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ABSTRACT

Experimental research into the fundamental acoustic as-
pects of musical instruments and other sound generating
devices is an important part of the history of musical acous-
tics and of physics in general. This paper presented ex-
perimental proof of dispersive wave propagation on metal
guitar strings. The high resolution experimental data of
string displacement are gathered using video-kymographic
high-speed imaging of the vibrating string. The experi-
mental data are indirectly compared against a dispersive
Euler-Bernoulli type model described by a PDE. In order to
detect the minor wave features associated with the disper-
sion and distinguish them from other effects present, such
as frequency-dependent dissipation, a second model lack-
ing the dispersive (stiffness) term is used. Unsurprisingly,
the dispersive effects are shown to be minor but definitively
present. The results and methods presented here in general
should find application in string instrument acoustics.

1. INTRODUCTION

Modern acoustic guitar strings are made of different metal
alloys. Metal string produces a different sound to nylon
or gut strings. Guitar strings may be “plain”, consisting
only of a single material, like steel, nylon, or gut. Also
they may be wound, having a core of one material and an
overwinding of another.

Usually, plain guitar strings are not associated with sig-
nificant dispersive effects like e.g. the bulkier steel piano
strings are [1]. Thin guitar strings have a relatively low
bending stiffness. The aim of this paper is to experimen-
tally investigate and prove the possibility of transverse dis-
persive wave propagation on the second and third strings
used in acoustic guitars.

Several models of transverse wave propagation on a stiff
string, of varying degrees of complexity, have appeared in
the literature [2–6]. Models with great emphasis on real-
istic frequency-dependence loss profiles are [7, 8]. These
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models, intended for the synthesis of musical tones, are
always framed in terms of a partial differential equation
(PDE), or a system of PDEs. The simplified starting point
for such models is the one-dimensional wave equation [9].
More realistic features, such as dispersion, various nonlin-
earities and frequency-dependent losses, are incorporated
through several extra terms. Discussion in this paper is in-
formed by the model equation proposed by Bensa et al. in
[6], i.e., Euler-Bernoulli.

Some direct measurements of string vibration have been
previously conducted. The methods of string displacement
measurement can be roughly divided into three categories:
the electromagnetic methods, electric field sensing, and
optical methods. The electromagnetic methods exploit Fara-
day’s law, and the principle of the string displacement de-
tection is the following: An electromagnetic coil is placed
near the string, and the motion of the string induces a volt-
age in the circuit that is proportional to the string’s velocity
from which the displacement of the string is obtained. This
method was used and described in [10].

The electric field sensing makes use of the phenomenon
of capacitance change between two electrodes, when the
distance between them is varied. In the simplest approach,
a conducting string is grounded, and direct current (DC)
voltage is applied to an electrode plate. The string’s move-
ment modulates the voltage between the string and the plate,
and the information about the string’s displacement is ob-
tained cf. [11].

The optical methods exploit various light or laser emit-
ting and detecting sensors to capture vibration. For exam-
ple, high speed cameras with suitable video analysis have
been used to measure string vibration successfully [12].
Also, different devices that convert laser light into a uni-
form parallel beam and detect their shadows can ensure the
result [13]. Devices that are based on various photovoltaic
detectors have also been successful [14].

Our experimental approach can be classified under the
aforementioned optical methods. We use a non-invasive
video-kymographic method based on the exploitation of a
digital high-speed line-scan camera (LSC) imaging. The
method has been used successfully in musical acoustics re-
search [15–17]. A monochord equipped with a guitar str-
ing is measured 1. Experimentally obtained string vibration

1 String set: Earthwood Light 2148. String gauge: 0.015 (15, 1115).
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Figure 1. Operating principle of the LSC compared to an
ordinary high-speed camera. Geometry of the area that is
being imaged is shown on the white screen with the dashed
red lines. Placement of the LSC with respect to the string
vibrating in the z-direction while recording the vibration.

Figure 2. LSC recording string displacement. Cross-
section of the recorded string is shown with the grey bullet.

data are then compared directly or indirectly against theo-
retical models, expanded upon below, with the aim to de-
duce some beneficial observations and reach conclusions.

