
Partial Inlining Using Local Graph Rewriting
Irène Durand ∗

Robert Strandh
irene.durand@u-bordeaux.fr
robert.strandh@u-bordeaux.fr
LaBRI, University of Bordeaux

Talence, France

ABSTRACT
Inlining is an important optimization technique in any modern
compiler, though the description of this technique in the literature is
informal and vague. We describe a technique for inlining, designed
to work on a flow graph of instructions of intermediate code.

Our technique uses local graph rewriting, making the semantic
correctness of this technique obvious. In addition, we prove that
the algorithm terminates.

As a direct result of the preservation of the semantics of the
program after each local rewriting step, the algorithm can stop after
any iteration, resulting in a partial inlining of the called function.
Such partial inlining can be advantageous in order to avoid the
inlining of code that is not performance critical, in particular for
creating arguments and calls to error-signaling functions.

CCS CONCEPTS
• Software and its engineering→Abstraction, modeling and
modularity; Software performance; Compilers;

KEYWORDS
Common Lisp, Compiler optimization, Portability, Maintainability,
Graph rewriting

ACM Reference Format:
Irène Durand and Robert Strandh. 2019. Partial Inlining Using Local Graph
Rewriting . In Proceedings of the 11th European Lisp Symposium (ELS’18).
ACM, New York, NY, USA, 8 pages. https://doi.org/10.5281/zenodo.3247542

1 INTRODUCTION
Inlining represents an important optimization technique in any
modern compiler. It avoids the overhead of a full function call, and
it allows further optimization in the calling function in the form of
type inference, loop optimizations, and more.

While the advantages of inlining are well known and well docu-
mented, inlining also entails some disadvantages. It increases the
size of the code, with a possible negative impact on processor cache

∗This author was supported by the French National Research Agency (ANR project
GraphEn / ANR-15-CE40-0009).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’18, April 16–17 2018, Marbella, Spain
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-2-1.
https://doi.org/10.5281/zenodo.3247542

performance. It also increases pressure on register allocation, pos-
sibly making it necessary to spill registers to the stack more often.
Most importantly, though, as Ayers et al. point out [1, 2], since
many optimization algorithms do not have linear-time complexity
in the size of the code, inlining can have a serious impact on the
execution time of the compiler.

Some authors distinguish between procedure integration and
inline expansion [7]. Both techniques are often referred to with
the abbreviated form inlining. Our use of inlining corresponds to
procedure integration.

Most literature sources define inlining as “replacing a call to a
function with a copy of the body of the called function” (see e.g.,
[3, 4, 8]). This definition suggests that inlining is an all-or-nothing
transformation. In this paper, we present a technique that allows
for partial inlining. More precisely, it allows for a prefix of the
callee to be copied into the caller. We obtain this property by using
local graph rewriting at the level of instructions in intermediate
code. A single instruction is inlined in each step, preserving the
overall semantics of the program, and thereby allowing us to stop
the process at any time.

The traditional definition of inlining is too vague for our purpose.
It suggests that the sole purpose of inlining is to avoid overhead
in the function-call protocol. However, on modern processors, this
overhead is insignificant. For the purpose of this paper, we would
also like to avoid the creation of a local environment that would
normally be necessary for each invocation of the callee. This addi-
tional requirement poses additional restrictions as to when inlining
is appropriate.

In this paper, we discuss only the inlining technique itself. We
do not consider the policy to determine when it is advantageous
to perform the technique, and, although our technique allows for
partial inlining, we also do not consider the policy of when inlining
should stop.

2 PREVIOUS WORK
Before inlining was applied to so-called “structured programming
languages”, the technique was applied to languages such as For-
tran, that do not allow recursion, and therefore do not need for
subroutines to allocate their own environments upon entry. And
it was then referred to as “open-coding of subroutines”. Scheifler
[8] is probably one of the first to apply inlining to more modern
programming languages. The language used by Scheifler is CLU
[6].

Ayers et al [1] consider the benefit of inlining consisting of the
elimination of the overhead of a procedure call to be a “side benefit”,
and we agree. They cite the main benefit as the opportunity for

https://doi.org/10.5281/zenodo.3247542
https://doi.org/10.5281/zenodo.3247542


ELS’18, April 16–17 2018, Marbella, Spain Irène Durand and Robert Strandh

more optimizing code transformations when the code of the called
function is exposed in the context of the calling function.

