

A FRAMEWORK FOR THE DEVELOPMENT AND
EVALUATION OF GRAPHICAL INTERPOLATION

FOR SYNTHESIZER PARAMETER MAPPINGS
Darrell Gibson Dr Richard Polfreman

Faculty of Science & Technology,
Bournemouth University, UK

dgibson@bournemouth.ac.uk

Faculty of Arts and Humanities,
University of Southampton, UK
r.polfreman@soton.ac.uk

ABSTRACT
This paper presents a framework that supports the development
and evaluation of graphical interpolated parameter mapping for
the purpose of sound design. These systems present the user
with a graphical pane, usually two-dimensional, where synthe-
sizer presets can be located. Moving an interpolation point cur-
sor within the pane will then create new sounds by calculating
new parameter values, based on the cursor position and the in-
terpolation model used. The exploratory nature of these sys-
tems lends itself to sound design applications, which also have
a highly exploratory character. However, populating the inter-
polation space with “known” preset sounds allows the parame-
ter space to be constrained, reducing the design complexity oth-
erwise associated with synthesizer-based sound design. An
analysis of previous graphical interpolators is presented and
from this a framework is formalized and tested to show its suit-
ability for the evaluation of such systems. The framework has
then been used to compare the functionality of a number of sys-
tems that have been previously implemented. This has led to a
better understanding of the different sonic outputs that each can
produce and highlighted areas for further investigation.

1. INTRODUCTION
A fundamental problem of synthesizer programming is
knowing how to set the parameters to create a certain sonic
output. Many synthesizers have a large number of param-
eters and although having direct access to every parameter
(one-to-one mapping) gives very fine control of the
sounds, it complicates the process of designing new
sounds. Alternatively, it is possible to map a smaller num-
ber of control parameters to a larger number of synthesizer
parameters (few-to-many mapping) to reduce the control
complexity. One way in which this can be done is to use
interpolation, where sets of parameter values (“presets”)
for known sounds can be assigned in a point-wise manner
to the control variables of a suitable controller. Then as
the control variables are changed, via the controller, inter-
polation generates new values for the synthesizer parame-
ters. In this way, it is possible to create sonic outputs that
are constrained by the known sounds and the control
changes. This provides a mechanism for exploring a de-
fined interpolation space.
 A number of such interpolation systems have been de-
veloped, but the systems of particular interest in this body

of work are those that use a graphical interface for the in-
terpolation control. These map presets of synthesis param-
eters to specific locations in a (normally) two-dimensional
pane and the system calculates interpolated parameter val-
ues for the interpolation point (cursor) position as it moves
between the preset locations. This facilitates the discovery
of new “custom” parameter values that blend characteris-
tics of two or more parameter presets. The resulting
sounds are a function of the interpolation model used, the
parameter presets, their locations within the interpolation
space, the position of the interpolation point [1] and the
synthesis engine itself. It is also possible to define trajec-
tories for the interpolation point that result in new sonic
gestures.
 Of particular interest here, is the use of such interpolators
for sound design, which in this work is taken to be the de-
sign of new sounds, often to accompany visual or other
media. Sound design is a creative process and as a result
there is a desire to remove or minimize any technical bar-
riers between the creative artist and sonic results. A large
part of the creative process involves generation and explo-
ration [2], so it is desirable to provide a platform that sup-
ports this paradigm effectively.

2. PREVIOUS WORK
Over a period of many years a number of graphical inter-
polation systems have been developed for use with synthe-
sizer/sound processing technology. A summary of these is
given in the following sections and an evaluation is under-
taken that results in the formulation of a framework. Fig-
ure 1 shows the visual representation for each interpolator
reviewed.

Figure 1 Graphical Interpolator Models Copyright: © 2019 Darrell Gibson. This is an open-access article distrib-

uted under the terms of the Creative Commons Attribution 3.0 Unported
License , which permits unrestricted use, distribution, and reproduction in
any medium, provided the original author and source are credited.

302

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672

2.1 SYTER

Work in this area was first completed at GRM (Group de
Recherches Musicale) in the early 1980’s on the SYTER
system, a hardware workstation that was designed to allow
real-time audio processing and synthesis. SYTER had a
two-dimensional graphical interface, which offered a user-
friendly real-time control window, called INTERPOL [3]
to control the relationship between different parameter
presets in a real-time sound-processing engine (Figure 1a).
The positions of points on the visual interface are mapped
to presets of up to 16 parameters. Each preset has a circu-
lar representation (a planet) in the interpolation space and
clicking on a planet recalls the sound of the corresponding
preset. However, the system also allows interpolation be-
tween presets using a gravitational model, where influence
varied with the distance between the planets and their size.
In this way, larger planets have a higher gravitational force
and so a stronger field-of-influence compared to smaller
planets. The work has been expanded over the years for
three-dimensional graphical control and a generalized In-
verse Weighted Distance (IWD) model [4], where the ex-
ponent value can be user controlled.

