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State-Dependent Interference Channel
With Correlated States

Yunhao Sun , Ruchen Duan, Yingbin Liang, Senior Member, IEEE,

and Shlomo Shamai (Shitz) , Life Fellow, IEEE

Abstract— This paper investigates the Gaussian
state-dependent interference channel (IC) and Z-IC, in which
two receivers are corrupted respectively by two different but
correlated states that are noncausally known to two transmitters
but are unknown to the receivers. Three interference regimes
are studied, and the capacity region boundary or the sum
capacity boundary is characterized either fully or partially
under various channel parameters. In particular, the impact
of the correlation between states on cancellation of state and
interference as well as achievability of capacity is explored with
numerical illustrations. For the very strong interference regime,
the capacity region is achieved by the scheme where the two
transmitters implement a cooperative dirty paper coding. For
the strong but not very strong interference regime, the sum-rate
capacity is characterized by rate splitting, layered dirty paper
coding, and successive cancellation. For the weak interference
regime, the sum-rate capacity is achieved via dirty paper coding
individually at two receivers as well as treating interference as
noise. This paper also provides the achievable region for the
state-dependent IC with each state known at its corresponding
transmitter.

Index Terms— Capacity region, channel state, dirty paper
coding, Gel’fand-Pinsker scheme, noncausal state information,
interference channel.

I. INTRODUCTION

STATE-DEPENDENT interference channels (ICs) are of
great interest in wireless communications, in which

receivers are interfered not only by other transmitters’ signals
but also by independent and identically distributed (i.i.d.) state
sequences. The state can capture interference signals that are
informed to transmitters, and are hence often assumed to
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be noncausally known by these transmitters in the model.
Such interference cognition can occur in practical wireless
networks due to node coordination or backhaul networks. For
example, in a cellular network with the coexistence of cellular
transmissions and device to device communications defined
in release 14 [1] or later networks, and in WLAN standards,
researchers are considering multi-access point cooperation in
which the knowledge of the channel state information is shared
among devices in the next generation WiFi.

State-dependent channels have been widely studied for
multiple-access channels (MAC), broadcast channels (BC),
and the more complicated interference channels. The two-user
MAC with state noncausally known at the transmitters has
been studied in various cases. More specifically, [2], [3] stud-
ied the model with state noncausally known at both trans-
mitters, while [4] assumed that the state is known only to
one transmitter. Reference [5] studied the cognitive model
in which one transmitter also knows the other transmit-
ter’s message in addition to the noncausal state information.
Furthermore, [6], [7] studied the model with the receiver being
corrupted by two independent states and each state is known
noncausally to one transmitter. For broadcast channel, in [3]
and [8]–[11], the state-dependent broadcast channel with pri-
vate messages and with noncausal state information at the
transmitter has been studied. For the state-dependent IC and
Z-IC, the state-dependent IC was studied in [12] and [13] with
two receivers corrupted by the same state, and in [14] with two
receivers corrupted by independent states. In [15] and [16],
two state-dependent cognitive IC models were studied, where
one transmitter knows both messages, and the two receivers
are corrupted by two states. More recently, in [17], both the
state-dependent regular IC and Z-IC were studied, where the
receivers are corrupted by the same but differently scaled state.
In [18] and [19], the interference channel with non-causal state
information was studied. Furthermore, in [20] and [21], a type
of the state-dependent Z-IC was studied, in which only one
receiver is corrupted by the state and the state information
is known only to the other transmitter. In [22], a class of
deterministic state-dependent Z-ICs was studied, where two
receivers are corrupted by the same state and the state infor-
mation is known only to one transmitter. In [23], a type of
the state-dependent Z-IC with two states was studied, where
each transmitter knows only the state that corrupts its cor-
responding receiver. In [24], a state-dependent Z-interference
broadcast channel was studied, in which one transmitter has

0018-9448 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3017-6827
https://orcid.org/0000-0002-6594-3371


SUN et al.: STATE-DEPENDENT IC WITH CORRELATED STATES 4519

only one message for its corresponding receiver, and the other
transmitter has two messages respectively for two receivers.
Both receivers are corrupted by the same state, which is known
to both transmitters.

In all the previous work of the state-dependent IC and
Z-IC, the states at two receivers are either assumed to be
independent, or to be the same but differently scaled, with
the exception of [23] that allows correlation between states.
However, [23] assumes that each transmitter knows only one
state at its corresponding receiver, and hence two transmit-
ters cannot cooperate to cancel the states. In this paper,
we investigate the state-dependent IC and Z-IC with the two
receivers being corrupted respectively by two correlated states.
We studied two cases 1. both transmitters know both states in
order for them to cooperate; 2.each transmitter only know the
state that is corrupting its targeted receiver. The main focus of
this paper is on the Gaussian state-dependent IC and Z-IC,
where the receivers are corrupted by additive interference,
state, and noise. The aim is to design encoding and decoding
schemes to handle interference as well as to cancel the state
at the receivers. In particular, we are interested in answering
the following two questions: (1) whether and under what
conditions both states can be simultaneously fully canceled
so that the capacity for the IC and Z-IC without state can be
achieved; and (2) what is the impact of the correlation between
two states on state cancellation and capacity achievability.

We summarize our results as follows. Our novelty of
designing achievable schemes lies in joint design of the
interference cancellation schemes together with the Gel’fand-
Pinsker binning [25] and dirty paper coding [26] for state
cancellation in order to characterize the capacity region.
More specifically, we study three interference regimes for
the case that both transmitter know both state noncausally.
For the very strong interference regime, we characterize the
channel parameters under which the two receivers achieve
their corresponding point-to-point channel capacity without
state and interference. Thus, the interference as well as states
are fully canceled, and the capacity region is characterized
as a rectangular region. In particular, we demonstrate the
impact of the correlation between the two states in such a
regime. Interestingly, we show that high interference may not
always be beneficial for canceling both state and interference,
which is in contrast to the IC without state. For the strong
interference regime, we characterize the sum capacity bound-
ary partially under certain channel parameters based on joint
design of rate splitting, successive cancellation, as well as dirty
paper coding. We also explain how the correlation affects the
achievability of the sum capacity, and affects the comparison
between the IC and Z-IC. For the weak interference regime,
we observe that the sum capacity can be achieved by the
two transmitters independently employing dirty paper coding
and receiver 1 treating interference as noise as shown in [17]
for the same but differently scaled state at the two receivers.
The sum capacity is not affected by the correlation between
states. We further investigate the state-dependent IC and Z-IC,
where each state is known at its corresponding transmitter.
We derive the achievable regions for the discrete memoryless
and Gaussian channels, where the correlation of the state plays

Fig. 1. The state-dependent IC.

an important role. We also show that the sum-capacity can be
obtained by treating the other user’s state as noise.

II. CHANNEL MODEL

We consider the state-dependent IC (as shown in Fig. 1),
in which transmitters 1 and 2 send messages W1 and W2
respectively to the receivers 1 and 2. For k = 1, 2, encoder
k maps the message wk ∈ Wk to a codeword xn

k ∈ X n
k .

The two inputs xn
1 and xn

2 are then transmitted over the IC
to the receivers, which are corrupted by two correlated state
sequences Sn

1 and Sn
2 , respectively. We considered two cases

for the channel model, i.e., 1. the state sequences are known
to both the transmitters noncausally, but are unknown at the
receivers; 2. the state sequence is known to its corresponding
transmitter. Encoders 1 and 2 want to map their messages
as well as the state sequence(s)’ information into codewords
xn

1 ∈ X n
1 and xn

2 ∈ X n
2 . The channel transition probability

is given by PY1Y2|S1S2 X1 X2 . The decoders at the receivers map
the received sequences yn

1 and yn
2 into corresponding messages

ŵk ∈ Wk for k = 1, 2.
The average probability of error for a length-n code is

defined as

P(n)
e = 1

|W1||W2|
|W1|∑

w1=1

|W2|∑

w2=1

Pr{(ŵ1, ŵ2) �= (w1, w2)}. (1)

A rate pair (R1, R2) is achievable if there exist a sequence
of message sets W(n)

k with |W(n)
k | = 2nRk for k = 1, 2, such

that the average error probability P(n)
e → 0 as n → ∞. The

capacity region is defined to be the closure of the set of all
achievable rate pairs (R1, R2).