In their paper, they also mention cloning as an alternative to
inlining, i.e., the duplication and specialization of the called func-
tion according to the context of the calling function. However, they
consider inlining to be strictly superior to cloning in terms of the
possible additional optimizations made possible, so they recom-
mend cloning only as a means to avoid too large an increase in
the code size, which could slow down subsequent non-linear opti-
mizations. Cloning, and especially the specialization of the cloned
code in the context of the caller, is one technique used in partial
evaluation [5]. Inlining, however, whether total or partial, is not
a technique of partial evaluation. Inlining may of course enable
such techniques by exposing the code of the called function in the
context of the caller.

Most existing work is concerned with determining when inlin-
ing is to be performed, based on some analysis of the benefits as
compared to the penalties in terms of increased compilation time
in subsequent optimization passes. The inlining technique itself
is considered trivial, or in the words of Chang and Hwu ([3, 4])
“The work required to duplicate the callee is trivial”. Inlining might
be trivial in the context of purely function programming, in that
it suffices to replace occurrences of local variables in the called
function by the argument expressions in the function call. However,
for a language such as Common Lisp that allows for assignments to
lexical variables, inlining can be non-trivial. Consider the following
example:

(defun f (x y) (setq x y))

(defun g (a) (f a 3) a)

If simple renaming is applied, we obtain the following codewhich
does not preserve the semantics of the original code:

(defun g (a) (setq a 3) a)

The use of continuation-passing style for compiling Common Lisp
programs often requires a priori elimination of side effects by con-
fiding these side effects to updates on cells. Such a conversion
transforms the program so that it respects a purely functional style,
making inlining trivial as indicated above. However, such a conver-
sion has a significant impact on program performance, especially in
the context of modern processors, where memory access are orders
of magnitude more expensive than register operations.

Because of issues such as this one, this paper discusses only a
technique for inlining in the context of arbitrary Common Lisp
code that might contain such side effects. It does not discuss the
more complex issue of determining a strategy for when inlining
should or should not be applied.

Although the paper by Ayers et al explains that their technique
is applied to intermediate code, just like the technique that we
present in this paper, their paper contains little information about
the details of their technique.

3 OUR TECHNIQUE
The work described in this paper is part of the Cleavir compiler
framework. Cleavir is currently part of the SICL project1, but we
may turn it into an independent project in the future.

In our compiler, source code is first converted to an abstract syn-
tax tree. In such a tree, lexical variables and lexical function names
have been converted to unique objects. When a globally defined
function F is inlined into another function G, we incorporate the
abstract syntax tree of F as if it were a local function in G. No
alpha renaming is required. Notice that this step in itself does not
count as inlining. The function F is still invoked using the normal
function-call protocol at this stage.

In the second phase, the abstract syntax tree is translated to
intermediate code in the form of a flow graph of instructions. Our
inlining technique is designed to work on this intermediate repre-
sentation.

There are several advantages of using this intermediate repre-
sentation over higher-level ones such as source code or abstract
syntax trees, as we will show in greater detail below, namely:

• Each iteration of the algorithm defined by our technique is
very simple, and we can be shown to preserve the semantics
of the program.

• Because each iteration preserves the semantics, the process
can be interrupted at any point in time, resulting in a partial
inlining of the called function.

Furthermore, this intermediate code representation is similar to
the one used in many traditional compiler optimization techniques,
making it possible to reuse code for similar transformations.

One potential drawback of this representation is that operations
on programs represented this way are inherently imperative, i.e.
they modify the structure of the flow graph. The use of techniques
from functional programming is therefore difficult or impractical
with this representation. Moreover, the flow graph resulting from
some arbitrary number of iterations of our technique does not
necessarily have any correspondence as Common Lisp source code.

3.1 Intermediate code
The intermediate code on which our technique is designed to work
is called High-level Intermediate Representation, or HIR for short.
This representation takes the form of a flow graph of instructions
as used by many traditional compiler optimization techniques. The
main difference between HIR and the intermediate representation
used in compilers for lower-level languages is that in HIR, the only
data objects that the instructions manipulate are Common Lisp
objects. Arbitrary computations on addresses are exposed in a later
stage called Medium-level Intermediate Representation, or MIR.