2.2 Interpolator

The SYTER style gravitational model for interpolation
was further expanded with a system called Interpolator,
which was developed in collaboration between GRM and
University of Hertfordshire in the early 2000’s [5]. This
prototype system was designed as a graphical control in-
terface for the GRM Tools software plug-ins. The system
used a light model for the interpolation, where presets were
represented as lamps, with each having an angle, aperture
and extent of the light source (Figure 1b). The light beams
gave a visual representation of the corresponding preset’s
field-of-influence. In addition, if the angle of a lamp’s ap-
erture is opened up to 360 degrees then it becomes similar
to the planetary system, except the lamp shows the field-
of-influence and the planet’s area is not lost from the in-
terpolation space. Users could then explore interpolated
sounds where the lamp’s light beams intersected. Differ-
ent colours (up to 4) were used to signify different map-
ping layers for the interpolation. Hence, a colour repre-
sented a set of parameters mapped to either single or mul-
tiple GRM Tools plug-ins (up to 4) and a lamp is a specific
set of values for the parameters. This design allowed lay-
ers to be created in the interpolation on the same or differ-
ent plug-ins.

2.3 Gaussian Kernels

In 2003, Momeni defined a system that allowed the spatial
layout of objects that relate to musical material – either
recorded samples or synthesis parameters. Each of these
can be placed at locations within a two-dimensional graph-
ical pane and represent a Gaussian kernel, whose value at
any given point in the pane indicate the weight of the as-
sociated preset point in the interpolation. This allows
weighted interpolation among the preset points based on

the values of the Gaussian kernels at each point in the in-
terpolation space. For each kernel the user could modify
the location, amplitude and standard deviation [6]. The in-
terpolation space then shows a two-dimensional visual
representation of all the kernels in the space and the ker-
nel’s amplitudes are mapped to the brightness scale of a
selected colour (Figure 1c). For more accurate visualiza-
tion the Gaussian kernels can also be viewed as a three-
dimensional image. The space created can be explored and
interpolation between the presets is calculated based on the
cursor position and weight of the kernels. The Gaussian
kernels provided not only a mechanism for interpolation,
but also for extrapolation beyond the perimeter of the
points specified in the space. As this system was imple-
mented in the visual programming environment Max, it is
possible to control any sound engine that can be created in
it.

2.4 Metasurface

In 2005 the Metasurface was developed as a control inter-
face for the AudioMulch Interactive Music Studio, a soft-
ware application for live performance, audio processing,
sound design and music composition [7]. Metasurface can
be used to control synthesis and processing parameters and
allows any number of parameter presets to be defined and
placed in the interpolation space. When the presets are
placed in the interpolation space a Voronoi tessellation is
constructed where each preset is at the centre of a convex
polygon (Figure 1d). Any position contained in each poly-
gon is closer to the centre point of that polygon, than the
centre point of any another polygon. Moving the cursor
within the tessellated pane performs natural neighbour in-
terpolation. This is calculated by adding a new polygon
for the current cursor position and the weight of each
neighbour is then calculated as the area “stolen” from the
neighbours by the polygon centred at the cursor position.
Moving the cursor results in smooth interpolation between
the cursors natural neighbour as it moves through the
space.

2.5 INT.LIB

Work in the mid 2000s saw the SYTER style gravitation
model revived, updated and expanded by Oliver Larkin.
INT.LIB is a library for Max that allows the control of
multiple layered presets using a gravitational model (Fig-
ure 1e). Each layer is color-coded and has its own cursor
that indicates the location of the interpolation point for that
layer [8]. Optionally the interpolation points can be linked
so that all layers are controlled simultaneously. Each of
the layers has its own instances of a synthesizer or signal
processing plug-in and allows interpolation between a
number of patches on that sound engine. As INT.LIB is
implemented in the Max environment it again means it has
open ended possibilities for the synthesis engine.

303

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672

2.6 Nodes

Andrew Benson, a visual artist, created the nodes object
for Max in 2009 and it proved so popular that it has been
included in subsequent Max distribution (Figure 1f).
When combined with the pattrstorage object it can provide
a graphical interpolation system. Although the nodes sys-
tem uses a distance-based interpolation function, it uses a
different model, where each preset is represented as circu-
lar node within the interpolation space. The interpolation
is only performed in regions where the nodes intersect.
When the cursor is inside a node the distance to the node’s
centre is used as the weighting for the corresponding preset
[9].