In this paper, we study the Gaussian channel with the
outputs at the two receivers for one channel use given by

Y1 = X1 + a X2 + S1 + N1, (2a)

Y2 = bX1 + X2 + S2 + N2 (2b)

where a and b are the channel gain coefficients, and N1 and N2
are noise variables with Gaussian distributions N1 ∼ N (0, 1)
and N2 ∼ N (0, 1). The state variables S1 and S2 are jointly
Gaussian with the correlation coefficient ρ and the marginal
distributions S1 ∼ N (0, Q1) and S2 ∼ N (0, Q2). Both
the noise variables and the state variables are i.i.d. over the
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channel uses. The channel inputs X1 and X2 are subject to the
average power constraints P1 and P2.

The Z-IC is also studied in this paper, in which receiver 2 is
not corrupted by the interference X1 from transmitter 1 (i.e, b
=0 for Gaussian channel).

Our goal is to investigate state and interference cancel-
lation scheme and characterize the capacity region for the
state-dependent IC and Z-IC, which matches the capacity
of the corresponding IC and Z-IC without state corruption.
Moreover, we identify channel parameters, under which the
capacity region of the state-dependent IC and Z-IC can be
established. In particular, we are interested in understanding
the impact of the correlation between the states S1 and S2 on
the capacity characterization. We will also investigate the case
when each transmitter only knows its corresponding channel
state.

III. VERY STRONG INTERFERENCE REGIME

In this section, we study the impact of the correlation
between states on the characterization of the capacity in
the very strong interference regime. We study both the
state-dependent IC and Z-IC.

A. State-Dependent IC

In this subsection, we study the state-dependent IC with
channel states known to both transmitters in the very strong
interference regime, where the channel parameters satisfy

P1 + a2 P2 + 1 > 1 + P1)(1 + P2), (3a)

b2 P1 + P2 + 1 > (1 + P1)(1 + P2). (3b)

For the corresponding IC without states, the capacity region
contains rate pairs (R1, R2) satisfying:

R1 � 1

2
log(1 + P1),

R2 � 1

2
log(1 + P2). (4)

In this case, the two receivers achieve the point-to-point
channel capacity without interference. Furthermore, in [17],
an achievable scheme has been established to achieve the
same point-to-point channel capacity when the two receivers
are corrupted by the same but differently scaled state. Our
focus here is on the more general scenario, where the two
receivers are corrupted by two correlated states, and our aim
is to understand how the correlation affects the design of the
scheme.

We first design an achievable scheme to obtain an achiev-
able rate region for the discrete memoryless IC. The two
transmitters encode their messages W1 and W2 into two
auxiliary random variables U and V , respectively, based
on the Gel’fand-Pinsker binning scheme. Since the channel
satisfies the very strong interference condition, it is easier
for receivers to decode the information of the interference.
Thus each receiver first decodes the auxiliary random variable
corresponding to the message intended for the other receiver,
and then decodes its own message by decoding the auxil-
iary random variable for itself. For instance, receiver 1 first

decodes V , then uses it to cancel the interference X2 and par-
tial state interference, and finally decodes its own message W1
by decoding U . Differently from [17], two auxiliary random
variables U and V are designed not with regard to one state,
but with regard to two correlated states. This requires a joint
design for U and V to fully cancel the states. Based on such
a scheme, we obtain the following achievable region.

Proposition 1. For the state-dependent IC with states non-
causally known at both transmitters, the achievable region
consists of rate pairs (R1, R2) satisfying:

R1 � min{I (U ; V Y1), I (U ; Y2)} − I (S1 S2; U), (5a)

R2 � min{I (V ; UY2), I (V ; Y1)} − I (S1 S2; V ) (5b)

for some distribution PS1S2 PU |S1S2 PX1|U S1S2 PV |S1S2

PX2|V S1S2 PY1Y2|S1S2 X1 X2 , where U and V are auxiliary
random variables.

Proof: See Appendix A. �
We now study the Gaussian IC. For the sake of technical

convenience, we express the Gaussian channel in Section II
in a different form. Since S1 and S2 are jointly Gaussian, S1
can be expressed as S1 = d S2 + S′

1 where d is a constant
representing the level of correlation, and S′

1 is independent
from S2 and S′

1 ∼ N (0, Q′
1) with Q1 = d2 Q2 + Q′

1. Thus,
without loss of generality, the channel model can be expressed
in the following equivalent form that is more convenient for
analysis.

Y1 = X1 + a X2 + d S2 + S′
1 + N1, (6a)

Y2 = bX1 + X2 + S2 + N2. (6b)

Following Proposition 1, we characterize the condition
under which both the state and interference can be fully
canceled, and hence the capacity region for the state-dependent
Gaussian IC in the very strong interference regime is obtained.

Theorem 1. For the state-dependent Gaussian IC with state
noncausally known at both transmitters, the capacity region
is the same as the point-to-point channel capacity for both
receivers, if the channel parameters (a, b, d, P1, P2, Q′

1, Q2)
satisfy the following conditions:

1

2
log(1 + P1) � h(X1) − h(U, Y2) + h(Y2), (7a)

1

2
log(1 + P2) � h(X2) − h(V , Y1) + h(Y1), (7b)

where the auxiliary random variables are designed as
U = X1 + α1S′

1 + α2S2 and V = X2 + β1S′
1 + β2S2. Here,

X1,X2, S′
1 and S2 are independent Gaussian variables with

mean zero and variances P1, P2, Q1 and Q2, respectively.
The parameters α1,α2,β1 and β2 are set as

α1 = P1(1 + P2)

(P1 + 1)(P2 + 1) − abP1 P2
,

α2 = P1(d + d P2 − a P2)

(P1 + 1)(P2 + 1) − abP1 P2
,

β1 = bP1 P2

(P1 + 1)(P2 + 1) − abP1 P2
,

β2 = P2(P1 + 1 − bd P1)

(P1 + 1)(P2 + 1) − abP1 P2
. (8)
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Fig. 2. Comparison of values of both sides of (13a) and (13b).

Proof: The proof mainly follows Proposition 1. We design
U and V as stated in Theorem 1. As discussed in the proof
of Proposition 1, V is first decoded by receiver 1 and U is
first decoded by receiver 2. And then receiver 2 subtracts U
to cancel X1 and obtain Y ′

2 = Y2 − bU = X2 − bα1S′
1 + (1 −

bα2)S2 + N2, and receiver 1 subtracts V to cancel X2 and
obtain Y ′

1 = Y1 − aV = X1 + (1 − aβ1)S′
1 + (d − aβ2)S2 + N1.