Organisation of the paper is the following: Sec. 2 explains
the experimental approach and set-up; Sec. 3 presents the
dispersion analysis of the dispersive Euler-Bernoulli type
model [6]. Numerically integrated solution of this model
is presented and compared against its dispersion analy-
sis; Sec. 4 presents a simpler time-stepping model of lossy
non-dispersive string vibration, that is used here to iden-
tify dispersive features present in experimental data, and
to distinguish them from other effects, such as frequency-
dependent dissipation; Sec. 5 presents the experimental re-
sults and compares them against our assumptions and pre-
sented theory (the simplified model). Analysis and dis-
cussion of the results is directly informed by the Euler-
Bernoulli type model; Sec. 6 concludes the paper.

2. EXPERIMENTAL MEASUREMENTS

The string displacement is measured using a LSC. The
camera produces two-dimensional digital images (not vi-
deos) called the kymographs. The geometry of a digital
imaging sensor of the LSC differs from a commonly used
video camera. Usually, the video camera sensor pixels are
placed in rows and columns forming a grid. The LSC sen-
sor consists only of a single pixel array, referred here to, as
the line, see Fig. 1. While filming the camera continuously
stacks these lines to form an image. In addition, the global
shutter technology allows for all pixels in a line to work

Manufacturer: Ernie Ball Inc. Coachella, California, USA 92236
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Figure 3. (a) Kymograph of vibrating string. Image
recorded at 44 100 lines/s. String displacement u(xm, t)
tracking with line convolution method (2) is shown with
the overlaid dashed line. (b) Calibrated string displace-
ment time-series corresponding to the kymograph above.

Figure 4. Dual polarisation measurement set-up [15].

as one (collect light simultaneously), preventing any im-
age distortions to influence the recordings. Figures 1 and 2
show the perpendicular placement of the LSC with respect
to the string while recording.

The string displacement time-series extraction from a ky-
mograph is based on the discrete one-dimensional convo-
lution integral of the individual kymograph lines

c[i] = (p ∗ k)[i] =
∞∑

n=−∞
p[n] k[i− n], (1)

where i ∈ [1, 1024] is the pixel number in any given line,
p[i] is the image depth or colour value in bits, and k[i] is the
convolution kernel — the image feature we are interested
in. The kernel is selected to be roughly similar in shape
to the string (its image), this guarantees that the convolved
line c[i] will have a clear maximum (or minimum) that will
coincide with the string position [16]. Thus, for any given
line the pixel corresponding to string position

i = arg max c[i] (or i = arg min c[i]). (2)

This procedure is repeated for all kymograph lines. Figure
3a shows an example kymograph and the result of the im-
age analysis. Figure 3b shows the calibrated time-series
where the line number is multiplied by dt = 1/44 100
s since the camera is recording at audio sampling rate of
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Figure 5. Schematic of the problem studied. Triangular
shaped initial condition exited at x = xe = L/4 is shown
with the solid black line, and the corresponding traveling
waves (overlapping) are shown with the green line. The
dashed line shows the string displacement at one half of the
period. Vertical dash-dotted line shows the measurement
coordinate x = xm used in the experiment.

44 100 lines/s, and the pixel number i is multiplied by dx
which value is determined by filming an object (high-con-
trast calibration sheet) with known dimensions.

2.1 Proof of planar vibration

In case a dual-polarisation measurement is required the
LSC is used in combination with a mirror. The mirror is
placed behind the string under a 45◦ angle with respect to
the optical axis of the camera, as shown in Fig. 4. One half
of the kymograph will contain displacement data for the
vertical z-axis, and the other half for the horizontal y-axis.

The following method of controlled and repeatable str-
ing excitation is used in this study. The method is based
on the fact that a thin cotton thread, when under great ten-
sile load, snaps quite rapidly when heated abruptly (burned
with a flame). The thread is looped around the string at the
desired excitation point x = xe along the string’s speaking
length, the string is then displaced to a suitable initial am-
plitude A in the desired direction with respect to the LSC.
This procedure creates a triangular shaped initial condition
shown in Fig. 5. Figure 6 shows that the guitar string exited
in such a manner is capable of sustained planar vibration.
At least for some time after the excitation.

3. DISPERSIVE STRING MODEL

The planar transverse vibration of a lossy stiff string can
be described by

∂2u

∂t2
= c2

∂2u

∂x2
− γ2 ∂

4u

∂x4
− 2α

∂u

∂t
+ 2β

∂3u

∂x2∂t
, (3)

where u(x, t) is the string displacement in z-direction and
the non-negative α, β, γ and c are the system parameter.
The first term on the right-hand side of the equation, in
the absence of the others, gives rise to ideal wave vibra-
tion, with traveling wave speeds c [9]. The second term
introduces dispersion and is responsible for frequency-de-
pendent wave velocity where constant γ is proportional to
the bending stiffness. Last two terms allow for losses, and
if β 6= 0, decay rates are frequency-dependant.
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Figure 6. Persistent planar vibration. String displacement
u is recorded at x = xm using the measurement set-up
shown in Fig. 4. Subscripts y and z indicate the direction
of vibration as shown in Figs. 1 and 4.