2.7 Spike-Guided Delaunay Triangulation

In 2009 Drioli et al., developed another graphical interpo-
lation scheme as a sound design interface for physically-
based synthesis models. A visual spike representation for
the sonic output of each synthesized preset can be posi-
tioned in an interpolation pane (Figure 1g). The presets
form a scatter of points on the graphical pane and interpo-
lation is performed based on a Delaunay triangulation of
the points. The user can select points in the space and the
synthesizer parameters are calculated through linear inter-
polation of the three presets of the containing triangle [10].

2.8 Intersecting N-Spheres Interpolation

Developed by Martin Marier in 2012, Intersecting N-
Spheres Interpolation is a mapping strategy for interfaces
including multiple continuous sensors [11]. This system
uses a two-dimensional space where the presets and inter-
polation point are positioned. The visual representation
shows a circle around the interpolation point, with a radius
equal to the distance of the nearest preset point. Circles
are also drawn around each preset point, with the radii of
these circles being equal to the distance to the nearest pre-
set location or the interpolation point, whichever is nearest
(Figure 1h). Any preset point circles that intersect the in-
terpolation circle are considered neighbours and influence
the interpolation. The value of the interpolation point is
calculated as a weighted average of the value equal to the
ratio of intersecting circles area. This system is realized in
SuperCollider where it can control the audio processing
and synthesis parameters running on this platform.

3. EVALUATION OF GRAPHICAL INTER-
POLATORS

Although the systems examined in Section 2, have all been
created to allow interpolated control of parameters they
represent different realizations, are implemented with dif-
ferent technologies and have a number of different appli-
cation areas. Nonetheless, there is a common thread, in
that interpolation allows the adjustment of sound parame-
ters between defined presets, via some form of visual
model. From the systems examined it is apparent that they
can be decomposed into five different, but dependent areas

that should be considered when developing such systems.
These are:

1. Control – input controls of the interpolation model
2. Visual Metaphor – the visual interpolation model and

how it is represented graphically
3. Interpolation – the interpolation weighting calculations
4. Mappings – the synthesis parameters that are interpolated
5. Synthesis – type/architecture/implementation of the

sound engine

Each of these areas will be considered separately, how-
ever, for a number of the systems examined in Section 2
there was not a clear partitioning between them. In addi-
tion, in this work they will be considered in a sound de-
sign context.

3.1 Interpolation Control

There have been many different ways of controlling inter-
polation systems. Here these have been constrained to
those offering a graphic interface that corresponds to the
visual interpolation model. Many of the older systems had
two modes of operation: one for the creating and editing
the interpolation space and another for actually performing
the interpolated sonic output [2, 5, 7, 12]. This meant that
the interpolation space could not be changed in the middle
of a sonic exploration, without changing mode. However,
if the interpolation calculations and graphics updates can
be performed real-time it opens up the possibility of being
able to control the interpolated sonic output, either by
changing the location of the interpolation point within the
space or by modifying the interpolation space itself: mov-
ing the preset locations or adding and deleting presets.
Moreover, with the layered interpolation system presented
in INT.LIB, it is possible to have multiple interpolation
points and these can either be moved individually or linked
so they can all be moved simultaneously [8].
 With the possibility of altering the interpolation space in
real-time, it is also worth considering the input mechanism
for controlling a graphical representation. Using tradi-
tional computer-based spatial control devices (mouse,
drawing tablet, joystick, trackball, etc.) only one point can
be controlled at a time. This means that only one preset
position or the interpolation point can be moved at a time.
Whereas with multi-touch screen technology it opens the
possibility that sound design can be undertaken by simul-
taneously controlling multiple points in the interpolation
space. Being able to change the interpolation space real-
time and multi-touch technology, opens the following po-
tential modes of operation for changing an interpolated
sound, creating new possibilities for the control of an in-
terpolated sound design process:

1. Move the interpolation point(s)
2. Change the field of influence for one or more preset
3. Simultaneously move one or more preset locations,

while the interpolation point remains static
4. Simultaneously move the interpolation point and one

or more preset locations

Discontinuities in the interpolation space are not normally
desirable for this application domain, as noted by other au-
thors [7, 12]. However, if the user does want to produce

304

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672

audible jumps either a new instantaneous position for the
interpolation point can be selected (a jump) or if real-time
mode is available the position of the presets could be in-
stantaneously changed.
 For sound design applications, the addition of performance
expressions is often desirable to “bring the sounds to life”, e.g.
to match the sound to on-screen actions. It has already been
shown that interpolation methods provide an opportunity to ap-
ply expressive control to synthesized sounds [12, 13]. How-
ever, it does not necessarily follow that expressive control of
the interpolation should be performed at the same time as the
design of the base sound. It may also be the case that more
traditional avenues for applying expressions will still be pre-
ferred, for example, through physical actions [14].

