!

"

!
!!
!

!
!
!!
!

"

!!!
!
!

"

!
!!!

!!
!! !

"

!
$! !

"

!
!!

!!!
!

$!!
! !

20
(!

"

!

#

!
$$

$

!!
!!

!
! !
!

!!
!

!
!

"

!
!
!

#

#
!
!

"

!

"

!
!!
!

"

!
)
!

(

!

"

!
!

#
#! !

"

!
!!##!!$!

!
!

$!
!!!$%

!
!!

*
!+

"

!!
!

! !

!
!!
!

"

%

"

#
!
*
$!
!

""

!!

"

##

!
!!

(
!
)
!

!

"

!

"

*

!

"

! !!

!

!!

!

!

"

!
!!
!

$!
!
!!!

!

"

!

"

! !!
(
!
*
$!

"

!!

"

$!
!
!!$
!
!

"

!
!
!! $!
!

"

!
26 !

!!$
!!
!!

"#

!
!
!!!

!
!!!$

!!!
!! !!

"

!
!!
!

"

!!
!
##
#$

$
!!
!

"

!
!!
!

"

!
!!!!

!

!
!!
!

!

"

!
!!
!

!!

!

"

! !
! !!

"

!

"

$$

!

!
!

!!
! !

"

!!$$
!
!!

"

!
$
$

"

! !
!
!

"

!

"

!!
!

"

!!
!

"

$
!!
!

"

!!!! !!
!

!$

"

!!

"

!$
*
!

"

(
!

!
!

!
!!!

"

!
!

!
!$

!!!!
!!!!! !

"

!!!!

"

!
!

!
!32

!
"

!
!!

!
!$

!
!! !

!
!

"

!
!!

"

!

"

! #

"

!!!!
$
$
#
#
!!
!

"

!!
!

!

"

!!
!

"

!!!!

" "

!!!!
!

$!!!

"

!!

*

"

"%

"

"#

"

!! !

"

!

"

"" "

""" "

"""

!!!$

"

!!

"

!!

"

!!! !!$$

"

!!
!##

!!! !

"

!!!

"

!!#!! !$
!#
!

"

!
38

!!!

#

!!

"

!!!

"

!!!
#

"

$$
)
!!

(
#
!
!

"

!!

"

"
!
*

"

! !

"

!!
!

"

!!!## !!
!

"

BACH

SonaGraph

Figure 9. Music notation transcription for “trumpet”.

into musical notation are compared. In particular, the com-
parison has been performed between SonaGraph and Au-
diosculpt 5 /BACH [12]. In Audiosculpt, FFT data are pro-
cessed via partial tracking, in order to filter out amplitudes
lower than a selected threshold. The resulting SDIF file
is imported into the BACH library for Max/MSP that al-
lows for pitch interpretation of spectral data. As BACH is a
state-of-the-art tool in assisted composition, it shares with
SonaGraph the same purpose and intended users. Four
mono files have been taken into account. With the aim of
comparing the two systems, samples have been chosen to
represent spectral configurations with different features in
relation to different acoustic situations (harmonic/inharmonic,
monophonic/polyphonic, music/environment). All sound
files have been normalized previously to the analysis pro-
cesses. The analysis by SonaGraph has been performed
according to the previous discussion, with a sample rate
= 50 Hz and by selecting all amplitudes> −30 dB. Such a
sample rate results in a very high tempo = 750 bpm, as the
rationale in this case (rather than in Figure 13) is not to pro-
vide a performance indication but to capture spectral trans-
formation. In BACH, a time quantization is introduced,
so that it matches the SonaGraph’s one for sake of com-
parison, both in terms of tempo, note value quantization
(16th) and meter (4/4). BACH’s pitch resolution has also
been constrained to half-tones (standard MIDI notes). As
it is possible to export from BACH music notation as Lily-
Pond code, results can be easily compared (even if BACH
export uses a single treble clef, while SonaGraph a piano
staff). Figures 9-12 show the transcriptions for four au-
dio samples. Amplitude threshold for SonaGraph example
is kept at −30 dB, while Audiosculpt/BACH threshold is
adjusted so to provide comparable examples. As apparent
from the examples, BACH and SonaGraph makes use of
two opposite enharmonic transcription strategies, respec-
tively assigning [and] alterations. Temporal misalign-
ment in terms of notation results from implementation de-
tails, depending on a fixed offset at initialization, and, if
relevant, is indicated by a dashed line.
Results are substantially the same if a harmonic spectrum
is taken into account, as in the case of a melodic trum-
pet phrase (Figure 9). Figure 10 shows the transcrip-
tion of a sample from a wind turbine, presenting some har-
monic components over a very noisy background. In this
case, while generally coherent, transcriptions have proven
to strongly depend on amplitude threshold. The SonaGraph’s
one (bottom) is strongly sensitive to some higher frequency
components that characterize the sound attack. They can

