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Abstract— Hybrid beamforming is known to be a cost-effective
and wide-spread solution for a system with large-scale antenna
arrays. This paper studies the optimization of the analog and
digital components of the hybrid beamforming solution for
remote radio heads (RRHs) in a downlink cloud radio access
network architecture. Digital processing is carried out at a
baseband processing unit (BBU) in the “cloud," and the precoded
baseband signals are quantized prior to transmission to the RRHs
via finite-capacity fronthaul links. In this system, we consider two
different channel state information (CSI) scenarios: 1) ideal CSI
at the BBU and 2) imperfect effective CSI. The optimization
of digital beamforming and fronthaul quantization strategies at
the BBU as well as analog radio-frequency (RF) beamforming
at the RRHs is a coupled problem since the effect of the
quantization noise at the receiver depends on the precoding
matrices. The resulting joint optimization problem is examined
with the goal of maximizing the weighted downlink sum-rate
and the network energy efficiency. Fronthaul capacity and per-
RRH power constraints are enforced along with constant modulus
constraint on the RF beamforming matrices. For the case of
perfect CSI, a block coordinate descent scheme is proposed
based on the weighted minimum-mean-square-error approach
by relaxing the constant modulus constraint of the analog
beamformer. Also, we present the impact of imperfect CSI on the
weighted sum-rate and network energy efficiency performance,
and the algorithm is extended by applying the sample average
approximation. The numerical results confirm the effectiveness
of the proposed scheme and show that the proposed algorithm
is robust to estimation errors.

Index Terms— Cloud-RAN, massive MIMO, hybrid beamform-
ing, fronthaul compression, imperfect CSI.
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I. INTRODUCTION

MASSIVE multiple-input and multiple-output (MIMO)
has been regarded as a promising technology for

future wireless systems owing to its potential of improving
both spectral and energy efficiency (EE) with simple signal
processing [2]. This is enabled by the fact that the chan-
nel vectors for different users become orthogonal when the
number of transmit antennas grows to infinity. However, with
massive MIMO arrays, it is generally impractical to equip
every antenna of a large array with a radio frequency (RF)
chain due to hardware limitations [3]. Hybrid beamforming
techniques, whereby the beamforming process consists of a
low-dimensional digital beamforming followed by analog RF
beamforming, has emerged as an effective means to address
this problem (see, e.g., [4]–[13]). Both analog and digital
components are typically designed separately and locally for
a base station (BS) [3].

In a cloud radio access network (C-RAN) architecture,
the baseband signal processing functionalities of multiple BSs
are migrated to a baseband processing unit (BBU) in the
“cloud”, while RF functionalities are implemented at distrib-
uted remote radio heads (RRHs). Therefore, in the C-RAN
architecture with large antenna arrays at the RRHs, digital
precoding across multiple RRHs can be carried out at the
BBU, while RF beamforming is performed locally at each
RRH. The design problem becomes more challenging by the
capacity limitations of the fronthaul links that connect the
BBU to the RRHs.

In the downlink of C-RAN, the BBU performs joint
encoding and precoding of the messages intended for user
equipments (UEs), and then the produced baseband signals
are quantized and compressed prior to being transferred to
the RRH via fronthaul links. The design of precoding and
fronthaul compression strategies has been studied in [14]–[16].
Specifically, the authors in [14] considered the standard point-
to-point fronthaul compression strategies. In [15], [16], the
authors investigated multivariate fronthaul compression.

In this work, we study the application of hybrid beam-
forming to the C-RAN architecture. We tackle the problem of
jointly optimizing digital baseband beamforming and fronthaul
compression strategies at the BBU along with RF beamform-
ing at the RRHs with the goal of maximizing the weighted
downlink sum-rate and the network EE. Fronthaul capacity and
per-RRH transmit power constraints are imposed, as well as
constant modulus constraint on the RF beamforming matrices
which consist of analog phase shifters [3].
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The limited number of RF chains determines the capability
of the BBU to acquire channel state information (CSI) through
conventional uplink training based on the time division duplex
(TDD) operation. In particular, during the uplink training,
the received baseband signal depends on a RF beamforming
matrix, and hence instantaneous CSI is unavailable when
designing the RF beamforming matrices. To address this
limitation, the RF beamforming matrices are computed based
on the second-order statistics of the downlink channel vec-
tors, and the digital beamforming and fronthaul compression
strategies are adaptive to the estimated effective channel.