3.2 Visual Model & Graphical Representation

As can be seen by the range of systems examined, there
have been many proposed visual metaphors for graphical
interpolators. The visual model provides the user with
feedback on the state of the interpolation method, location
of the presets and their relative influence. This is delivered
in addition to the auditory feedback generated by the syn-
thesizer output. However, for a sound design task it is not
clear if the visual representation is needed or actually aids
the process.
 In the systems examined there are different visual repre-
sentations for the presets within the interpolation space, of-
ten using geometric shapes: circles, triangles, polygons,
etc. However, there tends to be some form of visual link-
age between these representations and the actual interpo-
lation model. For example, circles have been used to rep-
resent presets in a number of different interpolation sys-
tems [3, 8, 9, 11], but the way they are interpreted is di-
rectly linked to the interpolation paradigm being used in
each case. In some, the shapes used in the visualization
are linked to which presets are included in the interpolation
calculations. For example, where triangulations are gen-
erated between the preset locations it provides the impli-
cation that the interpolation is being performed between
the three presets of an enclosing triangle [10], a rectilinear
grid implies interpolation between four local presets and
polygons implies interpolation between the closest presets
that form a convex hull around the interpolation point [7].
Even a straight line (slider) can be used to imply interpo-
lation between two presets (a 1-D interpolation space). For
intersecting interpolation paradigms, where the interpola-
tion is performed when preset objects overlap in the space,
the intersection itself implies which presets are included in
the interpolation [5, 9]. In other cases, the sounds included
in the interpolation are shown by links between the inter-
polation point and the presets [8].
 As well as different geometric representations for presets
in the interpolation space, colour is also used in the major-
ity of the systems examined. In most cases the colour is
used to differentiate between the presets within the inter-
polation space. However, in some cases the colours or
shadings are visually interpolated to give a visual cue for
the interpolated values between the presets [1, 5, 7]. On
the multi-level interpolation systems, Interpolator and
INT.LIB, colour is used to distinguish between different
layers in the interpolation space [5, 8], but the influence of

each preset is provided by linking the visual transparency
of the preset’s display colour. In this way, a solid colour
shows a preset has a high degree of influence and it be-
comes more transparent as the influence decreases. This
is also the case for the linkage lines that show which pre-
sets are included in the interpolation, although the base
colour already provides this information.
 It is also worth noting that with most of the systems ex-
amined the visual representation relates to the interpola-
tion model (parameter space) and not the systems sonic
output (sound space). As seen through the work on timbre
space, it is possible to use a sound-based representation for
the control the synthesis parameters [15]. Although work
has continued in this area, for sound design applications,
the use of a predefined timbre space may be restrictive.
The visual interpolator systems examined do not use auto-
matic positioning of presets within the interpolation space.
Instead the user can define the presets that will be used in
the interpolation space, the positional relationships be-
tween them in the space and in some cases the influence of
individual presets. These aspects allow sound designers to
constrain the sonic output, while also supporting the ex-
ploratory nature of a design process [7, 12].
 Finally, with most graphical interpolation systems, indi-
vidual presets can be recalled by positioning the interpola-
tion point cursor directly on the preset’s position. How-
ever, with the SYTER gravitational model, the gravity re-
mains the same while on the planet’s surface so any posi-
tion on the planet will recall that preset [3]. As a result,
the area of each planet effectively reduces the potential
size of the interpolation space [5]. Conversely, using the
Max nodes object, the associated preset can only be re-
called by clicking on an area of the node that does not in-
tersect with another node. If a non-intersecting area does
not exist then it is not possible to hear the defining sound.
 From this analysis, the systems already created have
used the following visual cues in the interpolation space:

1. Preset handle (location in the space)
2. Preset field-of-influence
3. Interpolation point(s)
4. Number of presets included in the interpolation
5. Interpolation strength at the interpolation point
6. Navigable space

3.3 Interpolation Methods

A variety of methods have been used to calculate the inter-
polation values between the presets. For example, linear,
power, regularized spline with tension, etc. The method
chosen will affect the sensitivity and “feel” of the interpo-
lation system, as was demonstrated with LoM [16]. How-
ever, it is not clear how the system’s control, visual model,
parameter mapping and synthesis engine combine to affect
the feel.
 As already noted in Section 3.1, it is desirable that an
interpolation system should produce a “smooth” sonic out-
put that does not possess discontinuities or overshoots.
Therefore, the interpolation function should be smooth to
provide even changes and variation to the synthesis param-
eters and so the sonic output. Although, in some situations
jumps maybe required, this should be under user control

305

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672

and not occur unexpectedly as a result of the interpolation
method.