Most HIR instructions correspond directly to Common Lisp oper-
ators such as the ones in the categories described below. Notice that,
although the names of the instructions often resemble the names
of Common Lisp operators, the instruction typically requires more
precise objects than the corresponding Common Lisp operator does.
Thus, the car instruction requires the argument to be a cons ob-
ject, and the funcall instruction requires its first argument to be a
function. The following such categories exist:

1https://github.com/robert-strandh/SICL



Partial Inlining Using Local Graph Rewriting ELS’18, April 16–17 2018, Marbella, Spain

• Low-level accessors such as car, cdr, rplaca, rplacd, aref,
aset, slot-read, and slot-write.

• Instructions for low-level arithmetic on, and comparison of,
floating-point numbers and fixnums.

• Instructions for testing the type of an object.
• Instructions such as funcall, return, and unwind for han-
dling function calls and returns.

Two of the HIR instructions are special in that they do not have
direct corresponding Common Lisp operators, and in that they are
essential to the inlining machinery described in this paper:

• The enter instruction. This instruction is the first one to
be executed in a function, and it is responsible for creating
the initial local lexical environment of the function from
the arguments given by the calling function. This initial
environment is typically augmented by temporary lexical
variables during the execution of the function. Variables may
also be eliminated from the local environment when they
are no longer accessible by any execution path.

• The enclose instruction. This instruction takes the code of
a nested function (represented by its enter instruction) and
creates a callable function that may be a closure.

3.2 Algorithm
The algorithm that implements our technique maintains a worklist.
An item2 of the worklist contains:

• A funcall instruction, representing the call site in the call-
ing function.

• An enter instruction, representing the called function.
• The successor instruction of the enter instruction, called the
target instruction, or target for short. The target instruction
is the one that is a candidate for inlining, and it is used for
generic dispatch.

• A mapping from lexical variables in the called function that
have already been duplicated in the calling function.

In addition to the contents of the worklist items, our algorithm
maintains the following global information, independent of any
worklist item:

• Amapping from instructions in the called function that have
already been inlined, to the corresponding instructions in the
calling function. This information prevents an instruction
from being inlined more than once. Without this informa-
tion, and in the presence of loops in the called function, our
inlining algorithm would go into an infinite computation.

• Information about the ownership of lexical variables referred
to by the called function. This ownership information in-
dicates whether a lexical variable is created by the called
function itself, or by some enclosing function. When an in-
struction to be inlined refers to a variable that is created by
some enclosing function, the reference is maintained with-
out modification. When the reference is to a variable created
by the function itself, the inlined instruction must refer to
the corresponding variable in the calling function instead.

2In the code, an item also contains an enclose instruction, but we omit this instruction
from our description, in order to simplify it.

Prior to algorithm execution, assignment instructions are in-
serted before the funcall instruction, copying each argument to a
temporary lexical variable. These lexical variables represent a copy
of the initial environment of the called function, but allocated in
the calling function. The pair consisting of the funcall and the
enter instruction can be seen as transferring this environment
from the calling function to the called function. The variable corre-
spondences form the initial lexical variable mapping to be used in
the algorithm.

Initially, the worklist contains a single worklist item with the
following contents:

• The funcall instruction representing the call that should
be inlined.

• A private copy of the initial enter instruction of the function
to inline.

• The successor instruction of the initial enter instruction,
which is the initial target.

• The initial lexical variable mapping described previously.

In each iteration of the algorithm, a worklist item is removed
from the worklist, and a generic function is called with four argu-
ments, representing the contents of the worklist item. Each iteration
may result in zero, one, or two new worklist items, according to
the mappings and ownership information, and according to the
number of successors of the target instruction in this contents.

When the generic function is called in each iteration, one of the
following four rules applies. As we show in Section 3.4, each of the
following rules preserves the overall operational semantics of the
code:

(1) If the target instruction has already been inlined, i.e. it is
in the mapping containing this information as described
previously, then replace the funcall instruction by the in-
lined version of the target. There are two ways of doing
this replacement. Either the predecessors of the funcall
instruction are redirected to the inlined version of the tar-
get instruction, effectively making the funcall instruction
unreachable, or else, the funcall instruction is replaced by
a no-operation instruction with the inlined version of the
target instruction as its successor. When this rule applies, no
new item is added to the worklist.