5 http://anasynth.ircam.fr/home/english/
software/audiosculpt

!""" !"! !"!# ""!" ""# """"$ """" "" "! = 750

"% #"""& !""' """ """" """

"""" ""!"!! """# """ !()"#"""## " "!"" ""&
4 $""" " ! # """""# "" "

!

"

$

"

! !!! !!% !!!!
& $

"

!! !!

"

!%
! !

"

'
'

!!!% !!!!

"

%!!! ' !!

"

!!

"

!!!

"

!! ' !!!% !! !!

""

'% !! !!!

"

% !! '!!

"

''' !!!!!

""

"! "

"

! = 750

"

!

"

!!!!

"

!!
!

$

"

!
!!
!

"

!
!!%

!!
!% !! !!

"

!!

"

' !!!

"

!

"

!!

BACH

SonaGraph

Figure 10. Music notation transcription for “wind turbine”.

!
""# $
% &&&! = 750 """# ""' """

(""
"""
"

) "&
&&&
&&

"
""&
""
""""

"
" """

&&""" & **++ % ""
""" ""

""
$" "
" """"" "% &

"
&&
&" &&&
&

"""""
"

"""""
""
&"% """"

""
,
""""""
""""""-

""""#
""

&&
&&&
"""
"""""

"""
"""
& """

""
"

"
"""
"
""""""

"""
"
""

"
"""""
""" "
"

"""""""
"" "

""""
"""

%#
#

""
"""
"""
"

""
""" "

"""
"""""

"""
""""

(""""
"""

6 !
""""
"""

"
"

% """
"""
""""", """""

"""""
"

"
""""""

"
"""""
"""
"

(
&"
"
&&&&
&&&&

""""
""""

, """
&"""
""
& "&&&& % " "

"""
"

"" ""

"""""
""
"""""""""""""

""" "# """ """"
"
" """"""
""&"

&&&&
&&&&
" &
""" #" * * & ") ."""

" """"
"

(
""""
"
"

"
""""""
""
&&&& """

""
""""
""

""""
""
&&&&
&&

"" """
""" """"

"
""""
"&&&

&&
+9 ! % &&

&&&
&
"""""
""

"""""
"""
"""""
""
&

#
""" " &"""" * &% ""

(
"$ *

" """"
"
""""""" """""

"
""""" " """"""

""
" &&& """" #, "" ""
"

" &&" "/ " "" &&
0/ " &$# "

1
" 2& & ". 2 &&" " & "" &% """&2 "2 &"!17 / ""

"
" &

"
2 #. " "&2.2

0# "" (*

0
"

2
&
&"
"&"

$ &"&" .-." "2
"

&"# (
""% """ &.2!25

$ &" **#""# ""2 " &

"
"") 2 " & ""

"
"

""# "" && ""
"

&
0

"
0 -

"
"
&
&
"

"
"
""! "

30

"" &
"#"(

"
&" " 2 "

"&"
)

!
!!
!

"

!!
!

!!
!

"

$
$

"

!
!!
!
$

!

!
!!

! = 750 !!
!

!!
!

"

$
$
!!
!

" "

!
!