3.4 Parameter Mappings

Although the use of interpolation gives the user a mechanism
to adjust multiple parameters simultaneously between preset
values, the sonic output is defined by which parameters are
mapped to the interpolation points. Interpolating all the param-
eters within a set of presets can create large sonic changes,
whereas a mapping that contains a subset of parameters offers
more focused control. Moreover, with some forms of synthesis
there is not a simple link between the synthesis parameters and
the sonic output. As a result, selecting mapped parameters to
create a specific sonic result can be difficult. Previous research
into the mapping of synthesis parameters has tended to focused
on musical outputs and instrument gestural control [12, 13].
This is a different application area and the outcomes have been
fairly broad, not considering specific relationships. Multi-lay-
ered mappings have been proposed, where intermediate ab-
stract parameters can be used [12], but for interpolation systems
being used in musical instrument design. Nonetheless a num-
ber of desirable characteristics have been identified for the
mappings, such as, differentiability, linearity, range space, ex-
actness, extensibility and editability [13].
 With the graphical interpolation systems examined, the map-
ping between the synthesis engine and the interpolation points
is often controlled by the user. This is done by presenting the
user with a list of parameters and allowing them to select the
desired parameters to map between the visual interface and the
synthesis engine. Although this process gives control to the
sound designer, completely different sonic outputs will be gen-
erated depending on which parameters are selected and those
that are not. With the majority of the systems examined one set
of mappings is controlled by the graphical interface, however,
both Interpolator and INT.LIB considered a multiple mapping
approach offering simultaneous control [5, 8]. With INT.LIB,
each mapping was sent to a different sound module so different
sounds could be layered and controlled separately. Whereas
with Interpolator it also allowed multiple mappings to be asso-
ciated to the same sound module, which allows different as-
pects of a sound to be controlled independently.

3.5 Synthesis

From the range of systems examined, it can be seen that inter-
polation has been used with many kinds of audio processing
and synthesis engines. A number of the earlier interpolation
systems are directly integrated into the same platform as the
synthesis engine. This means that although the sound can be
changed within the remit of the given synthesis engine, it is not
possible to use the same interpolation platform with a different
synthesis engine. The later exceptions to this have been devel-
oped through programming environments [3, 8, 9]. The flexi-
bility of using the programming environment means that it is
possible to build new synthesis engines to be used with the in-
terpolation system. Moreover, as the Max environment also
supports use of common audio plug-in formats, it is possible to
use many commercially available software synthesizers with
interpolators built in Max [4, 8].
 An interpolator user interface can mask the details of the syn-
thesis and the associated parameter manipulation from the user,

allowing the sound designer to concentrate on the design pro-
cess, without having to worry about the underlying details of
the synthesis engine.

4. GRAPHICAL INTERPOLATION
FRAMEWORK

Although a number of graphical interpolation systems have
been created and documented, they were developed over a
thirty-five-year period, using different implementation plat-
forms, different synthesis architectures and were designed for
different application purposes. Consequently, many of the re-
alizations used technologies that are now obsolete and no
longer available making it impossible to do back-to-back eval-
uation between the original systems. In order to be able to eval-
uate the suitability of these graphical interpolation systems for
the purpose of sound design, they require re-implementation on
contemporary hardware and software platforms. This will al-
low direct comparisons to be undertaken between the different
interpolation systems.
 It is important to also consider the characteristics that a sound
design graphical interpolator should ideally possess. The fol-
lowing summarizes the most important factors from the evalu-
ation section:

1. Synthesis independent interpolation – the same interface
can be used with different synthesis engines

2. Clear relationship between interpolation control and the
sonic output – sound space defined by the populated pa-
rameter preset

3. Constrain the navigation and exploration of the parame-
ter space – user selecting and positioning presets in the
interpolation space

4. Control a number of parameters simultaneously – reduce
the control complexity of many parameters

5. Changeable parameter mappings – provide user with
control over the parameter mappings

6. Exploration of the sound space with both course and fine
levels of detail – change resolution and precision

7. Smooth interpolation – no discontinuities unless user se-
lects

8. Real-time interpolation (not different edit/interpolate
modes) – allow either preset points or cursor to be moved
to change sounds

9. Support the design of base sounds and the application of
performance expressions

10. Usability, repeatability, predictability and playability
– user can design a sound based on the supplied preset
sounds.