In order to fully cancel the channel states for Y ′
1 and Y ′

2,
based on the dirty paper coding scheme, we further require
the coefficients to satisfy the following conditions,

α1

1 − aβ1
= α2

d − aβ2
(9a)

α1

1 − aβ1
= P1

P1 + 1
(9b)

β1

−bα1
= β2

1 − bα2
(9c)

β1

−bα1
= P2

P2 + 1
(9d)

which yield α1,α2,β1 and β2 in (8).
By plugging these parameters into (5a), we obtain

I (U ; V Y1) − I (S1, S2; U) = 1

2
log(1 + P1),

which yields

R1 � min{I (U ; Y2) − I (S1, S2; U),
1

2
log(1 + P1)}. (10)

Similarly, (5b) yields

R2 � min{I (V ; Y1) − I (S1, S2; V ),
1

2
log(1 + P2)}. (11)

In order to achieve the channel capacity of the point-to-point
channel as shown in (4) for both receivers, the following

conditions should be satisfied:

1

2
log(1 + P1) � I (U ; Y2) − I (S1, S2; U) (12a)

1

2
log(1 + P2) � I (V ; Y1) − I (S1, S2; V ), (12b)

which completes the proof. �
We note that the conditions eqrefeq:cond1 and (7b) in
Theorem 1 is the very strong condition for the interference
channel with state and represent the comparison between the
ability of receivers to decode messages in different decoding
steps. For instance, in condition (7a) the right-hand side term
represents how much receiver 2 can decode U in the first
step of decoding in order to cancel the interference, and the
left-hand side term represents the rate at which receiver 1 can
decode U in the second step of decoding, where we can
use the dirty paper coding scheme to fully cancel the states
and achieve the capacity. Hence, achieving the point-to-point
channel capacity requires the second step to dominate the
performance.

We next study the impact of the channel parameters and
state correlation on the achievablility of the point-to-point
capacity. In particular, we illustrate how the interference
gains (a, b) affect the conditions (7a) and (7b). To make the
figure more clear, we take exponential of both sides, and hence
the conditions (7a) and (7b) become:

1 + P1 � 22(h(X1)−h(U,Y2)+h(Y2)), (13a)

1 + P2 � 22(h(X2)−h(V ,Y1)+h(Y1)). (13b)

In Fig. 2, we set Q1 = Q2 = 0.9, P1 = 1, P2 = 1
and a = 1.6, and plot the change of both left-hand side
terms and right-hand side terms in (13a) and (13b) versus
the channel parameters b for three different values of d .
Taking the first row of Fig. 2 as an example, it is clear that
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Fig. 3. Ranges of (a,b) under which the point-to-point channel capacity is achieved.

1 + P1 is a straight line, and 22(h(X1)−h(U,Y2)+h(Y2)) is not
a monotone function with respect to b. The condition (13a)
(and hence (7a)) is satisfied only when 22(h(X1)−h(U,Y2)+h(Y2))

is above the straight line 1 + P1. When the parameter
d = 0.99, there are two regions over which the condition (13a)
is satisfied. But if d = 0.5, there is only one region over which
the condition (13a) is satisfied. For d = 0.1, there is also only
one region where the condition (13a) is satisfied. Similarly,
the second row in Fig. 2 illustrates the regions of b over
which the condition (13b) is satisfied for the corresponding
values of d . Then the intersection of the region of b in the
first and second rows of Fig. 2 fully determines the ranges
of b over which the point-to-point channel capacity can be
achieved for both receivers.

The range of the parameters (a, b) such that the
point-to-point channel capacity is obtained is shown in Fig. 3.
For these figures, if we fix a = 1.6, then the ranges of b is
consistent with those in Fig. 3 where both (13a) and (13b) are
satisfied. Fig. 3 also illustrates the impact of the correlation d
between the states S1 and S2 on the achievability of channel
capacity. It is clear that as d increases, i.e., the two states are
more correlated, the range of (a, b) over which the point-to-
point channel capacity is achieved gets larger. This confirms
the intuition that more correlated states are easier to be fully
canceled.

B. State-Dependent Z-IC

In this subsection, we study the state-dependent Z-IC in the
very strong interference regime, in which the channel parame-
ters satisfy a2 > 1 + P1. Similarly to the state-dependent IC,
we study the ranges of the channel parameters, over which the
capacity is also characterized by (4). We note that here Z-IC
(with b = 0) cannot be viewed as a special case of the IC in
the very strong interference regime.

We first design an achievable scheme to obtain an achiev-
able rate region for the discrete memoryless Z-IC. The two
transmitters encode their messages W1 and W2 into two
auxiliary random variables U and V , respectively, based on
the Gel’fand-Pinsker binning scheme. Since receiver 2 is
interference free and is corrupted by S2, the auxiliary random
variable V is designed with regard to only S2. Furthermore,
receiver 1 first decodes V , then uses it to cancel the inter-
ference X2 and partial state interference, and finally decodes

its own message W1 by decoding U . Here, since S2 is
introduced to Y1 when canceling X2 via V , the auxiliary
random variable U is designed based on both S1 and S2 to
fully cancel the states. Based on such a scheme, we obtain the
following achievable region.

Proposition 2. For the state-dependent Z-IC with the states
noncausally known at both transmitters, an achievable region
consists of rate pairs (R1, R2) satisfying:

R1 � I (U ; V Y1) − I (S1S2; U) (14a)

R2 � min{I (V ; Y2), I (V ; Y1)} − I (S2; V ) (14b)

for some distribution PS1S2 PU |S1S2 PX1|U S1S2 PV |S2 PX2|V S2

PY1|S1 X1 X2 PY2|S2 X2 .
Proof: See Appendix B. �

Following Proposition 2, we further simplify the achievable
region in the following corollary, which is in a useful form for
us to characterize the capacity region for the Gaussian Z-IC.

Corollary 1. For the state-dependent Z-IC with the states
noncausally known at both transmitters, if the following
condition

I (V ; Y2) � I (V ; Y1) (15)

is satisfied, then an achievable region consists of rate pairs
(R1, R2) satisfying:

R1 � I (U ; V Y1) − I (S1 S2; U)

R2 � I (V ; Y2) − I (S2; V ) (16)

for some distribution PS1S2 PU |S1S2 PX1|U S1S2 PV |S2 PX2|V S2

PY1|S1 X1 X2 PY2|S2 X2 .
In Corollary 1, condition (15) requires that receiver 1 is more
capable in decoding V (and hence W2) than receiver 2, which
is likely to be satisfied in the very strong interference regime.

Following Corollary 1, we characterize the channel para-
meters under which both the states and interference can be
fully canceled, and hence the capacity region for the Z-IC is
obtained.

Theorem 2. For the state-dependent Gaussian Z-IC with
states noncausally known at both transmitters, if the chan-
nel parameters (a, d, P1, P2, Q′

1, Q2) satisfy the following
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Fig. 4. Characterization of channel parameters (a, d) in shaded area
under which the state-dependent Gaussian Z-IC achieves the capacity of
the corresponding channel without states and interference in very strong
interference regime.

condition:

P1 + a2 P2 + d2 Q2 + Q′
1 + 1

(d + aβ)2 Q2 P2 + (P2 + β2 Q2)(P1 + Q′
1 + 1]) � P2 + 1

P2

(17)

where β = P2
P2+1 , then the capacity region is characterized

by (4).
Proof: Theorem 2 follows from Corollary 1 by setting

U = X1 + α1S2 + α2S′
1, V = X2 + βS2, where X1, X2,

S′
1 and S2 are independent Gaussian variables withe mean zero

and variances P1, P2, Q′
1 and Q2, respectively. As discussed

in the proof of Proposition 2, V is first decoded by decoder 1.
And then by dirty paper coding, we design α1, α2 and β for
both Y2 = X2 + S2 + N2 and Y ′

1 = Y1 − aV = X1 + (d − aβ)
S2 + S′

1 + N1 to fully cancel the states. Thus, the coefficients
should satisfy the following conditions:

α1

d − aβ
= P1

P1 + 1
(18a)

α2 = P1

P1 + 1
(18b)

β = P2

P2 + 1
, (18c)

which further yields α1, α2 and β that satisfy

α1 = P1

P1 + 1
(d − a P2

P2 + 1
), α2 = P1

P1 + 1
, β = P2

P2 + 1
.