(2) If the target instruction is a return instruction, then replace
the funcall instruction by one or more assignment instruc-
tions mapping inputs of the funcall instruction to outputs
of that same instruction. Again, in this case, no new item is
added to the worklist.

(3) If the target instruction has a single successor, insert a copy
of the next instruction before the funcall instruction, and
make the enter instruction refer to that successor. Update
the mappings, the inputs of the funcall instruction, and
the outputs of the enter instruction as described below. In
this case, the funcall instruction, the enter instruction,
the new successor of the enter instruction, and the updated
lexical variable mapping are inserted as a new item on the
worklist for later processing.

(4) If the target instruction has two successors, insert a copy of
the target instruction before the funcall instruction, and



ELS’18, April 16–17 2018, Marbella, Spain Irène Durand and Robert Strandh

replicate the funcall instruction in each branch. Also repli-
cate the enter instruction so that each replica refers to a
different successor of the original instruction. Update the
mappings, the inputs of the funcall instruction, and the
outputs of the enter instruction as described below. In this
case, two new items are inserted on the worklist for later pro-
cessing. Each item contains a funcall instruction, an enter
instruction, the successor of the enter instruction, and a
lexical variable mapping, corresponding to each successor
branch of the inlined instruction.

For rules 3 and 4, when a new instruction is inlined, themappings,
the inputs to the funcall instruction, and the outputs of the enter
instruction are updated as follows:

• An entry is created in the mapping from instructions in
the called function to instructions in the calling function,
containing the inlined instruction and its copy in the calling
function.

• If some input i to the inlined instruction is present in the
lexical variable mapping (mapping to (say) ii in the calling
function) and in the outputs of the enter instruction, but i
is no longer live after the inlined instruction, then the en-
try ii - i is eliminated from the mapping, i is eliminated
from the outputs of the enter instruction, and ii is elimi-
nated from the inputs to the funcall instruction. It would
be semantically harmless to leave it intact, but it might harm
performance if the inlining procedure is stopped when it
is still partial. Notice that, when an instruction with two
successors is inlined, variable liveness may be different in
the two successor branches.

• If some output o of the inlined instruction is a new variable
that is created by that instruction, thenwe proceed as follows.
Let I be the instruction in the called function that has been
inlined, and let II be the copy of I in the calling function.
We create a new variable oo in the calling function that takes
the place of o in II. We add oo as an input to the funcall
instruction, o as an output of the enter instruction, and we
add oo - o to the lexical variable mapping. Again, if the
inlined instruction has two successors, the lexical variable
mapping may have to be updated for one or the other or
both of the successors.

3.3 Example
As an example of our technique, consider the initial instruction
graph in Figure 1. On the left is the calling function. It has three
lexical variables, namely x, a, and y. The variable a is referenced
by the called function, but it is owned by the calling function. The
called function has a single variable named z in its initial lexical
environment. A temporary variable w is created as a result of the
execution of one of the instructions in the called function.

Before the inlining procedure is started, we create temporary
variables in the calling function for the variables in the initial en-
vironment of the called function. We also create a private copy of
the enter instruction so that we can mutate it during the inlining
procedure. The result is shown in Figure 2.

As we can see in Figure 2, an assignment instruction has been
created that copies the value of the lexical variable x into a variable

enter

return

z

w

1

2

x a

funcall

y

Figure 1: Initial instruction graph.

enter

worklist

funcallA enterA 1 zz − z

x a

y

zz

funcallA

return

z

w

1

2

enterA

Figure 2: Instruction graph after initialization.

zz that mirrors the initial lexical variable z in the called function.
We also see that there are now two identical enter instructions.
The one labeled enterA is the private copy.