In order to be able to evaluate these aspects of different graph-
ical interpolators a hierarchical framework is proposed that
compartmentalizes each of the system elements. This works
from the control input at the top-level to the sonic output at the
bottom, as shown in Figure 2. Although the final output, sound,
is at the bottom level it is worth noting that the visual represen-
tation also gives the user visual feedback on the current config-
uration of the interpolation system and therefore, the sound.
Equally the user maybe given inputs that allow the mappings
to be modified. However, what the framework shows is the
interdependencies of the different elements of an interpolation
system and the relationships between them. For example, the

306

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672

sonic output from the synthesizer is dependent on the control
inputs, the visual model, the interpolation function, the param-
eter mapping and the synthesis engine used. In addition, it is
envisioned that in the future different realisations may be cre-
ated that will still be encapsulated by the framework.

Figure 2 Graphical Interpolation Framework

4.1 Framework Structure

Having formalized the framework, the next stage was to con-
sider an implementation. Using the framework defined in the
previous section, it is possible to structure the different levels
(control, visual model, interpolation, mappings and synthesis)
into separate modules and test them separately. In this way, it
becomes possible to directly compare these aspects of each sys-
tem and evaluate their impact on the usability. This can be done
through comparative user tests where only one element is
changed at a time. The results can then be measured, compared
and evaluated to determine the suitability of each for sound de-
sign applications. To facilitate this the framework has been im-
plemented in the Max environment using the architecture
shown in Figure 3.

Figure 3 Framework Architecture in Max

4.2 Framework Implementation

As an initial investigation, a graphical interpolation system
was built in Max using the nodes object detailed in Section
2.6. In this way, the nodes graphical interpolation system
acted as proof-of-concept for the framework defined.
When this interpolator system was implemented, care was
taken to develop each of the five elements of the interpo-
lation framework into separate entities. This was done
through a modular design approach where each part is cre-
ated as a separate module so that each can be modified in-
dependently of the others.
 The first implemented was the interpolation function
module, which is storage that holds the parameter values
and performs the interpolation. The parameter values for

each synthesis preset are stored as a new data set and it
then interpolates between the parameter data sets, generat-
ing interpolated values for all the individual parameters.
The interpolation is performed based on the modules input
which is the relative weightings for each preset. By de-
fault, the calculation performed is linear interpolation, but
it is possible to change the mode so that any interpolation
function can be realized.
 As the nodes object has been specifically designed as a
graphical interpolator, the object has been created with
specific functionality for the visual model and the control
inputs. The control inputs realized in the nodes object
are standard computer-based spatial controls. However, it
is also possible to send the object positional input data
from other sources. This provides the possibility of using
other input devices to control the interpolation space. The
interpolation point on the nodes object can be moved
within the space and an output weighting for each node is
generated. The visual model generated node weights are
normalized (0.0 – 1.0) and are proportional to the interpo-
lation point’s distance from the circumference of a con-
taining node to its centre. Therefore, when the nodes in
the interpolation space overlap and the interpolation cursor
is placed in an overlapped region, a weighting is generated
for each node. (In Figure 4 - 1 = 24%, 2 = 0% & 3 = 76%).

Figure 4 Nodes Outputs Normalized Distances

These weightings are used as the input to the interpolation
function. As the visual interpolation model is encapsu-
lated by a single object (nodes) it is possible to replace it
with different implementations.
 The synthesis engine has been constructed to be sepa-
rate from the interpolation platform by using software
plug-ins, allowing different (commercially available) syn-
thesis engines to be loaded and tested. However, the
framework would also allow bespoke synthesis patches to
be used. When a new synthesizer is loaded, it is interro-
gated to determine all the parameter values for the number
of presets loaded. Each preset is associated to a node in
the interpolation space and all of the preset’s parameter
values are sent the interpolation function storage.
 By default, all of the parameters for the presets are asso-
ciated to the corresponding node and so every aspect of the
sounds synthesis is controllable. However, the parameter
mappings between the interpolation function and syn-
thesis engine can be changed by user selection.

4.2.1 Framework Testing
The prototype nodes-based interpolator was initially tested
to ascertain if each module built in the framework could be
changed independently of the others and to establish the
impact on sound design tasks. Through exploratory test-
ing, where the nodes-based interpolator and its parameter
space were left the same (shown in Figure 5), it became
apparent that changes to each module in the framework

307

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672

leads to the system generating different sonic outputs and
results in a different user experience with each realisation.