Substituting the above choice of the auxiliary random variables
and the parameters into (15) in Corollary 1, we obtain the con-
dition (17). Substituting those choices into the condition (16),
we obtain the capacity region characterized by (4). Since
such an achievable region achieves the point-to-point channel
capacity for the Z-IC without the state, it can be shown to be
the capacity region of the state-dependent Z-IC. �

Based on Theorem 2, if channel parameters satisfy the con-
dition (17), we can simultaneously cancel two states and the
interference, and the point-to-point capacity of two receivers
without state and interference can be achieved. The correlation
between the two states captured by d plays a very important
role regarding whether the condition can be satisfied. In Fig. 4,
we set P1 = 2, P2 = 2, Q1 = 1 and Q2 = 1, and plot the
range of the parameter pairs (a, d) under which the channel
capacity without states and interference can be achieved.

Fig. 5. Characterization of channel parameters (a, d) in shaded area
under which the state-dependent Gaussian Z-IC achieves the capacity of the
corresponding channel without states in very strong interference regime when
Q2 >

1+P2
P2

.

These parameters fall in the shaded area above the line. It can
be seen that as d becomes larger (i.e., the correlation between
the two states increases), the threshold on the parameter a
to fully cancel the interference and state becomes smaller.
This suggests that more correlated states are easier to cancel
together with the interference.

Fig. 4 agrees with the result of the very strong IC without
states in the sense that once a is above a certain threshold
(i.e., the interference is strong enough), then the point-to-
point channel capacity without interference can be achieved.
However, this is not always true for the state-dependent Z-IC.
This can be seen from the condition (17) in Theorem 2.
If we let a go to infinity, then the condition (17) becomes
Q2 > 1+P2

P2
, which is not always satisfied. This is because

in the presence of state, Y1 decodes V instead of X2, and
the decoding rate is largest if the dirty paper coding design
of V (based on S2 at receiver 2) also happens to be the
same dirty paper coding design against S2 at receiver 1.
Clearly, as a gets too large, V is more deviated from such
a favorable design, and hence the decoding rate becomes
smaller, which consequently hurts the achievability of the
point-to-point capacity for receiver 2. Such a phenomena can
be observed in Fig. 5, where the constant a cannot be too large
to guarantee the achievability of the point-to-point channel
capacity. Furthermore, the figure also suggests that further
correlated states allow a larger range of a under which the
point-to-point channel capacity can be achieved.

IV. STRONG INTERFERENCE REGIME

In this section, we study the state dependent IC in the
strong interference regime, which excludes the very strong
interference regime that has been studied in Section III. With
the presence of states, these two regimes require separate
treatments for state cancellation.

A. State-Dependent Regular IC

For the corresponding IC without state, if it is strong but
not very strong, then the channel parameters satisfy

a � 1, b � 1, (19)

min{P1 + a2 P2 + 1, b2 P1 + P2 + 1} � (1 + P1)(1 + P2).
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Fig. 6. Capacity region of the strong IC without state

Without loss of generality, we assume that P1 + a2 P2 + 1 �
b2 P1 + P2 + 1. It has been shown in [27] that the capacity
region for the strong IC without states contains rate pair
(R1, R2) satisfying

R1 � 1

2
log(1 + P1), R2 � 1

2
log(1 + P2),

R1 + R2 � 1

2
log(P1 + a2 P2 + 1). (20)

Such a region is an intersection of the capacity regions of
two MACs, which is illustrated as the pentagon O-A-B-E-D-O
in Fig. 6. Our goal here is to study whether the points on the
sum-rate capacity boundary of the IC without state can be
achieved with the presence of state. Such a problem has been
studied in [17] for the channel with two receivers corrupted by
the same but differently scaled state. Here, we generalize such
a study to the situation when the two receivers are corrupted
by two correlated states.

Since every point on this line of the sum-rate capacity
can be achieved by rate splitting and successive cancellation
in the case without state, for the state-dependent channel,
we continue to adopt the idea of rate splitting and successive
cancellation but using auxiliary random variables to incorpo-
rate dirty paper coding to further cancel state successively.
More specifically, transmitter 1 splits its message W1 into W11
and W12, and then encodes them into U1 and U2 respectively
based on the Gel’fand-Pinsker binning scheme. Then transmit-
ter 2 encodes its message W2 into V, based on the Gel’fand-
Pinsker binning scheme. The auxiliary random variables U1,
U2, and V are designed such that decoding of them at
receiver 1 successively fully cancels the state corruption of Y1
so that the sum capacity boundary (i.e., the line B-E) can be
achieved if only decoding at receiver 1 is considered. Now
further incorporating the decoding at receiver 2, if for any
point on the line B-E, decoding of V at receiver 2 does not
cause further rate constraints, then such a point is achievable
for the state-dependent IC. Here, it is clear that due to the
presence of the states at both receivers as well as our design
of the binning scheme to fully cancel the state corruption at
receiver 1, there is a necessary change in receiver 2’ decoding
capability. In particular, the corner point E (which is achievable
for the case without state) is not achievable any more.

Proposition 3. For the state-dependent IC with states non-
causally known at both transmitters, an achievable region
consists of rate pairs (R1, R2) satisfying:

R1 � min{I (U1; Y1), I (U1; Y2)}
+ min{I (U2; V Y1|U1), I (U2; V Y2|U1)} − I (U1U2; S1)

R2 � min{I (V ; Y1|U1), I (V ; Y2|U1)} − I (V ; S1) (21)

for some distribution PS1S2 PV |S1 PX2|V S1 PU1|S1 PU2|S1U1

PX1|S1U1U2 PY1|S1 X1 X2 PY2|S2 X2 , where U1, U2 and V are
auxiliary random variables.

Proof: See Appendix C. �
Remark 1. This scheme can be generalized through further
splitting the messages and changing the orders of decoding the
messages at the two receivers. The achievable region can then
be obtained by taking the convex hull of the union over all
achievable regions corresponding to different schemes above.

Based on Proposition 3, we next characterize partial bound-
ary of the capacity region for the state-dependent Gaussian IC.
For the sake of technical convenience, we express the Gaussian
model in a different form. In particular, we express S2 as
S2 = cS1 + S′

2 where c is a constant representing the
level of correlation, and S1 is independent from S′

2 with
S′

2 ∼ N (0, Q′
2) where Q2 = c2 Q1 + Q′

2. Thus, without
loss of generality, the channel model can be expressed in the
following equivalent form that is more convenient for analysis
here.

Y1 = X1 + a X2 + S1 + N1 (22a)

Y2 = bX1 + X2 + cS1 + S′
2 + N2. (22b)

We next show that we can design a scheme to achieve the
partial boundary of the capacity region for the IC without
state. We note that the rate on the sum-capacity boundary can
be characterized by

R1 = 1

2
log

(
1 + P ′

1

a2 P2 + P ′′
1 + 1

)
+ 1

2
log

(
1 + P ′′

1

)
,

R2 = 1

2
log

(
1 + a2 P2

P ′′
1 + 1

)
, (23)

for some P ′
1, P ′′

1 � 0, and P ′
1 + P ′′

1 � P1.