Step one of the inlining procedure consists of inlining the succes-
sor of our private enter instruction, i.e. the instruction labeled 1 in
Figure 2. That instruction has a single successor, and it has not yet
been inlined. Therefore, rule 3 applies, so we insert a copy of that
instruction before the funcall instruction. Furthermore, since the
input to the original instruction is the lexical variable z, and that
variable is mapped to zz in the calling function, the inlined instruc-
tion receives zz as its input. The output of the original instruction is
the temporary variable w that is not in our lexical variable mapping.
Therefore, a temporary variable ww is created in the calling function,
and an entry is created in the mapping that translates w to ww. The
private enter instruction (labeled enterA) is modified so that it



Partial Inlining Using Local Graph Rewriting ELS’18, April 16–17 2018, Marbella, Spain

enter

1

worklist

ww − w

zz − z
2enterAfuncallA

x a

y

zz

funcallA

return

z

w2

enterA

1

ww

Figure 3: Instruction graph after one inlining step.

enter

1

funcallA

x a

y

zz

return

z

w2

1

ww2

enterA

funcallB

enterB

worklist

funcallA enterA 1
zz − z

ww − w

ww − wfuncallB enterB return

Figure 4: Instruction graph after two inlining steps.

now refers to the next instruction to be considered as a target. The
result of this step is shown in Figure 3.

In step two of the inlining procedure, we are considering inlining
an instruction with two successors, i.e. the one labeled 2 in Figure 3.
It has not yet been inlined, so rule number 4 applies. As rule number
4 stipulates, we must replicate both the enter instruction and the
funcall instruction. The result is shown in Figure 4.

In Figure 4, the funcall instruction labeled funcallA is paired
with the enter instruction labeled enterA and the funcall instruc-
tion labeled funcallB is paired with the enter instruction labeled
enterB.

In step three of the inlining procedure, we consider the funcall
instruction labeled funcallB. The corresponding enter instruc-
tion has a return instruction as its successor, so rule number 2
applies. We must therefore replace the funcall instruction by an

enter

1

funcallA

x a

y

zz

return

z

w2

1

ww2

enterA

worklist

funcallA enterA 1
zz − z

ww − w

Figure 5: Instruction graph after three inlining steps.

enter

1

x a

y

zz

return

z

w2

1

ww2

Figure 6: Instruction graph after four inlining steps.

assignment instruction, assigning the value of the variable ww to
the variable y. The result of this operation is shown in Figure 5.

In step four of the inlining procedure, we consider the funcall
instruction labeled funcallA in Figure 5 and the corresponding
enter instruction. The successor of the enter instruction is the
instruction labeled 1, and that instruction has already been inlined,
so rule number 1 applies. We therefore remove the funcall and
redirect its predecessors to the inlined version of the instruction
labeled 1. The result is shown in Figure 6, and that completes the
inlining procedure.

After some minor reorganization of the instructions in Figure 6,
we obtain the final result shown in Figure 7. Clearly we have an
inlined version of the called function now replicated in the calling
function.



ELS’18, April 16–17 2018, Marbella, Spain Irène Durand and Robert Strandh

enter

1

x a

y

zz

return

z

w2

1

ww2

Figure 7: Final instruction graph.

3.4 Correctness of our technique
In order to prove total correctness of our technique, we must show
that two conditions hold:

(1) Partial correctness, i.e. the technique must preserve the se-
mantics of the program.

(2) Termination.

3.4.1 Partial correctness. Our technique preserves a very strong
version of the semantics of the program, namely the operational
semantics. This fact makes it unnecessary to create a precise defi-
nition of the program semantics, as might have been the case for
some weaker type of semantics. Instead, we only need to show
that the exact same operations are performed before and after each
inlining step.

After a copy of the initial environment of the called function has
been made in the environment of the calling function, we can see
a pair of funcall/enter instructions as defining a morphism σ ,
mapping the copy of this environment in the calling function to its
original version in the called function. The inputs of the funcall
instruction are mapped to the outputs of the enter instruction. The
lexical variable mapping used in our technique is simply the in-
verse, i.eσ−1 of this morphism. Similarly, a pair of return/funcall
instructions can be seen as defining a morphism τ , mapping the
environment in the called function to the environment in the call-
ing function. The inputs of the return instruction are mapped
to the outputs of the funcall instruction. These morphisms are
illustrated in an example of an initial situation in Figure 8.