3.1 Dispersion analysis and characteristic equation

The solution to Eq. (3) is assumed in the form

u ' u0e
ςt+iκx, (4)

where the complex frequency ς = ς(κ) is a function of
wavenumber κ and κ ∈ R+, i is the imaginary unit, and u0

is an initial amplitude. Solving the characteristic equation

ς2 + 2q(κ)ς + r(κ) = 0, (5)

where

q(κ) = βκ2 + α, r(κ) = c2κ2 + γ2κ4, (6)

for ς gives
ς± = −q ±

√
q2 − r. (7)

These roots determine the behaviour of the general solu-
tion (4) of Eq. (3). Condition that the initial value problem
corresponding to Eq. (3) be well posed is that roots (7) have
real parts which are bounded from above as a function of κ;
this is to say that solution growth can be no faster than ex-
ponential, see assumption (4). Another physically relevant
condition is that roots (7) have non-positive real parts for
all κ, so that all exponential solutions are non-increasing
(infinite string displacement). This condition is satisfied
because q(κ) > 0, r(κ) > 0 for positive κ. We rewrite the
complex frequency using new variables

ς = Re(ς) + Im(ς) = σ + iω. (8)

Substituting (8) into general solution (4) gives

u ' u0e
(σ+iω)t+iκx = u0e

σtei(ωt+κx), (9)
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Figure 7. Losses σ(κ) corresponding to Eq. (3) shown for
parameter values (12).

from here it is easy to see that imaginary part of roots (7)
corresponds to oscillation frequencies, and real part

σ(κ) = −q = −α− βκ2, (10)

to losses. Clearly, for real wavenumbers κ such that q2 ≤ r
imaginary part

ω(κ) =
√
q2 − r =

=
√
−(α+ βκ2)2 + c2κ2 + γ2κ4 6= 0, (11)

and the resulting string vibration corresponds to normal
damped wave propagation. For realistic values of parame-
ters in (3), the condition q2 ≤ r (traveling wave solution)
holds for the vast majority of the audible frequency range.
Also, notice that for α, β ≥ 0, loss σ = −q depends on κ,
the damping rates are wavenumber and thus frequency de-
pendent, moreover, the losses increase as a function of κ.
On the other hand, if q2 > r, then both roots (7) are purely
real and non-positive, yielding damped non-traveling so-
lutions. A more detailed analysis of this model has been
performed by Bensa et al. in [6].

In order to demonstrate the obtained analytic results real-
istic parameter values, taken from [6], for Eq. (3) are cho-
sen as follows:

c ' 200
m
s
, γ ' 1

m2

s
, α ' 1

1

s
, β ' 10−4 m2

s
. (12)

These values correspond to a highly dispersive piano string
rather than the guitar string considered below. In further
discussion we are ignoring small wavenumber (extremely
long wavelength) modes (in this case κ . 0.760) 2 . The
behaviour for κ . 0.760 is most likely non-physical due to
the heuristics of the manner in which Eq. (3) was derived.
Additionally, wave motion related to these wave compo-
nents is outside the audible range of wavenumbers.

Figure 7 shows the decay curve for the selected param-
eters (12). As expected the exponential decay rates be-
come greater as a function of κ. Phase velocity vp(κ) =
ω/κ and group velocity vg(κ) = dω/dκ curves are shown
in Fig. 8. For all κ > 0, vg > vp which means that
with the passage of time a pulse propagating on the str-
ing will distort in a manner such that a high-frequency
oscillating tail will tend to appear in front of the pulse.

2 Criterion for determining the value: solve dvg/dκ = 0 for κ > 0.

0 50 100 150 200 250 300 350 400
Wavenumber 

200

400

600

800

v g
(

) a
nd

 v
p(

) [
m

/s
]

Figure 8. Group velocity, shown with the solid line, and
phase velocity, shown with the dashed line, corresponding
to Eq. (3) and calculated for parameter values (12).
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Figure 9. Group delay corresponding to Eq. (3) shown for
parameter values (12).