Theorem 3. Any rate point in (23) can be achieved by the
state-dependent IC if the channel parameters satisfy the fol-
lowing conditions

I (U1; Y2) − I (U1; S1) � 1

2
log

(
1 + P ′

1

a2 P2 + P ′′
1 + 1

)

I (U2; V Y2|U1) − I (U2; S1|U1) � 1

2
log

(
1 + P ′′

1

)

I (V ; Y2|U1) − I (V ; S1) � 1

2
log

(
1 + a2 P2

P ′′
1 + 1

)
, (24)

where the mutual information terms are calculated by setting
U1 = X ′

1 + α1S1, U2 = X ′′
1 + α2S1, V = a X2 + βS1 and

X1 = X ′
1 + X ′′

1 . Here X ′
1, X ′′

1 and X2 are Gaussian variables
with mean zero and variances P ′

1, P ′′
1 and P2, and α1, α2
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and β are given by

α1 = P ′
1

P1 + a2 P2 + 1
, α2 = P ′′

1

P1 + a2 P2 + 1
,

β = a2 P2

P1 + a2 P2 + 1
. (25)

Proof: Theorem 3 follows from Proposition 3 by choosing
the auxiliary random variables U1, U2 and V as in the
statement of the theorem. In particular, U1 is first decoded by
receiver 1, and is designed to cancel the state in Y1 treating
all other variables as noise. Then, V is decoded by receiver 1,
and is designed to cancel the state in Y ′

1 = Y1 − U1 =
X ′′

1 +a X2 + (c −α1)S1 + N1. Finally, U2 is designed to cancel
the state in Y ′′

1 = Y ′
1 − V = X ′′

1 + (c − α1 − β)S1 + N1.
In order to satisfy the state cancellation requirements, α1, α2
and β should satisfy

α1 = P ′
1

P1 + a2 P2 + 1
, (26)

α2

1 − α1
= P ′′

1

P ′′
1 + 1

, (27)

β

1 − α1
= a2 P2

P ′′
1 + a2 P2 + 1

, (28)

which yields (25). Substituting these choices of the ran-
dom variables and the coefficients into Proposition 3,
(21) becomes (29).

R1 � min

{
I (U1; Y2)− I (U1; S1),

1

2
log

(
1+ P ′

1

a2 P2+ P ′′
1 +1

)}

+ min

{
I (U2; V Y2|U1)− I (U2; S1|U1),

1

2
log

(
1+ P ′′

1

)}

R2 � min

{
I (V ; Y2|U1) − I (V ; S1),

1

2
log

(
1 + a2 P2

P ′′
1 + 1

)}
.

(29)

Hence, if the condition (24) is satisfied, the points on the sum
capacity boundary (23) can be achieved. �

B. State-Dependent Z-IC

In this subsection, we study the state-dependent Z-IC in
the strong, but not very strong interference regime, in which
the channel parameters satisfy 1 � a2 < 1 + P1. For the
corresponding Z-IC without states, it has been shown that the
capacity region contains rate pairs (R1, R2) satisfying

R1 + R2 � 1

2
log(1 + P1 + a2 P2)

R1 � 1

2
log (1 + P1), R2 � 1

2
log (1 + P2) (30)

which is illustrated as the pentagon O-A-B-E-F in Fig. 7.
Our goal here is to study whether the points on the

sum-capacity boundary of the Z-IC without state (i.e., the line
B-E in Fig. 7) can be achieved for the corresponding state-
dependent Z-IC. We follow the idea for the state-dependent
IC to design an achievable scheme, and obtain the following
Proposition.

Fig. 7. Capacity region of the strong Z-IC without state.

Proposition 4. For the state-dependent Z-IC with states non-
causally known at both transmitters, if the following condition
is satisfied

I (V ; U1Y1) � I (V ; Y2), (31)

then an achievable region consists of rate pairs (R1, R2)
satisfying:

R1 � I (U1; Y1) + I (U2; V Y1|U1) − I (S1; U1U2) (32a)

R2 � I (V ; U1Y1) − I (S1; V ) (32b)

for some distribution PS1S2 PV |S1 PX2|V S1 PU1|S1 PU2|S1U1

PX1|S1U1U2 PY1|S1 X1 X2 PY2|S2 X2 .
The proof of Proposition 4 is similar to the proof of Propo-
sition 3. The only difference lies in that Y2 does not need to
decode U1 and U2 because of no interference at receiver 2.

For the Gaussian model, based on Proposition 4, we charac-
terize the condition under which any point on the sum capacity
boundary of the strong Z-IC without states (e.g., point B ′
in Fig. 7) is achievable. Hence, such a point is on the sum
capacity boundary of the state-dependent Z-IC.

Theorem 4. For the state-dependent Gaussian Z-IC with state
noncausally known at both transmitters, if the channel para-
meters (a, c, P1, P2, Q1, Q′

2) satisfy the following condition:

a2 P2(P2 + c2 Q1 + Q′
2 + 1)

(ac − β)2 Q1 P2 + (a2 P2 + β2 Q1)(Q′
2 + 1)

� 1 + a2 P2

P ′′
1 + 1

(33)

where β = a2 P2
P1+a2 P2+1

, then the following point (on the
line B-E)

R1 = 1

2
log

(
1 + P ′

1

a2 P2 + P ′′
1 + 1

)
+ 1

2
log

(
1 + P ′′

1

)

R2 = 1

2
log

(
1 + a2 P2

P ′′
1 + 1

)
(34)

where P ′
1 = P1 − P ′′

1 , is on the sum capacity boundary.
Proof: Theorem 4 follows from Proposition 4 by choosing

the auxiliary random variables U1, U2 and V based on the
setting in Theorem 3. Thus, the state at Y1 can be fully
canceled. Furthermore, by substituting the auxiliary random
variables in Theorem 3 into (31), the condition (33) can be
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Fig. 8. Ranges of c under which points on sum capacity boundary of the
strong IC and Z-IC without state can be achieved by the state-dependent
IC and Z-IC.

obtained, under which the points characterized in (34) can be
achieved. �

Theorem 4 provides the condition of channel parameters
under which a certain given point is on the sum capacity
boundary of the capacity region. We next characterize a line
segment on the sum capacity boundary for a given set of
channel parameters.

Corollary 2. For the state-dependent Z-IC with state non-
causally known at both transmitters, if a point on the line
B − E in Fig. 7 is on the sum-capacity boundary for a given
set of channel parameters, then the segment between this point
and point B on the line B−E is on the sum capacity boundary
for the same set of channel parameters.

In order to numerically illustrate Theorem 4, we first
note that each point on the sum-capacity boundary (i.e., the
line B-E in Fig. 7) can be expressed as (R1, R2) =
(R1,

1
2 log(P1 + a2 P2 + 1) − R1). We now set P1 = 2,

P2 = 0.7, Q1 = 0.4, Q2 = 0.5 and a = 1.2, and hence
R1 ∈ [ 1

2 log(1.23), 0.5] parameterizes all points from point
E to point B in Fig. 7. In Fig. 8, we plot the ranges of c
under which points, parameterized by R1 on the sum capacity
boundary of the strong Z-IC without state, can be achieved by
the state-dependent Z-IC following Theorem 4. It can be seen
that as correlation between the two states (represented by c)
increases, initially more points on the sum capacity boundary
are achieved and then less points are achieved as c is above a
certain threshold. Thus, higher correlation does not guarantee
more capability of achieving the sum capacity boundary. This
is because in our scheme both Ui and V are specially designed
for Y1 based on dirty paper coding. At receiver 2, such design
of V initially approximates better the dirty paper coding
design for Y2 as c becomes large, but then becomes worse as
c continues to increase. Hence decoding of V at receiver 2
initially gets better and then becomes less capable, which
consequently determines variation of achievability of the sum
capacity boundary.

Fig. 8 also plots the same parameter range for the
state-dependent IC as characterized by Theorem 3. It is clear
that the state-dependent IC achieves a smaller line segment on
the sum-capacity (i.e., smaller range of R1). This is reasonable,
because Theorem 3 for the IC requires more conditions than
Theorem 4 for the Z-IC. Fig. 8 also demonstrates that large
value of c(i.e., higher correlation between the states) is
required for the IC to achieve the sum capacity than the Z-IC.

This is because the dirty paper coding is designed with respect
to receiver 1. High correlation between states helps such
design to be more effective to cancel state at receiver 2 as well.

