
Journal of Engineering Science Vol. XXVI, no. 2 (2019), pp. 35-39 
Fascicle  Industrial Engineering ISSN 2587-3474 
Topic Applied Engineering Sciences and Management eISSN 2587-3482 

Journal of Engineering Science  June, 2019, Vol. XXVI (2) 

 

DOI: 10.5281/zenodo.3249178 
  CZU 621.321 

 
CALCULATION THE SERVICE WAITING PROBABILITY WITH SELF-SIMILAR 

NETWORK TRAFFIC  
 

Anatolii Lozhkovskyi* 
 

О.S. Popov Odessa national academy of telecommunications, 
1 Kuznechna St., Odessa, 65029, Ukraine. 

*Corresponding author: aloshk@onat.edu.ua, https://orcid.org/0000-0002-4802-4912 
 

Received: March, 09, 2019 
Accepted: June, 23, 2019 

 

Abstract. Calculation of the service quality characteristics in a single-channel system with 
queue for the packet network is often reduced to the determination of the Hurst exponent 
for self-similar traffic, after which using the known Norros formula calculated average 
number of packets in the system. However, this method does not allow for the set value of 
the Hurst exponent calculated yet very important characteristics of quality of service, such as 
the average delay time of packets in the storage buffer and the service waiting probability of 
packet. In this work we propose a method for approximating the distribution function of the 
states of the system and on its basis, a formula for calculating the service waiting probability 
in a single-channel system with a self-similar traffic. 
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I. Introduction 
In packet networks, the flow of packets is formed by a plurality of requests sources for 

the provision of a network of services and network applications that provide video, data, 
speech and other services. The sources of requests involved in the process of creating a 
packet stream differ significantly in values of the specific intensity of the load. The intensity 
of the load of the resulting packet stream at any given time depends on what applications 
are served by query sources and what is the ratio of their number to different applications. 
Therefore, packet flows (traffic) significantly differ from the Poisson flow model where the 
exponential distribution function of the time interval between the moments of packet arrival.  

The structure of traffic is also influenced by the technological features of the used 
service algorithms. For example, if the service is provided by multiple applications or in the 
used protocols have the repeated transfer of incorrectly accepted packets, then the moments 
of packet requests are much correlated. Because of this, in the process of service, the output 
streams vary considerably and in the resultant traffic there are long-term dependencies in 
the intensity of the arrival of packets. In this case, traffic is no longer a mere sum of the 
number of independent stationary and ordinary streams, such as Poisson flows of telephone 
networks. In multiservice packet switched networks, traffic is heterogeneous, and streams of 
different applications require a certain level of service quality. In these conditions, the flows 
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of all applications are provided by a single multiservice network with shared protocols and 
management laws, even though the sources of each application have different rates of 
information transmission or change it during the communication session (maximum and 
average speed). As a result, the combined packet stream is characterized by the so-called 
"burstiness" of traffic with random frequency and duration of peaks and recessions. For such 
packet traffic is characterized by strong unevenness of the packets  arrival intensity. Packets 
are not smoothly dispersed on different time intervals but grouped in "packets" on the same 
intervals and are absent or very small at other intervals of time [1]. 

For packet networks, a mathematical model of self-similar traffic is used, but there is 
no reliable and recognized methodology for calculating the parameters and characteristics of 
the quality in mass-servicing systems in the context of servicing such traffic. With the growth 
of the degree of self-similarity of packet traffic, the quality characteristics in the system 
significantly deteriorate compared with the maintenance of traffic of similar intensity, but 
without the effect of self-similarity. 

The estimation of service quality characteristics (QoS) in a one-channel system with 
an infinite queue for self-similar traffic (model fBM/D/1/∞) often reduces to the estimate of 
the Hurst exponent H of self-similar traffic, after which according to the known Norros 
formula, the calculation of average number of packets in the system N [2 ] Other 
characteristics such as the average number of packets Q in the queue, the average packet 
time in the system T, and the average delay time of packets in the system of W are then 
calculated based on their known functional relationships from the calculated mean N [3]. 
However, such an algorithm from the Hurst exponent H does not allow to be calculated such 
characteristics as the service waiting probability for packet and the average packet delay time 
of tq in the buffer memory. 

