
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

Continuous Documentation for Users,
Developers and Maintainers

Platform for Advanced Scientific Computing (PASC19)
June 14, 2019

Tobias Frust

Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

[1] From https://geekandpoke.typepad.com/.a/6a00d8341d3df553ef0168eabe2192970c-pi

[1]

https://doi.org/10.5281/zenodo.3247324

Member of the Helmholtz AssociationPage 2
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

GitHub Open Source Survey

Zlotnick, Frances, “GitHub Open Source Survey 2017”. GitHub, Inc., 02-Jun-2017. and https://opensourcesurvey.org/2017/

https://opensourcesurvey.org/2017/

Member of the Helmholtz AssociationPage 3
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

“It doesn’t matter how good your software is, because if the documentation is not good
enough, people will not use it.

Even if for some reason they have to use it because they have no choice, without good
documentation, they won’t use it effectively or the way you’d like them to.”

What nobody tells you about documentation (Daniele Procida) - https://www.divio.com/blog/documentation/

Why documentation is important for your software project

Member of the Helmholtz AssociationPage 4
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

Documentation can save time and pay
for itself:

• Helps to create inclusive
communities

• Makes for a better software product
• Reduces cost of ownership
• Reduces the user’s learning curve
• Makes users happy
• Improves Reproducibility

Incorrect, old or missing
documentation can:

• Waste time
• Cause errors and destroy data
• Turn away customers/scientists
• Increase support costs
• Shorten a product’s life span

Why documentation is important for your software project

Member of the Helmholtz AssociationPage 5
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

 Documentation must be kept up-to-date.

 Documentation needs to be considered continuously.

 Features vs. Documentation: Features often win.

 Needs to be adapted to the target audience.

Writing effective documentation can be challenging

Photo by Mārtiņš Zemlickis on Unsplash

Member of the Helmholtz AssociationPage 6
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

 For you, the developer himself

 You will be using and working with your code in months

 You want people to use your code and give credit (e.g. citation)

 Others could be encouraged to contribute to your code

 For others, e.g. users, contributors

 Easily use your code and build upon it.

 For science

 Encourage Open Science.

 Allow Reproducibility and Transparency.

Whom is documentation for?

Photo by Miguel Henriques on Unsplash

Member of the Helmholtz AssociationPage 7
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

Tutorials
• Learning-oriented
• For the newcomers to get started

How-To Guides
• Goal-oriented
• Shows how to solve a specific problem

Explanation
• Understanding-oriented
• Provides background and context

Technical Reference
• Information-oriented
• Describes the system
• Is accurate and complete

Components

Components of Software Documentation

Member of the Helmholtz AssociationPage 8
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

Mandatory Prerequisite

 Put your code AND documentation under version control.

 Use a Software Management System (e.g. GitHub, GitLab, Bitbucket, …).

 If possible, have a public project.

Best Practices for Documenting Scientific Software

Member of the Helmholtz AssociationPage 9
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

 A README is like the homepage for your software project.

 Store as a text file – readable on all operating systems

 Use Markup Languages (e.g. Markdown, Restructured Text)

 Will be rendered by Code Hosting sites.

 Minimum Content:

 Description

 Installation instructions

 Usage instructions

 License Information

#1: Put a README file into the root of your repository
Project Title

A short description.

Installation

A step by step installation guide

```bash
Steps to install the software.
```

Usage

Provide a short usage/quick start example.

```bash
Code example, …
```

Contributions

Information about contribution guidelines.

Citation

- Tell, how this software can be cited.
- Provide a DOI for each version of your software.

License

[GPLv3](License.md)

Member of the Helmholtz AssociationPage 10
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

Foobar

Foobar is a Python library that can sum two numbers.

Installation

Install `foobar` via `pip`.

```bash
pip install foobar
```

Usage

```python
import foobar
# Sum the numbers 3 and 4.
sum = foobar.sum(3, 4)
```

Contributions

Pull requests are welcome. Please open an issue for major
changes, to discuss what you would like to change.

Citation

[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1.svg)](
https://doi.org/10.5281/zenodo.1)

[1] Frust, Tobias, “Foobar – A Library to sum two numbers”.
Zenodo, 09-Jun-2019.

License

[GPLv3](License.md)

Member of the Helmholtz AssociationPage 11
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

Goal: Allow people to immediately start playing with your tool. Guide

them through the first steps.

#2: Include a Quick-Start Guide

Introduction
•What is this Software used for?

Requirements
•e.g. Operating System, dependencies.

Installation
•Describe how to install the software step by step.

Usage
•Provide a motivating example covering the general

concepts.
•Balance between simplicity and complexity.

Referential Information
•Link to the detailed user and installation guide.
•Link to other follow-up material.

Examples:

Numpy - https://docs.scipy.org/doc/numpy/user/quickstart.html

Scipy - https://www.scipy.org/getting-started.html

Spack - https://spack.readthedocs.io/en/latest/getting_started.html

https://docs.scipy.org/doc/numpy/user/quickstart.html
https://www.scipy.org/getting-started.html
https://spack.readthedocs.io/en/latest/getting_started.html

Member of the Helmholtz AssociationPage 12
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

 Showing is better than telling.

 Include examples going beyond simple instructions.

 Have enough examples to show the functionality of your software.

 Examples can be a good starting point for first user attempts.