V. WEAK INTERFERENCE REGIME

In this section, we study the state-dependent IC and Z-IC in
the weak interference regime. The channel parameters for the
IC in this regime satisfy |a(1 + b2 P1)| + |b(1 + a2 P2)| � 1,
which reduces to a � 1 for the Z-IC. It has been shown
in [28]–[30], for the weak IC without state and in [31] for the
weak Z-IC that the sum capacity can be achieved by treating
interference as noise. It was further shown in [17] that for
the IC and Z-IC with the same but differently scaled state
at two receivers, independent dirty paper coding at the two
transmitters to cancel the states and treating interference as
noise achieve the same sum capacity. We here observe that
such a scheme is also achievable with the presence of two
correlated states, which thus yields the following Corollary.

Corollary 3. (A direct result following [17]) For the
state-dependent IC with states noncausally known at both
transmitters, if |a(1 + b2 P1)| + |b(1 + a2 P2)| � 1, then the
sum capacity is given by

Csum = 1

2
log

(
1 + P1

a2 P2 + 1

)
+ 1

2
log

(
1 + P2

b2 P1 + 1

)
.

For the state-dependent Z-IC with states noncausally known at
both transmitters, if a2 � 1, then the sum capacity is given by

Csum = 1

2
log

(
1 + P1

a2 P2 + 1

)
+ 1

2
log (1 + P2) .

It can be seen that the sum capacity achieving scheme does
not depend on the correlation of the states, and hence, in the
weak interference regime, the sum capacity is not affected by
the correlation of the states.

VI. STATE-DEPENDENT IC WITH PARTIAL

STATE INFORMATION

In this section, we study the state-dependent IC with each
state only known at the corresponding transmitter. Differently
from the model studied in Sections III, IV and V, where both
state interferences are known to both transmitters, the partial
state cognition is challenging because the transmitters cannot
cooperate with each other via their states due to the lack of
the other transmitter’s state information. We investigate the
very strong/strong and weak interference regimes for both the
state-dependent regular IC and Z-IC.

A. State-Dependent Regular IC

For the state-dependent regular IC, without the full knowl-
edge of the channel states, we develop a new achievable
scheme presented below, in which each transmitter encodes its
message based only on its own knowledge about the channel
state and the interference.

Proposition 5. For the state-dependent IC with state non-
causally known at corresponding transmitter, the achievable
region consists of rate pairs (R1, R2) satisfying:

R1 � min{I (U ; V Y1), I (U ; Y2)} − I (S1; U), (35a)
R2 � min{I (V ; UY2), I (V ; Y1)} − I (S2; V ) (35b)
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for some distribution PS1S2 PU |S1 PX1|U S1 PV |S2 PX2|V S2

PY1Y2|S1S2 X1 X2 , where U and V are auxiliary random
variables.

Proof: See Appendix D. �
We next use the Gaussian IC defined in (2a) and (2b) to

illustrate the above achievable region numerically. Specifically,
since the state is not know to both transmitters, the channel
is no longer equivalent to (6a) and (6b). Hence, the input
variables X1 and X2 can no longer be generated based
on both S′

1 and S2. Thus, dirty paper coding is no longer
optimal, and the achievable region relies on the result of a
new optimization problem.

Proposition 6. For the state-dependent Gaussian IC with
each state noncausally known at the corresponding transmitter,
an inner bound on the capacity region consists of rate pairs
(R1, R2) satisfying (36a) and (36b), as shown at the top of
the next page, where −1 ≤ ρ ≤ 1.

Proof: The proof follows from Proposition 5 by set-
ting U = X1 + αS1, V = X2 + βS2, X1 ∼
N (0, P1), X2 ∼ N (0, P2), S1 ∼ N (0, Q1), S′

2 ∼ N (0, Q2)
and Cov(S1, S2) = ρ

√
Q1 Q2. �

When the state is known only to corresponding transmitter,
the encoders cannot encoding with fully utilize of the state
correlation and cannot optimize the decoding capability for
both receivers. Therefore, the coding scheme is based on
dirty paper coding for the whole state, rather than dealing
with the correlated state and independent state respectively.
In this case, the interference from the other transmitter has
limited assistance in canceling the state, and even under very
strong or strong interference regime, the interference cannot be
fully decoded and cancelled. Based on the achievable region
in Proposition 6, the interference and state cannot be fully
cancelled, especially when the correlation between states is
very small. This also suggests that the outer bound is related
with the correlation, and is smaller than the very strong/strong
interference channel without state.

For the weak interference regime, as explained in Section V,
each transmitter can still encode based on dirty paper coding
with respect to its corresponding state, and treat the interfer-
ence as noise, so that the sum capacity of the channel without
the state can be achieved, which is thus the sum capacity of
the state-dependent channel as stated in Corollary 3. In such
a case, though the transmitters have only partial information
about the state, they can still fully cancel the state interference
at their corresponding receiver.

B. State-Dependent Z-IC

In this subsection, we further investigate the Z-IC with
each state known only to its corresponding transmitter. For
the state-dependent Z-IC, the encoding scheme is the same
as that for the regular IC. In the decoding part, since only
one receiver is corrupted by the interference, the interference-
free receiver decodes only its own auxiliary random variable.
Hence, the achievable region is given as follows.

Proposition 7. For the state-dependent Z-IC with each
state noncausally known at its corresponding transmitter,

the achievable region consists of rate pairs (R1, R2) satisfying:

R1 � I (U ; V Y1) − I (S1; U), (37a)

R2 � min{I (V ; UY2), I (V ; Y1)} − I (S2; V ) (37b)

for some distribution PS1 S2 PU |S1 PX1|U S1 PV |S2 PX2|V S2

PY1Y2|S1S2 X1 X2 , where U and V are auxiliary random
variables.

We use the same channel model as in (2a) and (2b) by
setting b = 0, i.e., receiver 2 is interference-free. And we
obtain the achievable region as follows.

Proposition 8. For the state-dependent Gaussian IC
with only corresponding state noncausally known at
each transmitter, an inner bound on the capacity
region consists of rate pairs (R1, R2) satisfying (38a)
and (38b), as shown at the top of the next page,
where −1 ≤ ρ ≤ 1.

Proof: The proof follows from Proposition 7 with the
same distribution described in the proof of Proposition 6. �

VII. CONCLUSION

In this paper, we studied the state-dependent Gaussian
IC and Z-IC with receivers being corrupted by two cor-
related states which are noncausally known at transmitters.
We explored two cases respectively with state noncausally
known at both transmitters and with each state noncausally
know at only its corresponding transmitter. For the first case,
we characterized the conditions on the channel parameters
under which state-dependent IC and Z-IC achieve the capacity
region or the sum capacity of the corresponding channel with-
out state. Our result suggests that more correlated states tend
to make it easier to fully cancel the states. Our comparison
between the IC and the Z-IC suggests that the IC benefits more
if the correlation between the states increases. The second
case turns out to be substantially challenging to analyze, and
we derived the achievable regions for the regular IC and Z-
IC. Characterization of the capacity region either partially
or fully is still an open problem. We anticipates that the
state cancellation schemes we develop here can be useful
for studying other state-dependent models. We also expect
that simple schemes such as the layered approach designed
for the interference channel together with dirty-paper coding
can perform very well, when these schemes are tailored for
practical communication schemes.

APPENDIX A
PROOF OF PROPOSITION 1

We use random codes and fix the following joint dis-
tribution: PS1S2U V X1 X2Y1Y2 = PS1S2 PU |S1S2 PX1|U S1S2 PV |S1S2

PX2|V S1S2 PY1Y2|S1S2 X1 X2 .

1) Codebook Generation:

• Generate 2n(R1+R̃1) codewords Un(w1, l1) with i.i.d.
components based on PU . Index these codewords by
w1 = 1, . . . , 2nR1 , l1 = 1, . . . , 2nR̃1 .