A. Related Work

A hybrid beamforming design has been investigated
in [4]–[13]. Specifically, in [4], a point-to-point hybrid pre-
coding and combining algorithm was proposed that uses
orthogonal matching pursuit for millimeter-wave (mmWave)
systems. The authors in [6] provided a low-complexity hybrid
beamforming scheme to achieve sum-rate performance close to
that of the zero-forcing (ZF) method for the downlink of multi-
user multiple-input single-output (MISO) systems. In this case,
each RF beamforming vector for a user was determined by
projecting the downlink channel onto the feasible RF space
with low-dimensional ZF digital beamforming. In addition,
for multi-user MIMO mmWave systems, a limited feedback
hybrid beamforming scheme was presented in [7]. The work
in [8] proved that in hybrid beamforming, the number of
RF chains needs to be twice the number of data streams to
achieve sum-rate performance equal to that of fully digital
beamforming. Also, the authors in [8] considered a design of
the hybrid beamforming to maximize spectral efficiency for
point-to-point MIMO and multi-user MISO scenarios.

Most of works on hybrid beamforming in [4]–[10] have
assumed full CSI. However, it is difficult to estimate the chan-
nel vectors across all antenna elements, since the estimation
operates in the low-dimensional baseband downlink obtained
after RF beamforming. To address this issue, in [11] and [12],
the RF beamforming matrix was determined by using the
long-term CSI, while the digital beamformer was designed
based on the low-dimensional effective channel. Recently,
a design of hybrid beamforming for C-RAN systems has been
studied in [17] and [18]. The authors in [17] provided a two-
stage algorithm that only demands low-dimensional effective
CSI. In [18], a RF beamforming was computed based on a
weighted sum of second-order channel statistics and the size
of RF and digital beamforming matrices was determined in
order to maximize the large-scale approximated sum-rate with
regularized ZF digital beamforming.

Furthermore, the EE maximization problem in C-RAN has
been studied in [19]–[21]. In [19], the authors considered
a joint design of beamforming, virtual computing resources,
RRH selection, and RRH-UE association in a limited fronthaul
C-RAN, and a global optimization algorithm and a low-
complexity method were presented. Also, for both single-
hop and multi-hop C-RAN scenarios, the problem of EE
maximization under both data-sharing and compression-based
fronthaul strategies was addressed in [20]. The authors in [21]

TABLE I

DEFINITION OF VARIABLES

took into account a realistic power consumption model which
is dependent on the data rate and dynamic power amplifier.

B. Main Contributions, Paper Organization and Notation

The main contributions of this paper are as follows:
• For downlink C-RAN with hybrid analog-digital antenna

arrays, we investigate the joint design of fronthauling
and hybrid beamforming with the goal of maximizing
the weighted sum-rate (WSR) and the network EE.

• For the case of perfect CSI, we first decompose the
problem into two sub-problems of the RF beamform-
ing and the digital processing, which turn out to be
non-convex, and then we propose an iterative algo-
rithm based on weighted minimum-mean-square-error
(WMMSE) approach by relaxing constant modulus con-
straint. Also, for the imperfect CSI case, we extend the
solution with the perfect CSI by applying the sample
average approximation (SAA) [22].

• Extensive numerical results are provided to validate the
effectiveness of the proposed algorithm. In addition,
in the presence of channel estimation errors, we show
the robustness of the proposed scheme.

The paper is organized as follows: In Sec. II, we present the
system model for the downlink of a C-RAN with hybrid digital
and analog processing and finite-capacity fronthaul links. In
Sec. III, for the case of perfect CSI, we describe the problems
of WSR maximization and network EE maximization, and an
iterative algorithm to tackle the problems is proposed. Sec. IV
discusses the problem of CSI estimation in a TDD system.
In addition, we introduce an uplink channel training method
and provide a RF beamforming matrix design and the digital
strategies. Numerical results are illustrated in Sec. V. The
paper is closed with the conclusion in Sec. VI.