!
!

""

!
!
!

"

$

!
!
!

!!!!
!

!

#

!!
!!

!
!!!
!

!!
!
$$
$

!
!

!
!

"

$!!
!

"

!!
!

"""

!
!

! !!
!

#
#

$!!
!!

"

!
$
$$$

"
!
!

%$

"

&

!!!
!

#
#

"

$#

#
!!
!!
!

!!
!!!!
!

!

"

!
!
!! !!

!!!
!

!

!
!!!
!

#
!!
!!
!

!!
!!
!

"

#
!
!!!
!!!

!
!
! !!
!!
!

"

!
!!

#
!

!!
!!

"

!
!!
!!!

!

"

!!!
!! !!

!
!#

!
!!
!!

!!!!
!!

"

!!
!!

!$$
!

!!
!!!
!!

!!
!

"

!
!!!
!!

! !
!!

"

!!!!!
!!

$
!!
!!
!

!

!
!

"

!
!!
!

5

#
" "

!!!!
!!

!
$
$$

"

!!!
!!

!# !!!!
!! !!
!!!
!$$$$

$$

!!!!
!!
!!!!
!

""

!!!!!
!! !! !

"

!
!
! !!

!!!
!!

#
!!
!!!

!

!!
!!
! !!

!

"

!

!!

!!
!

#
!!
!!
!!

!!
!!

!!
!!!
!!! #
!!
!!!
!

#

"

!!# !##

!!!!
!!

!!

#

#

"

!
!!!!!!!!!

!!!!!!!
#

!

!!!!
! !

#
!!!!

!!!!!!!!
'

!

"

!!!!!
!

!!!!!!!!

#
#
!
!!!!!!

"

!
!!!!!!

#
!!!!!!!!

#
!
$
$$$

!!!!!! $
!!

!

"

!!!!!!

$$$!

!
!
!!
! !! !!!!

"

!

"

!!!

"

!!!

"

!!!!

"

!!!

"

!!!
!

"

!!!#
9

#
"

!

"

!

"

!

"

!

"

!
!!!!!

"

!!!!!!!

"

!
!!!!

!
!!!!

!!!
! !#

!!!!
!!!

!!

$
!!!!!

"

!
!!!!

$$$$

!

"

!!!! !

!

"

!!!

!
(

"

)!
* &

"

$)

"

"
! $

"

! !

!
"

"

"

"

"

"

)

"

!
!!
#
#

! !
!

! $!

!

"

"

"

!!
!

"

!

"

$
*+)!

" "

!

"

!

"

!

"

! !

""
#

14 !

"

!

"

!

"

+
$

"

! "

""

!) "

" ""

!

"

! "

! $
!

!
!

"

!
!!
!

"

!

!
!$!!

"

$# !!
&

!
!

" "

)$
!
!! !$

!

"

!
!!

"

!
!
$

!

"

!
!

!
!
!!

!

#
!
!

!

!

!!!
!

!
!!!
!

! !
!

#
!
!

!
!!!
!

(

!

! !
' !!!!
!

!

"
!
!!

" "

$
$$$

21

#
*
$!

!
!

)

! !
!

' ! !

!

) !
#

!

!
!#

#
%
!##

*
!

!

&

"&
!

#
' !
!!

!
!! !! !!! !!

!
!' !!!

!
!

!)! !

!

!!
%
!

! !!
!
!

!
!
!

!

!

!!
!

$
!!!
!

#

!

!!
!

#
#

$$$&!#

! !

!!!

!

"
!!
!

!
!

!

!

!!!
!!!

#

"

! !

"

"
%
) !
!!#

!

"

#
!

!

"

!
!
$$
$

!

!
!!

!
!!

$#
25

!#

"
%
!

"

! &
#
$
$

!

"

!

"

!
!

&

"

!
!

!!!
!

!
!

"

!!!
!

$
!!!!
!

#
!

!

((
)!

!

!

$$!

!

!! !

"

!
!
$

!$!
!
! !

"

! !

"

!!!
!