• Generate 2n(R2+R̃2) codewords V n(w2, l2) with i.i.d.
components based on PV . Index these codewords by
w2 = 1, . . . , 2nR2 , l2 = 1, . . . , 2nR̃2 .
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R1(α, β) ≤ min
{1

2
log

P1(P2 + b2 P1 + Q2 + 1)

(P2 + 1)(P1 + α2 Q1) + (1 − ρ)2α2 Q1(b2 P1 + Q2) + P1(αρb
√

Q1 − √
Q2)2

,

1

2
log

P1((P1 + 1)(P2 + β2 Q2) + (1 − ρ2)β2 Q2(Q1 + a2 P2) + P2(
√

Q1 − aβρ
√

Q2)
2)

P1 Q1(1−α)2(P2+(1−ρ2)β2 Q2)+ P2(P1+α2 Q1)+(a2 P2+1)β2 Q2(P1+(1−ρ2)α2 Q1)+2aβρP1 P2
√

Q1 Q2(α−1)

}

(36a)

R2(α, β) ≤ min
{1

2
log

P2(P1 + a2 P2 + Q1 + 1)

(P1 + 1)(P2 + β2 Q2) + (1 − ρ)2β2 Q2(a2 P2 + Q1) + P2(βρa
√

Q2 − √
Q1)2

,

1

2
log

P2((P2 + 1)(P1 + α2 Q1) + (1 − ρ2)α2 Q1(Q2 + b2 P1) + P1(
√

Q2 − bαρ
√

Q1)
2)

P2 Q2(1−β)2(P1+(1−ρ2)α2 Q1)+ P1(P2+β2 Q2)+(b2 P1+1)α2 Q1(P2+(1−ρ2)β2 Q2)+2bαρP1 P2
√

Q1 Q2(β−1)

}

(36b)
R1(α, β)

≤ 1

2
log

P1((P1+1)(P2+β2 Q2)+(1−ρ2)β2 Q2(Q1+a2 P2)+ P2(
√

Q1−aβρ
√

Q2)
2)

P1 Q1(1−α)2(P2+(1−ρ2)β2 Q2)+ P2(P1+α2 Q1)+(a2 P2+1)β2Q2(P1+(1−ρ2)α2 Q1)+2aβρP1 P2
√

Q1 Q2(α−1)
(38a)

R2(α, β) ≤ min
{1

2
log

P2(P1 + a2 P2 + Q1 + 1)

(P1 + 1)(P2 + β2 Q2) + (1 − ρ)2β2 Q2(a2 P2 + Q1) + P2(βρa
√

Q2 − √
Q1)2

,

1

2
log

P2((P2 + 1)(P1 + α2 Q1) + (1 − ρ2)α2 Q1(Q2 + b2 P1) + P1(
√

Q2 − bαρ
√

Q1)
2)

P2 Q2(1−β)2(P1+(1−ρ2)α2 Q1)+ P1(P2+β2 Q2)+(b2 P1+1)α2 Q1(P2+(1−ρ2)β2 Q2)+2bαρP1 P2
√

Q1 Q2(β−1)

}

(38b)

2) Encoding:
• Transmitter 1: Given (sn

1 , sn
2 ) and w1, choose a

un(w1, l̃1) such that

(un(w1, l̃1), sn
1 , sn

2 ) ∈ T n
ε (PS1 S2U ).

Otherwise, set l̃1 = 1. It can be shown that for
large n, such un exists with high probability if

R̃1 > I (U ; S1S2). (39)

Then generate xn
1 with i.i.d. component based on

PX1|U S1S2 for transmission.
• Transmitter 2: Given (sn

1 , sn
2 ) and w2, choose a

vn(w2, l̃2) such that

(vn(w2, l̃2), sn
1 , sn

2 ) ∈ T n
ε (PS1S2V ).

Otherwise, set l̃2 = 1. It can be shown that for
large n, such vn exists with high probability if

R̃2 > I (V ; S1S2). (40)

Then generate xn
2 with i.i.d. components based on

PX2|V S1S2 for transmission.
3) Decoding:

• Decoder 1: Given yn
1 , find (ŵ2, l̂2) such that

(vn(w2, l̂2), yn
1 ) ∈ T n

ε (PV Y1).

If no or more than one such pair (ŵ2, l̂2) can be
found, declare an error. It is easy to show that for
sufficiently large n, we can correctly find such a pair
with high probability if

R2 + R̃2 � I (V ; Y1). (41)

After decoding vn , find a unique pair (ŵ1, l̂1) such
that

(un(ŵ1, l̂1), v
n(w2, l̂2), yn

1 ) ∈ T n
ε (PV UY1).

If no or more than one such pair (ŵ2, l̂2) can be
found, declare an error. It is easy to show that for
sufficiently large n, we can correctly find such a pair
with high probability if

R1 + R̃1 � I (U ; V Y1). (42)

• Decoder 2: Given yn
2 , find (ŵ1, l̂1) such that

(un(w1, l̂1), yn
2 ) ∈ T n

ε (PUY2).

If no or more than one such pair (ŵ1, l̂1) can be
found, declare an error. It is easy to show that for
sufficiently large n, we can correctly find such a pair
with high probability if

R1 + R̃1 � I (U ; Y2). (43)

After decoding un , find a unique pair (ŵ2, l̂2) such
that

(vn(ŵ2, l̂2), un(w1, l̂1), yn
2 ) ∈ T n

ε (PV UY2).

If no or more than one such pair can be found,
declare an error. It is easy to show that for suffi-
ciently large n, we can correctly find such a pair
with high probability if

R2 + R̃2 � I (V ; UY2). (44)

Proposition 1 is thus proved by combining (39)-(44).

APPENDIX B
PROOF OF PROPOSITION 2

We use random codes and fix the following joint dis-
tribution: PS1S2U V X1 X2Y1Y2 = PS1S2 PU |S1S2 PX1|U S1S2 PV |S1S2

PX2|V S1S2 PY1Y2|S1S2 X1 X2 .

1) Codebook Generation:
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• Generate 2n(R1+R̃1) codewords Un(w1, l1) with i.i.d.
components based on PU . Index these codewords by
w1 = 1, . . . , 2nR1 , l1 = 1, . . . , 2nR̃1 .

• Generate 2n(R2+R̃2) codewords V n(w2, l2) with i.i.d.
components based on PV . Index these codewords by
w2 = 1, . . . , 2nR2 , l2 = 1, . . . , 2nR̃2 .

2) Encoding:
• Transmitter 1: Given (sn

1 , sn
2 ) and w1, choose a

un(w1, l̃1) such that

(un(w1, l̃1), sn
1 , sn

2 ) ∈ T n
ε (PS1 S2U ).

Otherwise, set l̃1 = 1. It can be shown that for
large n, such un exists with high probability if

R̃1 > I (U ; S1S2). (45)

Then generate xn
1 with i.i.d. component based on

PX1|U S1S2 for transmission.
• Transmitter 2: Given (sn

1 , sn
2 ) and w2, choose a

vn(w2, l̃2) such that

(vn(w2, l̃2), sn
1 , sn

2 ) ∈ T n
ε (PS1S2V ).

Otherwise, set l̃2 = 1. It can be shown that for
large n, such vn exists with high probability if

R̃2 > I (V ; S1S2). (46)

Then generate xn
2 with i.i.d. component based on

PX2|V S1S2 for transmission.
3) Decoding:

• Decoder 1: Given yn
1 , find (ŵ2, l̂2) such that

(vn(ŵ2, l̂2), yn
1 ) ∈ T n

ε (PV Y1).

If no or more than one such pair (ŵ2, l̂2) can be
found, declare an error. It is easy to show that for
sufficiently large n, we can correctly find such a pair
with high probability if

R2 + R̃2 � I (V ; Y1). (47)

After decoding vn , find a unique pair (ŵ1, l̂1) such
that

(un(ŵ1, l̂1), v
n(w2, l̂2), yn

1 ) ∈ T n
ε (PV UY1).