Figure 5 Nodes Prototype Test Layout

From testing with different synthesis engines, it was
found that changes to the engine (preset changes, synthesis
realisation or changes of synthesis type), were the main de-
terminants of the sonic output. Moreover, with some forms
of synthesis, changes to a single parameter can produce large
sonic variations, but for others, more subtle alterations resulted.
Changes to the control inputs allowed different mecha-
nisms for interacting with the sonic manipulation, and po-
tentially changing the usability of the interpolator. Modi-
fications to the parameter mappings permitted the refine-
ment of the sonic changes that it is possible to generate
with the interpolator. Mapping lots of the synthesis pa-
rameters to the nodes resulted in big sonic changes,
whereas mapping a few parameters permitted more subtle
variations to be generated. Changing the interpolation
function resulted the subtlest differences. The chosen
function affects how the sound transitions as the interpola-
tion point is moved between preset locations.

4.3 Graphical Interpolator Implementation

The prototype nodes-based interpolator was used as the ba-
sis for the subsequent development of different graphical
interpolation systems. For each visual model and its con-
trol, the nodes object was replaced with an interactive user-
interface built using OpenGL for the interpolation model’s
visual representation and JavaScript to create the control
mechanism and calculate the preset weightings. Each
model was constructed and integrated with the other ele-
ments of the framework for testing. To-date six interpola-
tors have been built, integrated with the framework and
functionally tested. These are:

1. Nodes (Overlapping Circles)
2. Gravitational (Planets & Space)
3. Radius-based IWD (Scatter Points & Interpolation

Point Circle)
4. Light (Lamps)
5. Delaunay (Triangulation)
6. Voronoi Tessellation (Polygons)

The nodes interpolator was reimplemented so that it could
act as a benchmark for the other interpolators, but also so
the visual representation can be changed to assess the in-
fluence of different visualisations using the same interpo-
lation model. The other interpolators where chosen to rep-
resent the key traits of the interpolation systems that have
been previously created.

4.3.1 Graphical Interpolator Testing
Following functional testing the different interpolators
were back-to-back tested by placing the same ten presets

at identical locations in each. The nodes interpolator was
populated first and although the size of each node was ran-
domly selected, they were chosen to ensure the whole
space was covered. For the gravitational interpolator,
while the same locations were used, this model requires
space between the planets, where the interpolation is per-
formed. However, so that each preset has the same relative
influence as they do in the node interpolator, the sizes were
scaled by one tenth of those in the nodes interpolator. For
the radius-based IWD the interpolation point’s radius was
chosen to cover approximately 50% of the interpolation
space so for all interpolation positions, multiple presets are
enclosed by the radius. For the light interpolator although
the same locations were used, as each lamp has an angle
and aperture, it results in each lamp having a specific di-
rectionality. To try and give coverage over the whole in-
terpolation space the extent of each lamp was scaled to
four times the nodes size. Despite this the lamps direction-
ality also needed to be selectively chosen to ensure the
whole interpolation space was covered, whilst still giving
a good spread of intersecting light beams. For the two re-
maining interpolators the presets do not have different in-
fluences or directionalities so the locations were kept the
same as the nodes layout. The test layouts for the six in-
terpolators are shown in Figure 6.

Figure 6 Test Layout for Graphical Interpolators

These layouts were used to perform back-to-back tests
where output from the different graphical interpolators
were compared. For the tests the control inputs, interpo-
lation function, parameter mappings and synthesis out-
put, all remaining the same, as detailed:

1. Control Inputs – Fixed 2-D movement of interpola-
tion point only

2. Interpolation Function – Linear interpolation
3. Parameter Mappings – All synthesis parameters mapped

to the corresponding preset location
4. Synthesis Output – Native Instruments Massive with ten

presets loaded

The tests compared the sonic output from the different in-
terpolation models for the same interpolation positions.
This was first done by instantaneously moving the interpo-
lation cursor to ten different locations and comparing the
sound generated with each system. From this test, it was
evident that each visual interpolator generated signifi-
cantly different sonic results, despite being populated with

308

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672

the same preset sounds. To try and get a better understand-
ing of each system’s sonic nature, another comparative test
was created, where the interpolation point was moved
through a fixed trajectory path around the defined interpo-
lation spaces. The path began at the centre of the space,
moved diagonally towards the left-top corner until the
mid-point and then moved around parallel to the outside
edge of the space. It was found that each interpolator gives
a very different range of sonic outputs across all interpola-
tion positions. The fact they were different was not neces-
sarily surprising, but the diversity of the sonic differences
was not anticipated. Moreover, each interpolator results a
completely different sonic palette that it can generate,
meaning it is very difficult to create the same sound with
each interpolator. This is because each interpolation
model results in different preset weightings for the inter-
polation function. As an example, Figure 7 shows the pre-
set weightings for just the centre position of each interpo-
lation spaces, as shown in Figure 6.