 Examples:

 Keras – 35 examples including a README (https://github.com/keras-team/keras/tree/master/examples)

 Matplotlib (https://matplotlib.org/examples/)

#3: Include Examples

https://github.com/keras-team/keras/tree/master/examples
https://matplotlib.org/examples/

Member of the Helmholtz AssociationPage 13
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

 Scientific software often ships with a Command Line Interface

(CLI).

 Good for development effort; but hard to figure out what it

does.

 Document CLI with a help command (-h/--help)

 Include:

 Usage information.

 Subcommands (if applicable).

 Describe options/arguments and Environment variables.

 Maybe add examples.

 Example: Click for Python, Boost Program Options, …

#4: Provide a help command for your Command Line Interface

Member of the Helmholtz AssociationPage 14
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

 The API is how people interact with your code.

 Use a consistent style that is understood by

documentation tools (#6).

 e.g. Google Style Guide

(https://google.github.io/styleguide/)

 For functions, define:

 Short description.

 Input/Output parameters with type.

 Errors, that can be raised.

 Classes should define:

 Attributes and their type.

 Describe methods.

#5: Document your entire Application Programming Interface (API)

https://google.github.io/styleguide/

Member of the Helmholtz AssociationPage 15
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

 Let documentation write itself - at least parts of it!

 Tools help to

 Create beautiful documentation in multiple output formats.

 Extract documentation directly from the source code.

 Create extensive cross-referencing.

 Generate detailed API documentation.

 Python: Sphinx (sphinx-doc.org)

 C++: Doxygen (doxygen.nl)

 R: Roxygen (https://github.com/klutometis/roxygen)

 Java: Javadoc

#6: Use Automated documentation tools

Member of the Helmholtz AssociationPage 16
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

#6: Use Automated documentation tools

Member of the Helmholtz AssociationPage 17
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

 Writing documentation cannot fully be automated – it’s a creative process.

 Make documentation an integral part of the contribution process.

#7: Make a documentation check part of your Merge/Pull Request strategy

Use Merge/Pull
Requests
• Use Templates

Establish a
review process

Check
documentation
during review

Member of the Helmholtz AssociationPage 18
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

 Structure contributions by providing templates

 Make documentation part of each Merge/Pull request

template

 In GitHub add a file called PULL_REQUEST_TEMPLATE

to one of three locations:

 The root of the project

 .github/ folder

 docs/ folder

 In GitLab, create *.md file inside the

.gitlab/merge_request_templates/directory

#7: Make a documentation check part of your Merge/Pull Request strategy

Member of the Helmholtz AssociationPage 19
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

 Automate publishing of documentation for new releases.

 ReadTheDocs (https://readthedocs.org)

 GitHub/GitLab Pages (https://gitlab.pages.io – https://github.pages.com)

 Do static analysis (check style guide, check documentation style, …).

 Use CI/CD (e.g. GitLab CI, Travis, …) – Make reviewer’s life easier.

#8: Automate as much as possible

🚀🚀
Look at Awesome Static Analysis for tools for your programming language:
https://matthias-endler.de/awesome-static-analysis/ or
https://github.com/mre/awesome-static-analysis

https://readthedocs.org/
https://gitlab.pages.io/
https://github.pages.com/
https://matthias-endler.de/awesome-static-analysis/
https://github.com/mre/awesome-static-analysis

Member of the Helmholtz AssociationPage 20
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

 Consider documentation from the very beginning.

 Use standards.

 Preferably, automate as much as possible – you will love it once it is

in place!

 Make creating documentation more enjoyable than boring.

Conclusion

Member of the Helmholtz AssociationPage 21
Tobias Frust | Department of Information Services and Computing | Computational Science Group | www.hzdr.de

 Zlotnick, Frances (2017), “GitHub Open Source Survey 2017”. GitHub, Inc., https://doi.org/10.5281/zenodo.806811
 Lee BD (2018) Ten simple rules for documenting scientific software. PLOS Computational Biology 14(12): e1006561.

https://doi.org/10.1371/journal.pcbi.1006561
 Procida, Daniele (2017), What nobody tells you about documentation, Blog Post, https://www.divio.com/blog/documentation/
 Berkeley Library (2018), How to Write a Good Documentation, https://guides.lib.berkeley.edu/how-to-write-good-documentation

References

Examples
 C++: Doxygen + Breathe + Sphinx + ReadTheDocs; xtensor Repository on GitHub – Corresponding documentation.
 Sphinx Documentation- http://www.sphinx-doc.org/en/master/
 Read the Docs: Documentation; https://docs.readthedocs.io
 Doxygen Documentation; http://www.doxygen.nl
 Pull request template on GitHub; https://help.github.com/en/articles/creating-a-pull-request-template-for-your-repository
 Merge request template on GitLab; https://docs.gitlab.com/ee/user/project/description_templates.html#creating-merge-request-templates

https://doi.org/10.5281/zenodo.806811
https://doi.org/10.1371/journal.pcbi.1006561
https://www.divio.com/blog/documentation/
https://guides.lib.berkeley.edu/how-to-write-good-documentation
https://github.com/QuantStack/xtensor
http://xtensor.readthedocs.io/en/latest/
http://www.sphinx-doc.org/en/master/
https://docs.readthedocs.io/
http://www.doxygen.nl/
https://help.github.com/en/articles/creating-a-pull-request-template-for-your-repository
https://docs.gitlab.com/ee/user/project/description_templates.html#creating-merge-request-templates

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