Throughout this paper, boldface uppercase, boldface lower-
case and normal letters indicate matrices, vectors and scalars,
respectively. The operators (·)T , (·)H , E(·), det(·) and tr(·)
represent transpose, conjugate transpose, expectation, determi-
nant and trace, respectively. A circularly symmetric complex
Gaussian distribution with mean μ and covariance matrix R is
denoted by CN (μ,R). The set of all M×N complex matrices
is defined as C

M×N . Id represents an identity matrix of size
d. ⊗ stands for the Kronecker product. The variables used in
this paper are summarized in Table I.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider the downlink of a
C-RAN system in which a BBU communicates with NU
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Fig. 1. Illustration of the downlink of a C-RAN with hybrid digital and
analog processing.

single-antenna UEs throughNR RRHs, each equipped with M
transmit antennas. We assume that the ith RRH is connected to
the BBU via an error-free digital fronthaul link of capacity Ci

bps/Hz [23], [24], and each RRH is equipped with N ≤M RF
chains due to cost limitations. This implies that fully digital
beamforming across M transmit antennas of each RRH is not
enabled [4]–[8] and thus hybrid analog-digital solutions are in
order. For convenience, we define the sets R � {1, · · · , NR},
K � {1, · · · , NU}, M � {1, · · · ,M} and N � {1, · · · , N}.
We assume that user scheduling is predetermined and hence
all the NU UEs are active. For rate allocation, the priority
among NU active UEs can be controlled by adjusting the
weights of the weighted sum-rate in Sec. III-A. The transmit-
side baseband processing is centralized at the BBU based on
CSI reported by the RRHs on the fronthaul links. Assuming
a TDD operation, each RRH obtains its local CSI by means
of uplink channel training [25], [26].

A. Channel Model

For the downlink channel from the RRHs to the UEs,
we adopt a frequency-flat fading channel model such that the
received signal yk at the kth UE is given as

yk =
∑

i∈R
hH

k,ixi + zk = hH
k x + zk, (1)

where xi ∈ C
M×1 is the transmitted signal of the ith RRH

subject to the transmit power constraint E‖xi‖2 ≤ Pi, hk,i ∈
C

M×1 equals the channel vector from the ith RRH to the kth
UE, which is distributed as hk,i ∼ CN (0,Rk,i) with Rk,i

being the transmit-side correlation, x = [xH
1 · · ·xH

NR
]H ∈

C
MNR×1 represents the signal vector transmitted by all RRHs,

hk = [hH
k,1 · · ·hH

k,NR
]H ∈ C

MNR×1 indicates the channel
vector from all RRHs to the kth UE, and zk ∼ CN (0, σ2

D)
denotes the additive noise at the kth UE.

B. Digital Beamforming and Fronthaul Compression

We define the message intended for the kth UE as Mk ∈
{1, · · · , 2nRk}, where n stands for the coding block length
and Rk is the rate of Mk. The BBU encodes the message
Mk into the baseband signal sk ∼ CN (0, 1) for k ∈ K using
a standard random Gaussian channel code. Then, in order to

manage inter-UE interference, the signals {sk for k ∈ K} are
linearly precoded as

xD = [xH
D,1 · · ·xH

D,NR
]H =

∑

k∈K
vD,ksk, (2)

where vD,k ∈ C
NNR×1 is the digital beamforming vector

across all the RRHs for the kth UE, and xD,i ∈ C
N×1

represents the ith subvector of xD ∈ C
NNR×1 corresponding

to the signal transmitted by the ith RRH. Defining the shaping
matrices Ξi = [0H

N×N(i−1) IN 0H
N×N(NR−i)]

H , the ith
subvector xD,i can be expressed as xD,i =

∑
k∈K ΞH

i vD,ksk.
Since the BBU communicates with the ith RRH via a fron-

thaul link of finite capacity, the signal xD,i is quantized and
compressed prior to being transferred to the RRH. Following
the approaches in [27] and [28], we model the impact of the
compression by writing the quantized signal x̂D,i as

x̂D,i = xD,i + qi, (3)

where the quantization noise qi ∈ C
N×1 ∼ CN (0,Ωi)

is independent of the signal xD,i. As for the standard
information-theoretic formulation, the covariance matrix Ωi

describes the effect of the quantizer. From [29, Ch. 3],
the quantized signal x̂D,i can be reliably recovered at the ith
RRH, if the following condition is satisfied

gi(VD,Ωi) � I(xD,i; x̂D,i) (4)

= log2 det
( ∑

k∈K
ΞH

i vD,kvH
D,kΞi+Ωi

)
−log2 det(Ωi)≤Ci,

where we define the set of the digital beamforming vectors as
VD � {vD,k for k ∈ K}.