Figure 7 Comparison of Interpolator Preset Weighting’s

 In all cases, the relative positioning (layout) of the pre-
sets determines the interpolated outputs. Different layouts
of the same presets results in different outputs being ob-
tained. It was also noted that for interpolators 1, 2 & 4 the
extent (size) of each preset, further changes the interpola-
tions space. Also, the directionality of the lamps in inter-
polator 4 gives an added element for further modifying the
interpolation space. For interpolators 3, 5 & 6 the influ-
ence of each preset is potentially the same, but the layout
determines the relative strengths. However, for interpola-
tor 3 this is constrained by the interpolation point’s radius
that determines which presets will be included. If the ra-
dius size is changed, corresponding presets will be added
or removed from the interpolated output. Whereas inter-
polator 5 uses only the three closest presets and interpola-
tor 6 uses the natural neighbours.

5. CONCLUSIONS
The framework presented has been shown to provide a
suitable platform for the testing and evaluation of different
graphical interpolation systems. The modularity of the
framework components means that each can be modified
independently of the others, offering a suitable mechanism
for performing formal comparative user testing. In this
way, the use of the framework has led to a more detailed
understanding of different interpolation models and the
identification of where and how sonic differences are ob-
tained. From the testing that has been undertaken so far

three areas have been identified for immediate further in-
vestigation. The first of these will be to undertake formal
user testing to assess the level of feedback provided to the
users by the visual representations of the interpolation
model. The second will be to undertake formal user testing
to evaluate the suitability of the presented interpolators for
sound design applications. Finally, as different synthesis
engines reactions to interpolation can be drastically differ-
ent this will also be examined further.

6. REFERENCES
[1] J.J. van Wijk and C.W. van Overveld, “Preset based

interaction with high dimensional parameter
spaces,”. In Data Visualization, 2003 (pp. 391-406).

[2] T. I. Lubart, “Models of the Creative Process: Past,
Present and Future,” Creativity Research Journal,
2001 Oct 1;13(3-4):295-308.

[3] T. Todoroff, “Control of digital audio effects,”
DAFX: Digital Audio Effects, 2002:465-97.

[4] T. Todoroff and L. Reboursière, “1-d, 2-d and 3-d in-
terpolation tools for max/msp/jitter,” In Proc.
ICMC’09, 2009.

[5] M. Spain and R. Polfreman, “Interpolator: a two-di-
mensional graphical interpolation system for the sim-
ultaneous control of digital signal processing param-
eters,” Organised Sound, 2001 Aug 1;6(02):147-51.

[6] A. Momeni and D. Wessel, “Characterizing and con-
trolling musical material intuitively with geometric
models,” In Proc. of Conf. on NIME, 2003.

[7] R. Bencina, “The metasurface: applying natural
neighbour interpolation to two-to-many mapping,” In
Proc. of Conf. on NIME, 2005, (pp. 101-104).

[8] O. Larkin, “INT. LIB–A Graphical Preset Interpola-
tor For Max MSP,” ICMC’07: Proc of ICMC, 2007.

[9] “nodes,” Max Reference, Cycling 74, 2018.
[10] C. Drioli, P. Polotti, D. Rocchesso, S. Delle Mona-

che, K. Adiloglu, R. Annies and K. Obermayer, “Au-
ditory representations as landmarks in the sound de-
sign space,” In Proc. of SMC Conf., 2009.

[11] M. Marier, “Designing Mappings for Musical Inter-
faces Using Preset Interpolation,” In Conf. on NIME,
2012.

[12] C. Goudeseune, “Interpolated Mappings for Musical
Instruments,” Organised Sound, 7(2):85–96, 2002.

[13] A. Hunt, M. Wanderley, and M. Paradis, “The Im-
portance Of Parameter Mapping In Electronic Instru-
ment Design,” Journal of New Music Research, Vol-
ume 32, Issue 4, page 429–440, 2003.

[14] K. Gohlke, D. Black and J. Loviscach, “Leveraging
behavioral models of sounding objects for gesture-
controlled sound design,” In Proc. of 5th Interna-
tional Conf. on Tangible, embedded, and embodied
interaction, 2011 Jan 22 (pp. 245-248). ACM.

[15] D. L. Wessel, “Timbre space as a musical control
structure,” Computer Music Journal, 1979 Jun 1:45-
52.

[16] D. Van Nort and M, Wanderley, “The LoM Mapping
Toolbox for Max/MSP/Jitter,” In Proc of ICMC,
2006 (pp. 397-400).

309

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672