Applying rule 3 or rule 4 copies one instruction from the called
function to the calling function, applying the morphism σ−1 to
its inputs and outputs. Two applications of rule 3 from the initial
situation are illustrated in Figure 9 and Figure 10. Applying rule 4
is a bit more involved, but the same mechanism is used. As we can
see from these figures, thanks to the morphism, the instructions
operate the same way whether inlined or not. The semantics are
thus the same in both cases.

When rule 2 is applied, the return instruction is not copied.
Instead, a number of assignment instructions are created in the

calling function. Together, these assignment instructions define the
composition of the two morphisms τ and σ , i.e. τ ◦σ . Applying this
rule therefore does not alter the semantics of the program. It merely
maps the returned values to their copies in the calling function.
Applying this rule is illustrated in Figure 11.

Finally, applying rule 1 merely avoids the control transfer from
the calling function to the called function, by replacing the funcall
instruction by an existing copy of the instruction that would have
been inlined by rule 3 or rule 4. The existing copy obviously already
operates in the environment of the calling function.

3.4.2 Termination. In order to prove termination, we invent a
metric with the following properties:

• It has a lower bound on its value.
• Its value decreases with each iteration of our inlining proce-
dure.

The metric we have chosen for this purpose is called remaining
work, and it is represented as a pair r = (I , F )where I is the number
of instructions that have yet to be inlined, and F is the number of
funcall instructions that have yet to be processed as part of the
worklist items. Clearly, it has a lower bound on its value, namely
rmin = (0, 0).

Initially, the remaining work has the value r0 = (N , 1) where N
is the number of instructions in the called function. We consider
the metric to be lexicographically ordered by its components, i.e.
(I1, F1) < (I2, F2) if and only if either I1 < I2 or I1 = I2 and F1 < F2.
We show that each step yields a value that is strictly smaller than
before the step.

Consider some iteration k of our inlining procedure, so that
rk = (Ik , Fk ) is the remaining work before the iteration, and rk+1 =
(Ik+1, Fk+1) is the remaining work after the iteration.

• If rule number 1 applies, then one funcall instruction is
eliminated in the iteration, so that Ik+1 = Ik and Fk+1 =
Fk − 1. Clearly, rk+1 < rk in this case.

• If rule number 2 applies, then again one funcall instruction
is eliminated in the iteration, so that Ik+1 = Ik and Fk+1 =
Fk − 1. Again, rk+1 < rk .

• If rule number 3 applies, then another instruction is inlined,
but the number of funcall instructions remains the same,
so that Ik+1 = Ik − 1 and Fk+1 = Fk . Again, rk+1 < rk .

• Finally, if rule number 4 applies, then another instruction is
inlined, but the number of funcall instructions increases by
1, so that Ik+1 = Ik − 1 and Fk+1 = Fk + 1. Again, rk+1 < rk .

4 CONCLUSIONS AND FUTUREWORK
We have presented a technique for inlining local functions that uses
local graph rewriting techniques. We have proved our technique to
be correct in that it preserves the semantics of the original program,
and it is guaranteed to terminate.

Although our iterative technique can be stopped at any point,
thus giving us partial inlining, there are some practical aspects of
such partial inlining that still need to be investigated:

• When the inlining is not complete, the called function has
multiple entry points. Many optimization techniques de-
scribed in the literature assume that a function has a single
entry point. We plan to investigate the consequences of such



Partial Inlining Using Local Graph Rewriting ELS’18, April 16–17 2018, Marbella, Spain

i1

i2

return

σ

τ

Figure 8: Initial situation.

σ−1(i1) i1

i2

return

σ

τ

Figure 9: Situation after one application of rule 3.

σ−1(i1) i1

σ−1(i2) i2

return

σ

τ

Figure 10: Situation after two applications of rule 3.

σ−1(i1) i1

σ−1(i2) i2

τ ◦ σ return

Figure 11: Situation after an applications of rule 2.

multiple entry points on the optimization techniques that we
have already implemented, as well as on any optimization
techniques that we plan to incorporate in the future.