! !!

!

$
$!#

!
!! $
!

! !
!!

"

$

$
*

!
!!

)

!!
!

! $
*

!!
!
'

)

!!! !
!

!

!

!

!!# $
"

!

!
"

!

#!
!
!

!

#

30

#
"

!! !!
!

!!
!
! !

!

!

!
%
!!

!

'&

!

$!!!
!

! !!!
!

!

!
!!!
#
#

!
"

!

"

" "

"

"

"

BACH

SonaGraph

Figure 11. Music notation transcription for “octandre”.

be revealed in the Audiosculpt analysis by lowering the
threshold, but many other frequencies then become rel-
evant for transcription. This clearly shows that the two
analysis model have a different sensitivity. The same situ-
ation applies to Figure 11, a transcription from an excerpt
from dense orchestral sound (a tutti in ff from Varèse’s
Octandre). While the overall material is approximatively
the same, sensitivity to amplitudes varies between the two
analysis. A general difficult case for spectral analysis is
related to noisy sounds. Figure 12 shows a transcription
from a coin tossed on a hard surface, with no clear har-
monic content. While both transcriptions capture a generic
energy accumulation in the same higher frequency region,
details in terms of pitch sensibly vary.
In conclusion, transcriptions in both environments are sub-
stantially coherent, sometimes revealing more or less clearly
various perceptual details, as a result of the different sen-
sitivities to amplitude. While the BACH system is gener-
ally more flexible, the automatic notation, relying on FFT,
is generated by a hidden process, not directly accessible
to the musician. On the other side, SonaGraph data, while
simplified, are directly mapped into notation, and their ma-
nipulation by the user can be transparently observed into it.

7. MUSICAL EXAMPLES

A first straightforward musical application of the Sona-
Graph framework has occurred in the piece/installation Orolo-
gio da rote 6 . The piece is a reflection on signals broadcast
in the Italian mediascape and includes a set of music quota-
tions from historical jingles from RAI, the Italian national
public broadcast service. It is scored for 3 modified radios
and an automated piano, in particular a Yamaha Disklavier
that can be driven by MIDI messages. Once collected from
various sources, both acoustic signals and music jingles
have been analyzed via SonaGraph and the resulting spec-
tral data stored. During the performance, data are con-
verted into MIDI, and MIDI messages sent in real-time to

6 https://soundcloud.com/vanderaalle/
orologio-da-rote

467

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672

!

! "
#
$!!!

!!!

% % !# &

"
"'$

'

(
!!
!!!

") & "! = 750 (* + ! "

!""

,
!

#

!

!

!!

!
!!!

!
!!!

- ! "

!!#' & !-
! ! $!

+!!" +
! "

&
! "
-
$

&
"

3

,
! $!!!! "" ! "! "$!! !

!
!(&

$ ""!!
!
!! "

-
" "!$

#
!!

&-
$ " !5

,
!

+& " (!%
! "
*

!!

!
!!""
"
!! "

! !!
!
"
"
!
!
"

!!
!
!$

% +# !! !!
!
% !

,
! +7

!
!
!!
&! !$!

!
! -!!

!
! !!!' !%

!
!

!
!

"
""!! !!
" "!

!!'

!
!!

"

" !!!

! !
!!!

'
,

9 !

!

! !
!! !

!
! ! !

! !
!
!!

! !

(%-! +

!!
!
!

!" !
!"

! "

&

"!

-

!'

-

!!!

&

!! !!!
!11

, *

!

%#

!!
!

!
!

'
'

!!
!' !&

"!!$
!
!

% "&&# -

!

(

!

"%
"!!$!",

!13

!
! "
- % &* +

"
!

!
!

"&

"!!

".

"
$!

! !! !! "

& &#

! "

#

! "

,
15

! ! "

.+ % "-

!! !

"

!
#$

!

"

%#

! &

"

!!
% '

"

!(
'

!

"

#&%
(

"

!!!

"

!
!

(
$
!

!

'

!

"

"

!

"

"&%

!

'

"!