The purpose of this work is to establish an approximating function for the distribution 
of states in a one-channel system with an infinite queue and self-similar traffic at the moment 
of packets receipt, and on the its basis made receiving the formulas for calculating the service 
waiting probability for packet and the average delay time of packets in the cumulative buffer. 

 

II. Calculation method 
In the mathematical models of the Queuing System (QS), the type of input stream, the 

scheme of QS and service rule are considered. In this case, an input stream with self-similar 
properties is considered, in which, for example, Pareto or Weibull distributions [1] are used 
to describe the distribution of the time interval between the moments of packets arrival. The 
service rule of packets in the flow is without losses but with the possibility of waiting in the 
infinite queue, and the rule of servicing packets from the queue - according to the rule of 
FIFO (firs input - firs output). The QS scheme is single-channel. 

The calculation of the service quality characteristics in the QS is always performed 
based on a mathematical description of the system response to the input packet stream. 
Under the reaction of the system, they understand the states that, due to the random nature 
of the packets flow, are mathematically described by the probabilistic distribution function 
of the number of occupied channels and waiting places Pi, where i is the number of packets 
in the system (in channels and in the queue). This function coincides with the distribution 
function of the number of packages in the system (serviced and waiting in the queue), since 
each packet occupies one channel in system or one place in a queue at the waiting. 
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In the case of the simplest Poisson model of flow in a QS with a loss or waiting (queue), 
the states of the system are described by one of the known Erlang distributions (i.e., the first 
or second distribution of Erlang, respectively) [3]. Finding the system state distribution 
function for more complex stream models is a very difficult task, and therefore, for this flow 
model, there are not of similar solutions. 

The utilization factor of ρ is defined as the ratio of the intensity of the input flow of 
requirements λ to the service intensity μ. For a single-channel system in any packet stream 
(arbitrary distribution G of the time interval between the arrival times of packets) ρ = 1 - p0, 
where p0 is the probability of a system's freedom or the state of the system p0 (system have 
0 packets). Thus, ρ coincides with the probability of the employment of the system or Pe = ρ. 

For the Poisson flow of packets, the service waiting probability of Pw coincides with 
the probability of employment Pe [3, p. 49] of the system and therefore for a single-channel 
model, for example, M/G/1/∞ (for any law of service distribution) we get Pw = Pe = ρ. 

Taking into account packets in queue in stationary mode there is a stationary 
distribution of system states or number of packets in the system pk, where k is the number of 
packets (state p0 - in the system 0 packets, state p1 - busy single channel, state p2 – occupied 
channel and one place in a queue, etc). Distribution pk does not depend on the moments of the 
packets arrival into the system (does not depend on whether the packet arrives or does not 
arrive in the system). For the Poisson flow of packets this distribution is sufficient to calculate 
the service waiting probability Pw, since 
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For arbitrary packet flows, for example, the G/G/1/∞ system, Pw ≠ Pe and this formula 
can only be used if the known distribution rk of the number of packets in the system at the 
moment of receipt of new packets, where k is the number of packets. The pk distribution 
differs from the rk distribution by the fact that p0 = 1 - Pe (or p0 = 1 - ρ), while r0 = 1- Pw. From 
this it follows that the packet should expect service with the probability Pw = 1 - r0. For the 
M/G/1/∞ system, the equation pk = rk is executed and therefore the pk distribution [3] is used 
instead of rk distribution. 

Consequently, in the case of a self-similar packet flow model with time interval 
distribution between the moments of packet arrival according to Pareto or Weibull's laws, the 
waiting probability calculation for service is possible if it is known system states distribution 
or the distribution rk of packets number in the system at the moment of receipt of new packages. 