This type of dispersion is referred to as the anomalous dis-
persion. The group delay, unit length multiplied by the
inverse of the group velocity, shown in Fig. 9 also con-
firms that high-frequency wave components travel faster
than the low-frequency ones. This behaviour can be con-
firmed by numerically integrating Eq. (3). The initial value
problem is solved on an infinite half-plane x ∈ (−∞,∞),
t ∈ [0,∞) to eliminate any effects of wave interactions for
t � 1 caused by the fast traveling high-frequency wave
components reflecting from the edges of a finite integra-
tion domain. We select a bell-shaped initial condition

u(x, 0) = A sech2 ηx =
4Ae2ηx

(1 + e2ηx)2
, (13)

whereA = 2 mm is the string amplitude, η = 2 is the pulse
width parameter. This parameter selection results in an ap-
proximately 2 m wide pulse — not too dissimilar from the
realistic wavelengths found in string instruments. Figure
10 shows the integration result for parameter values (12)
and for three space positions. The pulse evolution is ex-
actly as predicted by the dispersion analysis. A dispersive
high-frequency oscillating tail emerges in front of the main
pulse by arriving earlier and becomes more prominent fur-
ther the pulse propagates.

A careful look at the expressions of the phase and group
velocities reveals that limκ→∞ vp =∞ and limκ→∞ vg =
∞. These results are clearly not physical. In a realistic
physically-sound models these curves should plateau out
to some finite dynamic velocity value. One could fix this
problem by adding appropriate small magnitude higher or-
der terms to model (3). Once again, as in the case κ � 1,
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Figure 10. (a) Numerical integration of the initial value
problem corresponding to Eq. (3), initial condition (13)
and parameter values (12). Results are shown for space
positions: x1 = ±7.50 m, x2 = ±48.75 m, x3 = ±90.00
m. (b) Magnified pulse shape, case x = x2. (c) Magnified
pulse shape, case x = x3.

we conclude that this behaviour is non-physical and luckily
for us outside the audible range of frequencies.

4. NON-DISPERSIVE STRING MODEL

In order to identify the high-frequency and low-amplitude
dispersive wave propagation in the experimental measure-
ments presented below, we also consider a non-dispersive
model with frequency-independent loss. The heuristics of
our approach are directly determined by the d’Alembert
formula (traveling wave solution). Modeling approach pre-
sented here is similar to [18, 19].

We consider vibration of a lossy ideal string described by
wave equation

∂2u

∂t2
= c2

∂2u

∂x2
− 2α

∂u

∂t
, (14)

where u(x, t) is the displacement, c =
√
T/µ is the speed

of the waves traveling on the string, T is the tension and µ
is the linear mass density (mass per unit length) of the str-
ing. In the context of a real string Eq. (14) can be used as
an approximation of thin homogeneous elastic string vibra-
tion under a small amplitude restriction. In this case wave
speed c =

√
T/(ρA◦), where ρ is the volumetric density,

A◦ = πr2 is the cross-section area of a cylindrical string,
and T is the tension. Second term on the right-hand side
of (14) introduces frequency-independent loss, much the
same way as in Eq. (3). It is easy to show that for α > 0 all
frequency components will decay ∼ e−αt. As in the case
(3), this term can be seen as a perturbation term acting on
the wave equation in the following form:

∂2u

∂t2
= c2

∂2u

∂x2
, (15)

thus its linear effects on the final solution can be added
separately. For now we focus on Eq. (15). It is well known
that Eq. (15) has an analytical solution. For infinite string
(ignoring boundary conditions for now), for initial condi-
tions u(x, 0) = u0(x), and ∂u(x, 0)/∂t = 0 the solution
takes the following form:

u(x, t) =
1

2
(u0(x− ct) + u0(x+ ct)) . (16)

This solution represents a superposition of two traveling
waves: u0(x − ct)/2 moving to the right (positive direc-
tion of the x-axis); and u0(x + ct)/2 moving to the left.
Function u0/2 describes the shape of these waves and stays
constant with respect to x-axis, as they are translated in op-
posite directions at speed c.

In general, a wave on any arbitrary segment of the string
can be understood as a sum of two traveling waves that do
not need to be equal. It can be written as

u(x, t) = r(x− ct) + l(x+ ct), (17)

where r(x − ct) is the traveling wave moving to the right
and l(x+ ct) is the traveling wave moving to the left.