% &
!

"

!!
!!

"
!

"

!(

'

!(
!

! = 750

&

"

%

"

!!!!
"

((!((
!
!!!!!!!! !

#

(
)

!!!!!
!(

!!
!!

(

"

!!

"

#$
!

"

%##

(!

'

!

"
!

!

" "

#

!
!

"

#%'

"

!

"

"%
(
'
!

%

(

$ '

"

!(

'

!

#
!

&%

"

"#

(

"

!

"

"'
!

#
(

(

'

"

!

""

"#&

"

%#
5

!

!
&%'

"

"'
!

&

" "

#%

"

"'

!

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

""

""

"
!
'
(

"

"

%
(!
'
!

"

'#

!

&%
!

"

"" "

" %

"

&

"

""

(

#

"

! !
!

!
' %#

"

!
!

"

10

(

#
!

#

"

!
!

"

!
!

'

(

#

"

%

"

"

"

"

"

"%'
!

#

"" "

""

BACH

SonaGraph

Figure 12. Music notation transcription for “coin”.

11. Codex Faenza - Ensemble Organum
De toutes flours

C
C♯

D

D♯

E

F

F♯
G

A

A♯

B

!! !!"""
#

$ ""
"

CM7

"""" ""%
"""$

AM

""""
""

3

" "
% & ""

"# "$ ""
"

"
"

!!&"
"

"
"

!
2

!# 4
'

"""
' ""

" = 88
!

"$ """ ! "
#
!! "" " &

#
!

!!
"

$
#
"!

#
"" """""

"
"& "

"
"$$
!

m♯F

"""

#
!%& "!

"
"""

6 78 """"$

CM7

""""$$
"""""

! $
#
""

7

" ""!
#
"

#
"

! """
4

"
%%#!

"
" !$$

#m7♯F

"""
"""

5

"""
"! !#

"&
#

"""

C
C♯D
D♯E
F
F♯G
G♯A
A♯B

0 5 10 dur: 16.02 sec.

1: p 2: mf 3: f 4: ff 5: pp 6: mp 7: f 8: p

Omen duration: 16.02 sec x 8 = Total duration: 2'08''16

Notes:

 1

 2

 3

4

5

Figure 13. Omen notation for Haruspex cledonomans, 11.

the Disklavier (with amplitudes mapped onto velocities).
Most of the piano material is thus a sort of spectral (and
ghost-like) reconstruction of existing sounds, not dissimi-
larly from Peter Ablinger’s Speaking piano 7 .
A second project has involved SonaGraph in composition
and heavily relies on music information retrieved from gath-
ered data. The work Haruspex cledonomans is a collection
of “ominous formulas” for improvisation written for ad li-
bitum improvisers 8 . Each piece of the collection is a for-
mula that describes information for two logical music lay-
ers, the “omen”, written in standard music notation, and the
“prophecy”, to be constructed/improvised while the omen
is playing. Omens originate from 43 short audio phrases
extracted from recordings of various composers/musicians,
including classic, jazz, rock and ethnic sources. All the
fragments have been analyzed via SonaGraph. In each
analysis, the sample rate has been matched by ear to be
approximatively synchronized to music pulse. Then, the
spectral data have been automatically transcribed into mu-
sical notation, disregarding octaves so that only pitch classes
are present (i.e. chroma). Omens are intended as the back-
ground layer for improvisation, and in each piece informa-
tion extracted from the sonogram is provided to the mu-
sician(s) as a guide for the “prophecy” improvisation. As
a consequence, some basic MIR techniques have been ap-
plied to SonaGraph analysis data. Figure 13 shows one of