 

III. Results and discussions 
In Figure 1 for  a one-channel system with an infinite queue by a dashed line shows 

the distribution function of the number of packets in the system pk, which does not depend on 
the moments of the arrival of packets into the system, and a continuous broken line shows the 
distribution function rk of the number of packets in the system at the moment of receipt of new 
packets. These functions were obtained using a computer simulation program of self-similar 
traffic [4]. 

It should be noted that in the self-similar traffic of packet communication networks 
there are large breaks (pauses) in the arrival of packets into the system [3], and therefore the 
probability p0 (for this example p0 = 0,495) is the largest in the distribution function of the 
system states. 
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Figure 1. – Distribution functions of the system states and its approximation. 

 

From Figure 1, we see that the bulk of the distribution function of the number of 
packets in the system at the moment of new packets receipt rk without probabilities r0, r1 and 
r2 is sufficiently qualitatively consistent with the approximating function Bi (shown by the 
points), as proposed by the following expression: 
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where T – the average stay length of packets in the system. 
In formula (2), the approximating function Bi is an exponential function with a 

distribution parameter 1 / T, ρ – is load of the system or utilization factor (0 < ρ < 1). 
In the non-Poisson flow with a Generalized distribution G of the time interval between 

the moments of arrival of packets (for example, the self-similar flow of type fBM), the service 
waiting probability in a single-channel system is calculated by formula (1), but necessarily 
with the use of the distribution function rk of the number of packets in the system at the 
moment of new packets receipt: 
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But, as it can be seen from Figure 1, if the probability B0 from the approximating 
functions (2) is directly calculated instead of the true r0, then a big error will be obtained. 
Therefore, the error of calculating the service waiting probability by the formula Pw = 1 - B0 
will be the same large error. Consequently, according to expressions (3) and (2), the service 
waiting probability in a one-channel system with an infinite queue of type fBM/G/1/∞ will be 
defined as follows: 
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Thus, if it is possible to set the average stay length of packets in the system T or after 
determining the Hurst exponent using the Norros formula [2] to calculate the upper limit of 
the possible average N, then using the approximation (2) and using formula (4), one can 
calculate the waiting probability Pw of the packet. Since in the approximating distribution (2) 



 Calculation the service waiting probability with self-similar network traffic 39 

Journal of Engineering Science  June, 2019, Vol. XXVI (2) 

parameter 1 / T = ρ / N [3], where N is the average number of packets in the system, then for 
practical calculations in the distribution (2) we can specify not 1 / T  but ρ / N, where ρ – is 
load of the system or utilization factor (0 < ρ < 1). 

 

Conclusions 
In the conclusions, it should be noted that imitation modeling [4] confirmed the 

correctness of this calculation method of service quality characteristics in the system 
fBM/G/1/∞ with self-similar traffic. At the same time, the difference between the simulation 
and calculation results does not exceed 5% when the system loads in the range 0.3 < ρ < 1 
(with ρ ≥ 0,6 error less than 2%) and the change in the Hurst exponent values in the range 
0.5 < H < 0.9 [5]. 

At that, as it can be seen from Figure 1, the result of calculating the service waiting 
probability Pw will always be somewhat overestimated, since the approximating function (2) 
also gives somewhat inflated results relative to the real probabilities r1 and r2, which are 
included in the sum of the calculation formula Bk (4). For example, Figure 1 shows that the 
probability r0 = 0.153 and therefore the real service waiting probability Pw = 0.847. The 
calculation of this probability by the formula (4) gives the value Pw = 0.885, which is only 
4.7 % higher than the real value of the service waiting probability. This is the case when ρ = 
0.5, with ρ ≥ 0.6 the error less than 2% and so on. 

From the known formula W = T - 1 the average delay time of packets in the system 
W is calculated, after which one can calculate the average delay time of packets in the 
cumulative buffer tq = W / Pw. 
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