C. RF Beamforming

The quantized signal vector x̂D,i decompressed at the ith
RRH is of dimensionN , and is input to one of N RF chains. In
order to fully utilize M > N transmit antennas, the ith RRH
applies analog RF beamforming to the signal x̂D,i via the
beamforming matrix VR,i ∈ C

M×N . The RF beamforming
obtains M signals for the antenna as a combination of N
output of the RF chains. As a result, the transmitted signal xi

from M transmit antennas is given as

xi = VR,ix̂D,i =
∑

k∈K
VR,iΞH

i vD,ksk + VR,iqi. (5)

As summarized in [30], the RF beamforming can be imple-
mented using analog phase shifters and switches. Accordingly,
each RF chain is connected to a specific set of transmit
antennas through a phase shifter. In this paper, we consider
a fully connected phase shifter architecture, whereby each
RF chain is connected to all transmit antennas via a separate
phase shifter. In the fully connected phase shifter architecture,
the (a, b)th element of the RF beamforming matrix VR,i is
expressed as VR,i,a,b = ejθi,a,b for a ∈ M and b ∈ N ,
where θi,a,b indicates the phase shift between the signals x̂D,i,b

and xi,a. Therefore, when designing the RF beamforming
matrix VR,i, one should satisfy constant modulus constraint
|VR,i,a,b|2 = 1 for a ∈M and b ∈ N (see, e.g., [8]).
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III. DESIGN WITH PERFECT CSI

In this section, we discuss the problem of jointly designing
the beamforming matrices for RF and digital beamform-
ing, along with the fronthaul quantization noise covariance
matrices. As we will see, these problems are interdependent,
since the impact of the quantization noise on the receivers’
performance depends on the beamforming matrices. Here,
we first consider the case of perfect CSI, while the system
with imperfect CSI will be addressed in Sec. IV.

To measure the achievable rate for each UE k, we rewrite
the signal yk in (1) under the transmission model (5) as

yk =
∑

l∈K
hH

k V̄RvD,lsl + hH
k V̄Rq + zk, (6)

where V̄R � diag(VR,i, · · · ,VR,NR) indicates the effec-
tive RF beamforming matrix across all RRHs and q �
[qH

1 · · ·qH
NR

]H ∈ C
NNR×1 stands for the vector of all

the quantization noise signals, which is distributed as q ∼
CN (0, Ω̄) with Ω̄ � diag(Ω1, · · · ,ΩNR).

Assuming that UE k decodes the message Mk by treating
the interference signals as the additive noise, the achievable
rate Rk for the kth UE is given as

Rk = fk(VR,VD,Ω) = I(sk; yk)
= log2 det(|hH

k V̄RvD,k|2 + ζk(VR,VD,Ω))
− log2 det(ζk(VR,VD,Ω)), (7)

where VR � {VR,i for i ∈ R}, Ω � {Ωi for i ∈
R}, and we denote the function ζk(VR,VD,Ω) �∑

l∈K\{k} |hH
k V̄RvD,l|2 + hH

k V̄RΩ̄V̄H
R hk + σ2

D.
Considering the power consumption in the C-RAN, the total

power consumption can be modeled as [31]

PT (VR,VD,Ω) �
∑

i∈R
pi(VR,i,VD,Ω)

+NUPNU +NNRPRF , (8)

where the transmission power of the ith RRH is obtained as

pi(VR,i,VD,Ωi) � E‖xi‖2 (9)

=
∑

k∈K
tr(VR,iΞH

i vD,kvH
D,kΞiVH

R,i) + tr(VR,iΩiVH
R,i),

PNU is the circuit power consumed by a UE, and PRF

represents the circuit power consumption at each RRH, which
is proportional to the number of RF chains.

A. Weighted Sum-Rate Maximization

In this work, we tackle the problem of maximizing the WSR∑
k∈K wkRk of the UEs while satisfying the per-RRH transmit

power, fronthaul capacity and constant modulus constraints,
where wk ≥ 0 is a weight denoting the priority for the kth UE.
The problem is stated as

maximize
VR,VD ,Ω

∑

k∈K
wkfk(VR,VD,Ω) (10a)

s.t. gi(VD,Ωi) ≤ Ci, i ∈ R, (10b)

pi(VR,i,VD,Ωi) ≤ Pi, i ∈ R, (10c)

|VR,i,a,b|2 = 1, a ∈ M, b ∈ N , i ∈ R. (10d)

Problem (10) is non-convex due to the objective function
(10a) and the constraints (10b), (10c) and (10d). In the next
subsection, we present an iterative algorithm that computes
an efficient solution of the problem. To address problem (10),
we propose an iterative algorithm based on block coordinate
descent (BCD), whereby the RF beamforming matrices VR

and the digital processing strategies {VD,Ω} are alternately
optimized. We first describe the optimization of the digital
part VD and Ω for a fixed RF beamforming VR, and then
introduce the optimization of the latter.