A well-known time-stepping method for implementing
d’Alembert formula is the following. We discretise xt-
plane into n × m discrete samples. We discretise the x-
axis with grid spacing ∆x = L/n where L is the speak-
ing length of the string, and the t-axis with grid spacing
∆t = tmax/m, where tmax is the integration time. We
let xi = i∆x, where 0 ≤ i ≤ n and tj = j∆t, where
0 ≤ j ≤ m. From here it follows that uji = u(xi, t

j),
rji = r(xi, t

j), and lji = l(xi, t
j). And, by applying

rj+1
i = rji−1, (18)

lj+1
i = lji+1, (19)

for all grid points i and j in a sorted order one gets transla-
tion of numerical values rji and lji propagating in opposite
directions with respect to the xi-axis. This result agrees
with d’Alembert formula (16) or (17) and can be under-
stood as a digital waveguide based on traveling wave de-
composition and use of two delay lines. The equivalence
between the model used here and digital waveguide mod-
eling is shown in [20].

So far we have not addressed the boundary conditions of
Eq. (15). We assume that the string is fixed at both ends.
The following boundary conditions apply:

u(0, t) = u(L, t) = 0, t ∈ [0, tmax], (20)

where tmax is the desired integration time. By applying
boundary conditions (20) to the general solution (17) The
reflected traveling wave located at x = 0 can be found in
the following form:

u(0, t) = r(−ct) + l(ct) = 0⇒ r(−ct) = −l(ct), (21)

and similarly for x = L:

u(L, t) = r(L− ct) + l(L+ ct) = 0⇒
⇒ l(L+ ct) = −r(L− ct). (22)
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Figure 11. (a) Output of the model based on Eq. (14). (b)
Experimental measurement. (c) Difference between model
(14) and the experiment.

These results are discretised according to the discretisation
scheme discussed above. The traveling wave (21) reflected
from the left boundary at x = 0 is

rj0 = −lj0, j ∈ [0,m], (23)

and the traveling wave (22) reflected from the right bound-
ary at x = L is

ljn = −rjn, j ∈ [0,m]. (24)

In order to obtain the resulting string displacement uji , for
the selected initial and boundary conditions, a superposi-
tion of traveling waves (18), (19), (23), and (24) is found
in accordance with general solution (17)

uji = rji + lji , i ∈ [0, n], j ∈ [0,m]. (25)

Finally, there remains the question of loss introduced in
(14). Since loss is∼ e−αt in the continuous domain and in
the discrete domain ∼ e−αj∆t we update (18) and (19) to

rj+1
i = rji−1e

−αj∆t/j = rji−1e
−α∆t, (26)

lj+1
i = lji+1e

−αj∆t/j = lji+1e
−α∆t. (27)

5. RESULTS AND DISCUSSION

Figure 5 shows the experimental set-up schematically. The
following values of parameters were used: speaking length
of the string L = 0.65 m; fundamental frequency f0 =
196.36 Hz; excitation point for triangular initial condition
x = xe = 0.25L = 0.163 m; initial amplitude A = 1.76
mm; loss parameter α = 1.1 s−1. All time and frequency
domain results are shown or calculated for string displace-
ment u(xm, t) where measurement point xm = 0.41L =
0.266 m. The spectrograms and power spectra are calcu-
lated using the Fast Fourier Transform algorithm. In calcu-
lating spectrograms a sliding window approach, in combi-
nation with the Hanning window function are used. Here,
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Figure 12. Magnified time-series of the results shown in
Fig. 11. Model (14) output shown with the black line, the
experiment shown with the red and the difference with the
blue line. (a) First 25 ms of vibration. (b) Last 25 ms of
vibration. (c) Magnification of the convex valleys of the
signals shown in Fig. 11 displayed for 5 ≤ t ≤ 35 ms.

window size is 70 ms and window overlap value is 20%
of the window size. The Short Time Fourier Transform
(STFT) spectrogram is calculated using window size 1.4
ms and the overlap value is 95%.

Figures 11 and 12 show the time domain results. A com-
parison of the simulated vibration, based on model (14),
to the experiment is shown for the first 200 ms of vibra-
tion. The presented waveforms match up relatively well,
given the simplicity of the model (14), especially at the
beginning of the vibration. The differences between the
presented results (blue lines) are growing with the passage
of time which means that all processes not described by
model (14) are progressively accumulating. We remind
that the dispersion is a progressively accumulating phe-
nomenon. Naturally, we consider two candidates for these
unidentified processes: the anomalous dispersion, and the
frequency-dependent loss as described by the more realis-
tic full model (3).

