
pLisp: A Friendly Lisp IDE for Beginners
Rajesh Jayaprakash
TCS Research, India

rajesh.jayaprakash@tcs.com

ABSTRACT
This abstract describes the design and implementation of pLisp, a
Lisp dialect and integrated development environment modeled on
Smalltalk that targets beginners.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments;

KEYWORDS
lisp, integrated development environment

1 INTRODUCTION
pLisp is an integrated development environment (IDE) and an un-
derlying Lisp dialect (based on Common Lisp) that is targeted to-
wards beginners. It is an attempt at developing a Lisp IDE that
matches (or at least approaches) the simplicity and elegance of
typical Smalltalk environments and thereby hopefully providing a
friendlier environment for beginners to learn Lisp.

Smalltalk environments are characterized by three interface com-
ponents: the workspace, the transcript, and the system browser. The
workspace and the transcript windows together serve the purpose
of the canonical Read-Eval-Print Loop (REPL) used to interact with
programming systems in the command-line mode, while the system
browser is used to view the universe of objects available to the user
and to define new objects. pLisp adopts the same idioms to model
this interaction. Figures 1 and 2 illustrate sample screenshots where
the user has entered an expression and has issued the command
for evaluating the expression.

pLisp supports the following features:
• Graphical IDE with context-sensitive help, syntax coloring,
autocomplete, and auto-indentation

• Native compiler
• Continuations
• Exception handling
• Foreign function interface
• Serialization at both system- and object level
• Package/Namespace system

The productivity-enhancing features like expression evaluation,
autocompletion and auto-indentation of code, and context-sensitive
help are available in all code-editing contexts (Workspace, code

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’18, April 16–17 2018, Marbella, Spain
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-2-1.

Figure 1: The pLisp Workspace window

Figure 2: The pLisp Transcript window

panels in the System Browser and Callers window, and the File
Browser). Another useful Smalltalk-inspired feature implemented
in pLisp is the ability to store the entire programming session—
including the GUI state—in the serialized image; this enables the
user to carry over the programming experience seamlessly across
sessions, even in the middle of a debugging exercise.

pLisp has been released under the GPL 3.0 license and is freely
available for download [1]. At present, pLisp is available for Linux
(both 32-bit and 64-bit), Windows (32-bit), and Mac OS X platforms.
pLisp is written in C, and relies on open-source components (GTK+,



GtkSourceView, Tiny C Compiler, the Boehm Garbage Collector,
and libffi).

2 IMPLEMENTATION
pLisp is a Lisp-1 dialect, i.e., functions share the same namespace as
the other objects in the system. The syntax of pLisp closely mirrors
that of Common Lisp (e.g., defun, defmacro, progn, and macro-
related constructs like backquote, comma, and comma-at), however,
notations from Scheme are also used (call/cc). The design philos-
ophy of pLisp is to be more-or-less source-code compatible with
Common Lisp so that users can easily transition to Common Lisp
and carry over their knowledge and code.

2.1 Syntax
The pLisp s-expression grammar is shown in Figure 3. Except for
the language constructs and primitive operators, the core of pLisp
is written in itself. The support for continuations and the call/cc
construct, coupled with the use of macros, enables this and the
implementation of sophisticated programming constructs like loops
and exception handling at the library level.

E ::= L | I
| (define Iname Edef n)

| (set Iname Edef n)

| (lambda (I∗f ormal) E
∗
body)

| (macro (I∗f ormal) E
∗
body)

| (error E)
| (if Etest Ethen Eelse)
| (Erator E∗rand)

| (let ((Iname Edef n)
∗) E∗body)

| (letrec ((Iname Edef n)
∗) E∗body)

| (call/cc E)

Figure 3: pLisp informal s-expression grammar

2.2 Object Model
pLisp supports the following object types:

• Integers
• Floating point numbers
• Characters
• Strings
• Symbols
• Arrays
• CONS cells
• Closures
• Macros

All objects are internally represented by OBJECT_PTR, a typedef
for uintptr_t, the C language data type used for storing pointer
values of the implementation platform. The four least significant
bits of the value are used to tag the object type (e.g., 0001 for sym-
bol objects, 0010 for string literals, and so on), while the remaining
(n-4) bits (where n is the total number of bits) of the value take on
different meanings depending on the object type, i.e., whether the
object is a boxed object or an immediate object. If the object is a

boxed object, the remaining bits store the referenced memory loca-
tion. The loss of the four least significant bits is obviated by making
use of the GC_posix_memalign() call for the memory allocation
and thus ensuring that the four least significant bits of the returned
address are zeros.

2.3 Compiler
The pLisp compiler transforms the code to continuation-passing
style (CPS) [2] and emits C code, which is then passed to the Tiny
C Compiler (TCC) to produce native code. The compiler does the
transformation in the following passes [3]:

• Desugaring/Macro expansion
• Assignment conversion
• Translation
• Renaming
• CPS conversion
• Closure conversion
• Lift transformation
• Conversion to C

These passes produce progressively simpler pLisp dialects, culmi-
nating in a version with semantics close enough to C. Since TCC is
utilized for the native code generation, the transformation pipeline
does not include passes like register allocation/spilling.

2.4 Debugger
Since pLisp uses the continuation-passing style, all the functions
invoked in the course of evaluating the expression are extant at any
point in time, and are displayed in the debug call stack. At present,
only the break/resume functionality (and inspection of function
arguments) is supported in pLisp.

The compilation process introduces a large number of internal
continuation functions as part of the CPS conversion pass; the
debugging infrastructure needs to filter out these continuations so
that the user is presented with only those functions they need to
be aware of (i.e., those that have external source representations).
This is accomplished by logic in the C conversion phase, which
generates code to store a closure in the debug stack only if that
closure maps to a top-level definition.

3 CONCLUSION
This abstract describes the design and implementation of pLisp,
a Lisp dialect and integrated development environment modeled
on Smalltalk that targets Lisp beginners. While pLisp is oriented
towards beginners, its feature-set is complete enough (and its perfor-
mance robust enough) to serve the needs of a typical medium-sized
Lisp development project. Introduction of multithreading capabil-
ities and enhancements to the debugger to enable continuing or
restarting a computation with user-supplied values are part of the
future work being considered.

REFERENCES
[1] R. Jayaprakash. pLisp IDE. https://github.com/shikantaza/pLisp, 2018.
[2] Guy L Steele Jr. Rabbit: A compiler for scheme. Technical report, Technical

Report AI-TR-474, Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1978.

[3] Franklyn Turbak, David Gifford, and Mark A Sheldon. Design concepts in program-
ming languages. MIT press, 2008.

https://github.com/shikantaza/pLisp

	Abstract
	1 Introduction
	2 Implementation
	2.1 Syntax
	2.2 Object Model
	2.3 Compiler
	2.4 Debugger

	3 Conclusion
	References