If no or more than one such pair can be found,
declare an error. It is easy to show that for suffi-
ciently large n, we can correctly find such a pair
with high probability if

R1 + R̃1 � I (U ; V Y1). (48)

• Decoder 2: Given yn
2 , find (ŵ2, l̂2) such that

(vn(w2, l̂1), yn
2 ) ∈ T n

ε (PUY2).

If no or more than one such pair (ŵ2, l̂2) can be
found, declare an error. It is easy to show that for
sufficiently large n, we can correctly find such a pair
with high probability if

R2 + R̃2 � I (V ; Y2). (49)

Proposition 2 is thus proved by combining (45)-(49).

APPENDIX C
PROOF OF PROPOSITION 3

We use random codes and fix the following joint dis-
tribution: PS1S2U1U2V X1 X2Y1Y2 = PS1S2 PV |S1 PX2|V S1 PU1|S1

PU2|S1U1 PX1|U1U2 S1 PY1|S1 X1 X2 PY2|S2 X2 .

1) Codebook Generation:

• Generate 2n(R11+R̃11) codewords Un
1 (w11, l11) with

i.i.d. components based on PU1 . Index these code-
words by w11 = 1, . . . , 2nR11 , l11 = 1, . . . , 2nR̃11 .

• For each un
1(w11, l11), generate 2n(R12+R̃12) code-

words Un
2 (w11, l11, w12, l12) with i.i.d. compo-

nents based on PU2|U1 . Index these codewords by
w12 = 1, . . . , 2nR12 , l12 = 1, . . . , 2nR̃12 .

• Generate 2n(R2+R̃2) codewords V n(w2, l2) with i.i.d.
components based on PV . Index these codewords by
w2 = 1, . . . , 2nR2 , v = 1, . . . , 2nR̃2 .

2) Encoding:

• Transmitter 1: Given sn
1 and w11, choose a

un
1(w11, l̃11) such that

(un(w11, l̃11), sn
1 ) ∈ T n

ε (PS1U11).

Otherwise, set l̃11 = 1. It can be shown that for
large n, such un

1 exists with high probability if

R̃11 > I (U1; S1). (50)

Given w11, l̃11, w12 and sn
1 , choose a

un
2(w11, l̃11, w12, l̃12) such that

(un
1(w11, l̃11), un

2(w11, l̃11, w12, l̃12), sn
1 )

∈ T n
ε (PS1U1U2).

Otherwise, set l̃12 = 1. It can be shown that for
large n, such un

2 exists with high probability if

R̃12 > I (U2; S1|U1). (51)

Given un
1(w11, l̃11), un

2(w11, l̃11, w12, l̃12) and sn
1 ,

generate xn
1 with i.i.d. components based on

PX1|S1U1U2 .
• Transmitter 2: Given sn

1 and w2, choose a vn(w2, l̃2)
such that

(vn(w2, l̃2), sn
1 ) ∈ T n

ε (PS1V ).

Otherwise, set l̃2 = 1. It can be shown that for
large n, such vn exists with high probability if

R̃2 > I (V ; S1). (52)

Then generate xn
2 with i.i.d. component based on

PX2|V S1 for transmission.

3) Decoding:

• Decoder 1: Given yn
1 , find (ŵ11, l̂11) such that

(un
1(ŵ11, l̂11), yn

1 ) ∈ T n
ε (PU1Y1).

If no or more than one such a pair (ŵ11, l̂11) can
be found, declare an error. It is easy to show that
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for sufficiently large n, we can correctly find such
a pair with high probability if

R11 + R̃11 � I (U1; Y1). (53)

After decoding un
1, find a unique pair (ŵ2, l̂2) such

that

(un
1(ŵ11, l̂11), v

n(w2, l̂2), yn
1 ) ∈ T n

ε (PV U1Y1).

If no or more than one such pair can be found,
declare an error. It is easy to show that for suffi-
ciently large n, we can correctly find such a pair
with high probability if

R2 + R̃2 � I (V ; Y1|U1). (54)

After successively decoding vn , find a
unique tuple (w11, l̃11, w12, l̃12) such that
((un

1(ŵ11, l̂11), v
n(w2, l̂2), un

2(w11, l̃11, w12, l̃12), yn
1 )

∈ T n
ε (PV U1U2Y1)). If no or more than one such pair

can be found, declare an error. It is easy to show
that for sufficiently large n, we can correctly find
such a pair with high probability if

R12 + R̃12 � I (U2; V Y1|U1). (55)

• Decoder 2: Given yn
2 , find (ŵ11, l̂11) such that

(un
1(ŵ11, l̂11), yn

2 ) ∈ T n
ε (PU1Y1).

If no or more than one such pair (ŵ11, l̂11) can be
found, declare an error. It is easy to show that for
sufficiently large n, we can correctly find such a pair
with high probability if

R11 + R̃11 � I (U1; Y2). (56)

After decoding un
1, find a unique pair (ŵ2, l̂2) such

that

(un
1(ŵ11, l̂11), v

n(w2, l̂2), yn
2 ) ∈ T n

ε (PV U1Y2).

If no or more than one such pair can be found,
declare an error. It is easy to show that for suffi-
ciently large n, we can correctly find such a pair
with high probability if

R2 + R̃2 � I (V ; Y2|U1). (57)

After successively decoding vn , find a
unique tuple (w11, l̃11, w12, l̃12) such that
((un

1(ŵ11, l̂11), v
n(w2, l̂2), un

2(w11, l̃11, w12, l̃12), yn
1 )

∈ T n
ε (PV U1U2Y2)). If no or more than one such pair

can be found, declare an error. It is easy to show
that for sufficiently large n, we can correctly find
such a pair with high probability if

R12 + R̃12 � I (U2; V Y2|U1). (58)

The corresponding achievable region is thus character-
ized by

R11 � min{I (U1; Y1), I (U1; Y2)} − I (U1; S1) (59)

R12 � min{I (U2; V Y1|U1), I (U2; V Y2|U1)}
−I (U2; S1|U1) (60)

R2 � min{I (V ; Y1|U1), I (V ; Y2|U1)} − I (V ; S1).

(61)

Proposition 3 is completed by combining (59)-(61) and
R1 = R11 + R12.

APPENDIX D
PROOF OF PROPOSITION 5

We use random codes and fix the following joint
distribution: PS1S2U V X1 X2Y1Y2 = PS1 S2 PU |S1 PX1|U S1 PV |S2

PX2|V S2 PY1Y2|S1S2 X1 X2 .

1) Codebook Generation:

• Generate 2n(R1+R̃1) codewords Un(w1, l1) with i.i.d.
components based on PU . Index these codewords by
w1 = 1, . . . , 2nR1 , l1 = 1, . . . , 2nR̃1 .

• Generate 2n(R2+R̃2) codewords V n(w2, l2) with i.i.d.
components based on PV . Index these codewords by
w2 = 1, . . . , 2nR2 , l2 = 1, . . . , 2nR̃2 .

2) Encoding:

• Transmitter 1: Given (sn
1 ) and w1, choose a

un(w1, l̃1) such that

(un(w1, l̃1), sn
1 ) ∈ T n

ε (PU S1).

Otherwise, set l̃1 = 1. It can be shown that for
large n, such un exists with high probability if

R̃1 > I (U ; S1). (62)

Then generate xn
1 with i.i.d. component based on

PX1|U S1 for transmission.
• Transmitter 2: Given (sn

2 ) and w2, choose a
vn(w2, l̃2) such that

(vn(w2, l̃2), sn
2 ) ∈ T n

ε (PV S2).

Otherwise, set l̃2 = 1. It can be shown that for
large n, such vn exists with high probability if

R̃2 > I (V ; S2). (63)

Then generate xn
2 with i.i.d. components based on

PX2|V S2 for transmission.

3) Decoding: The decoding procedure is the same as in
Appendix A and is hence omitted.

Proposition 5 is thus proved by combining (62), (63)
and (41)–(44).
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