Let us consider the possibility of dispersion. We assume
that the experimental data has losses similar to (10) of full
model (3). The losses associated with the large wavenum-
bers (see Fig. 7), remain non-dominating for the first peri-
ods of vibration, in fact, that is clearly evident in Fig. 12a
where the model (14) is almost equal to the experiment.
Small differences are present only for the discontinuous
edges of the peaks and valleys of the modeled time-series.
Not surprisingly, these regions are associated with extre-
mely large wavenumbers κ. As long as we focus on the
regions in-between the pointy edges, the losses should be
minimal, especially for t � 1. Figure 12c shows the ex-
perimental evidence of the anomalous dispersion. The evo-
lution of the vibration is qualitatively similar to the result
shown in Fig. 10. A dispersive high-frequency oscillating
tail emerges from the right-hand side of the signal’s valley
and propagates to the left. This happens for every succeed-
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Figure 13. (a) Modeled time-series (14) and the corre-
sponding spectrogram. (b) Time-series and spectrogram
of the experiment. (c) Power spectra of the above signals.
Spectral centroids are indicated by the dash-dotted lines.

ing period with the oscillation amplitude becoming pro-
gressively larger. Although, the geometry (boundary con-
ditions) of the problem discussed here compared to the one
shown in Fig. 10 is different the conclusions regarding the
leading high-frequency tail evolution still hold.

Figure 13 shows the frequency domain results. At the
beginning of the vibration partial contents of the modeled
signal (14), in comparison to the experiment, has higher
peaks for f & 1 kHz. This is most likely due to a combina-
tion of the absence of the frequency-dependent attenuation
in model (14) and the unrealistic discontinuities present in
the initial condition shown in Fig. 5. The decay rate of
high-frequency partials, as seen on the spectrograms, is
greater for the experimental result which agrees with the
dispersion analysis of full model (3). No obvious high-
power inharmonic partials are visible in the power spec-
tra shown in Fig. 13c. The identified dispersive wave fea-
tures present in the experimental data are extremely weak
due to the low bending stiffness of the thin guitar string
used in the experiment. Additionally, the dispersion is also
masked by the frequency-dependent losses. The attenu-
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Figure 14. (a) Magnified time-series of the difference
between the model (14) and the experiment shown in
Fig. 11c. (b) STFT spectrogram of the above signal.

ation is particularly overwhelming for large wavenumber
modes, associated with our dispersive oscillating leading
tail. This means that with the passage of time, the high-
frequency oscillations simply decay much faster compared
to the low-frequency modes.

Figure 14 shows another line of evidence for the existence
of dispersion. It presents the STFT spectroscopic analysis
of the difference signal shown in Fig. 11c. This way of
visualising effects of dispersion was suggested by Wood-
house [21]. The window size of 1.4 ms is related to the
highest partial present in the signal (≈ 7 kHz). The distinct
vertical “formants” can be seen slanting to the left. This
result in combination with the time domain result shown
in Fig. 12c indicates that high-frequency wave components
arrive sooner in comparison to the low-frequency ones.

It is natural to treat the numerical approach presented in
Sec. 4 as a digital waveguide and apply digital filters to the
traveling waves (18) and (19). All-pass dispersive filters
could be used to tune our time-stepping model to the exper-
imental data and thus synthesise realistic sounds [22–24].
If one wishes to remain true to the full model (3) it is pos-
sible to derive a digital filter based on it. Bensa et al. in [6]
show how one can relate the full model to a digital waveg-
uide structure using dispersion relations (10) and (11).

6. CONCLUSIONS

This paper presented results of the experimental study of
dispersive wave propagation on guitar strings. The evi-
dence of the dispersion was found and presented. Unsur-
prisingly, the effect was minor but definitively present.

The high-resolution experimental data of the string dis-
placement was gathered using the video-kymographic high-
speed imaging. The experimental data was then compared
against the non-dispersive model described by Eq. (14) that
was used to identify dispersive features present in experi-
mental data, and to distinguish them from other effects,
such as frequency-dependent dissipation shown to be promi-
nent in the more realistic model described by Eq. (3).

The video-kymographic experimental method presented
here has proven to be highly reliable for our purposes. We
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strongly suggest to use this method for measurements of
rapidly moving sub-millimetre sized object and displace-
ments in applications where high spatial and temporal res-
olution of measurement results are required.
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