• In our intermediate code, we treat multiple values with an
unknown number of values as a special type of datum. It is
special in that it must store an arbitrary number (unknown at
compile time) of values. During the execution of our inlining
procedure, such a datum may become part of the mapping
between variables of the called function and the calling func-
tion. When the inlining procedure continues until termina-
tion, such a datum will be handled in the calling function in
the same way that it is handled in the called function. How-
ever, if the inlining procedure is stopped with such a datum
in the mapping, we would somehow need to transmit it as an
argument to the called function. Doing so may require costly
allocation of temporarymemory and costly tests for the num-
ber of values that would not be required when the procedure
continues until termination. However, it is rare that code
needs to store intermediate multiple values. It only happens
in a few cases such as when multiple-value-prog1 is used.
Therefore, one solution to this problem is to avoid inlining
in this case. Another possible solution is to let the inlining
procedure continue until termination for these cases.

As presented in this paper, our technique handles only functions
with very simple lambda lists. It is probably not worth the effort to
attempt to inline functions with lambda lists containing keyword
arguments, but it might be useful to be able to handle optional
arguments. We intend to generalize our technique to such lambda
lists.

We have implemented the technique described in this paper,
but have yet to implement a decision procedure for determining
whether this technique could and should be applied. The details of
this decision procedure are currently being investigated.

5 ACKNOWLEDGMENTS
We would like to thank Bart Botta, Jan Moringen, John Mercouris,
and Alastair Bridgewater for providing valuable feedback on early
versions of this paper.

REFERENCES
[1] Andrew Ayers, Richard Schooler, and Robert Gottlieb. Aggressive inlining. In

Proceedings of the ACM SIGPLAN 1997 Conference on Programming Language Design
and Implementation, PLDI ’97, pages 134–145, New York, NY, USA, 1997. ACM.
ISBN 0-89791-907-6. doi: 10.1145/258915.258928. URL http://doi.acm.org/10.1145/
258915.258928.

[2] Andrew Ayers, Richard Schooler, and Robert Gottlieb. Aggressive inlining. SIG-
PLAN Not., 32(5):134–145, May 1997. ISSN 0362-1340. doi: 10.1145/258916.258928.
URL http://doi.acm.org/10.1145/258916.258928.

[3] P. P. Chang and W.-W. Hwu. Inline function expansion for compiling c programs.
In Proceedings of the ACM SIGPLAN 1989 Conference on Programming Language
Design and Implementation, PLDI ’89, pages 246–257, New York, NY, USA, 1989.
ACM. ISBN 0-89791-306-X. doi: 10.1145/73141.74840. URL http://doi.acm.org/10.
1145/73141.74840.

[4] P. P. Chang and W.-W. Hwu. Inline function expansion for compiling c programs.
SIGPLAN Not., 24(7):246–257, June 1989. ISSN 0362-1340. doi: 10.1145/74818.74840.
URL http://doi.acm.org/10.1145/74818.74840.

[5] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1993. ISBN 0-13-020249-5.

[6] Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert. Abstraction
Mechanisms in CLU. Commun. ACM, 20(8):564–576, August 1977. ISSN 0001-0782.
doi: 10.1145/359763.359789. URL http://doi.acm.org/10.1145/359763.359789.

http://doi.acm.org/10.1145/258915.258928
http://doi.acm.org/10.1145/258915.258928
http://doi.acm.org/10.1145/258916.258928
http://doi.acm.org/10.1145/73141.74840
http://doi.acm.org/10.1145/73141.74840
http://doi.acm.org/10.1145/74818.74840
http://doi.acm.org/10.1145/359763.359789


ELS’18, April 16–17 2018, Marbella, Spain Irène Durand and Robert Strandh

[7] Steven S. Muchnick. Advanced compiler design and implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1997. ISBN 1-55860-320-4.

[8] Robert W. Scheifler. An analysis of inline substitution for a structured program-
ming language. Commun. ACM, 20(9):647–654, September 1977. ISSN 0001-0782.
doi: 10.1145/359810.359830. URL http://doi.acm.org/10.1145/359810.359830.

http://doi.acm.org/10.1145/359810.359830

	Abstract
	1 Introduction
	2 Previous work
	3 Our technique
	3.1 Intermediate code
	3.2 Algorithm
	3.3 Example
	3.4 Correctness of our technique

	4 Conclusions and future work
	5 Acknowledgments
	References