7 https://ablinger.mur.at/speaking_piano.html
8 https://soundcloud.com/vanderaalle/sets/

haruspex-cledonomans

the omens. The whole notation is generated automatically
from processed spectral data by means of LilyPond (as de-
scribed before) and the Python-based Nodebox graphic en-
vironment 9 , with Python code scripted from SuperCol-
lider. In Figure 13, the five blocks provide various in-
formation for the improviser. While blocks 2 and 3 de-
pend on different compositional parameters (here not rel-
evant), blocks 1, 4 and 5 are directly generated from Son-
aGraph data. Block 1 provides the omen notation in CPN
(as discussed before). While the omen has to be played by
the background musician, notation also includes a possible
chord interpretation of note clusters (i.e. simultaneous col-
lections of more than 2 notes), intended as a guide for the
improviser. An analysis step is performed by a specialized
class, not yet included in the framework core, ChordAn-
alyzer. Chords are specified in a template list collecting
abstract chord structures (e.g. a major chord is indicated as
{0,4,7}). Templates have been compiled from various mu-
sic theory sources. If a cluster is found and if it matches a
certain chord structure, then the relevant chord indication
is written on top of the staff. Chord analysis works enhar-
monically and disregards chord position. Block 4 (“Pitch
class relevance”) displays the chroma set with symbolic
names, varying the font and the circle sizes proportion-
ally to the amount of occurrences of each pitch class in
the sonogram. It thus indicates to the improviser possible
pivot notes to be taken into account. Finally, block 5 is
a visualization of the omen as a piano roll. It allows to
quickly understand chroma distribution over time. Time is
proportional to duration, so that the piano rolls of the var-
ious ominous formulas are scaled proportionally to their
absolute durations. On top, a histogram provides an over-
all indication of the number of pitches for that time unit
(“amount”), as a general density information.

8. CONCLUSIONS

The SonaGraph framework proposes a cartoonified (i.e.
simplified but effective) model for spectral analysis ori-
ented toward computer-assisted and algorithmic compo-
sition. Geared toward symbolic applications, it extracts
spectral information that, while strongly reduced, is still
adequate perceptually. Such a reduction makes the model
efficient in terms of data storage and manipulation, and
suitable for real-time usage. Thus, it can be easily inte-
grated into a pipeline connecting sound to music appli-
cation, in terms of symbolic representation (music nota-
tion and MIDI). In short, while sketchy, the gathered data
are transparent to music manipulation (sound object level)
rather than to sound (audio level). The SuperCollider code
of the actual implementation (still in progress) is available
on GitHub 10 and includes help files with examples.

Acknowledgments

The author is grateful to Luca Morino for providing exam-
ples in BACH in relation to section 6.

9 https://www.nodebox.net/code/index.php/Home
10 https://github.com/vanderaalle/vanderaalleSC/

tree/master/sonaGraph

468

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672

9. REFERENCES

[1] C. Roads, Composing electronic music. A new Aes-
thetic. Oxford: Oxford University Press, 2015.

[2] E. R. Miranda, Computer Sound Design. Oxford: Fo-
cal Press, 2001.

[3] S. Canazza, G. De Poli, G. Antonio Mian, and
A. Scarpa, “Real time comparison of audio restoration
methods based on short time spectral attenuation,” in
Proceedings of the COST G-6 Conference on Digital
Audio Effects (DAFX-01), Limerick, 01 2001, pp. 1–4.

[4] J. Bresson, “Sound Processing in OpenMusic,” in Proc.
of the 9th Int. Conference on Digital Audio Effects
(DAFx-06), Montreal, 2006, pp. 325–330.

[5] A. Agostini, É. Daubresse, and D. Ghisi, “Cage:
a High-level Library for Real-time Computer-aided
Composition,” in Proceedings ICMC—SMC—2014,
A. Georgaki and G. Kouroupetroglou, Eds., Athens,
2014, pp. 308–313.

[6] M. Müller, Fundamentals of Music Processing. Audio,
Analysis, Algorithms, Applications. Cham: Springer,
2015.

[7] P. Schaeffer, Traité des objets musicaux. Paris: Seuil,
1966.

[8] C. Roads, The Computer Music Tutorial. Cambridge,
MA, USA: MIT Press, 1996.

[9] C. Cannam, C. Landone, M. Sandler, and J. Bello, “The
sonic visualiser: A visualisation platform for seman-
tic descriptors from musical signals,” in ISMIR 2006
- 7th International Conference on Music Information
Retrieval, 2006, pp. 324–327.

[10] D. Rocchesso and F. Fontana, Eds., The Sounding Ob-
ject. Firenze: Edizioni di Mondo Estremo, 2003.

[11] A. Klapuri and M. Davy, Eds., Signal Processing Meth-
ods for Music Transcription. New York: Springer,
2006.

[12] A. Agostini and D. Ghisi, “A Max Library for Musical
Notation and Computer-Aided Composition,” Com-
puter Music Journal, vol. 39, no. 2, pp. 11–27, 2015.

[13] A. Schneider, Sound-Perception-Performance, ser.
Current Research in Systematic Musicology. Cham:
Springer, 2013, ch. Change and Continuity in Sound
Analysis: A Review of Concepts in Regard to Mu-
sical Acoustics, Music Perception, and Transcription,
pp. 71–111.

[14] P. N. Lehner, Handbook of Ethological Methods.
Cambridge: Cambridge University Press, 1996.

[15] R. Jakobson, C. M. Fant, and M. Halle, Preliminaries
to Speech Analysis. The Distinctive Features and their
Correlates. Cambridge, Mass.: The MIT Press, 1952.

[16] C. M. Fant, “Historical Notes,” TMH-QPSR, vol. 47,
pp. 9–19, 2005.

[17] É. Leipp, Musique et acoustique. Paris: Masson,
1971.

[18] A. Orcalli, Fenomenologia della musica sperimentale.
Potenza: Sonus, 1993.

[19] C. Regnault, “From quantitative to qualitative. the per-
tinence of sonographic representation for soundscape
analysis,” in Proceedings of inter.noise 2000, 2000, pp.
1–5.

[20] F.-B. Mâche, Musique, mythe, nature ou Les dauphins
d’Arion. Paris: Klincksieck, 1983.

[21] J. T. Marshall, “Voice in communication and relation-
ship among brown towhees,” The Condor, vol. 66,
no. 5, pp. 345–356, 1964.

[22] H. Dudley, “The Carrier Nature of Speech,” The Bell
System Technical Journal, vol. XIX, no. 4, pp. 495–
515, 1940.

[23] M. Dolson, “The Phase Vocoder: A Tutorial,” Com-
puter Music Journal, vol. 10, no. 4, pp. 14–27, 1986.

[24] M. Müller, Information Retrieval for Music and Mo-
tion. Heidelberg: Springer, 2007.

[25] C. Schörkhuber and A. Klapuri, “Constant-Q Trans-
form Toolbox for Music Processing,” in Proceedings of
7th Sound and Music Computing Conference, X. Serra,
Ed. Barcelona: SMC, 2010.

[26] W. Sethares, Tuning, Timbre, Spectrum, Scale. Lon-
don: Springer, 2005.

[27] S. Wilson, D. Cottle, and N. Collins, Eds., The Super-
Collider Book. Cambridge, Mass.: The MIT Press,
2011.

[28] A. Valle, Introduction to SuperCollider. Berlin: Lo-
gos, 2016.

[29] P. McLeod and G. Wyvill, “A smarter way to find
pitch,” in Proceeding of the 2005 International Com-
puter Music Conference, X. Serra, Ed., Barcelona,
2005, pp. 138–141.

[30] H.-W. Nienhuys and J. Nieuwenhuizen, “LilyPond, a
system for music engraving,” in Proceeding of the XIV
CIM 2003, Firenze, 2003, pp. 167–172.

[31] D. Byrd, “Music notation software and intelligence,”
Computer Music Journal, vol. 18, no. 1, pp. 17–20,
1994.

[32] A. Valle, “Integrated Algorithmic Composition. Fluid
Systems for including notation in music composition
cycle,” in NIME 2008: Proceedings, 2008, pp. 253–
256.

[33] Adobe, PostScript Language Reference, 3rd ed. Read-
ing, Mass.: Addison-Wesley, 1999.

469

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672