1) Optimization of Digital Beamforming and Fronthaul
Compression: For a given RF beamforming VR = V′

R,
problem (10) with respect to the digital beamforming VD and
the fronthaul compression strategies Ω can be written as

maximize
VD ,Ω

∑

k∈K
wkfk(V′

R,VD,Ω) (11a)

s.t. gi(VD,Ωi) ≤ Ci, i ∈ R, (11b)

pi(V′
R,i,VD,Ωi) ≤ Pi, i ∈ R, (11c)

where we eliminate the constant modulus constraint (10d)
which is independent of the digital variables VD and Ω. Prob-
lem (11) is still non-convex due to the non-convex objective
function (11a) and constraint (11b).

To solve this problem, we extend the WMMSE-based algo-
rithm in [32]. To this end, we introduce two convex lower
bounds on (11a) and (11b) by applying a similar approach
in [32]. Denoting x(κ) as the quantity x obtained at the
κth iteration of the BCD, a lower bound on the function
fk(V′

R,VD,Ω) in (11a) is written as

fk(V′
R,VD,Ω) ≥ 1

ln 2
γk(V′

R,VD,Ω, u
(κ)
k , w̃

(κ)
k ), (12)

where we define the function

γk(V′
R,VD,Ω, u

(κ)
k , w̃

(κ)
k )

= ln w̃(κ)
k − w̃(κ)

k ek(V′
R,VD,Ω, u

(κ)
k ) + 1, (13)

with arbitrary parameters w̃(κ)
k ≥ 0 and u

(κ)
k , and the mean

squared error (MSE) function is denoted as

ek(V′
R,VD,Ω, u

(κ)
k ) = |1− (u(κ)

k )∗hH
k V̄′

RvD,k|2

+|u(κ)
k |

2ζk(V′
R,VD,Ω). (14)

Note that the lower bound in (12) is satisfied with equality
when the variables u(κ)

k and w̃(κ)
k are equal to

u
(κ)
k = ũk(V′

R,VD,Ω)

� hH
k V̄′

RvD,k

|hH
k V̄′

RvD,k|2 + ζk(V′
R,VD,Ω)

, (15)

w̃
(κ)
k =

1

ek(V′
R,VD,Ω, u

(κ)
k )

. (16)

Furthermore, an upper bound of the function gi(VD,Ωi) in
the constraint (11b) is given as

gi(VD,Ω) ≤ g̃i(VD,Ω,Σ
(κ)
i ), (17)
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for any arbitrary positive definite matrix Σ(κ)
i , where

g̃i(VD,Ω,Σ
(κ)
i ) is represented as

g̃i(VD,Ωi,Σ
(κ)
i ) = log2 det(Σ(κ)

i )− log2 det(Ωi)

+
tr
(
(Σ(κ)

i )−1(
∑

k∈K ΞH
i vD,kvH

D,kΞi + Ωi)
)

ln 2
− N

ln 2
. (18)

Here, the matrix Σ(κ)
i that achieves equality in (17) is written

as

Σ(κ)
i = Σ̃i(VD,Ω) �

∑

k∈K
ΞH

i vD,kvH
D,kΞi + Ωi. (19)

Based on the inequalities (12) and (17), we formulate the
problem

maximize
VD ,Ω,u(κ),w̃(κ),Σ(κ)

∑

k∈K

wk

ln 2
γk(V′

R,VD,Ω, u
(κ)
k , w̃

(κ)
k ) (20a)

s.t. g̃i(VD,Ωi,Σ
(κ)
i ) ≤ Ci, i ∈ R, (20b)

pi(V′
R,i,VD,Ωi) ≤ Pi, i ∈ R, (20c)

where u(κ) � {u(κ)
k for k ∈ K}, w̃(κ) � {w̃(κ)

k for k ∈ K},
and Σ(κ) � {Σ(κ)

i for i ∈ R}. Although problem (20) is
still non-convex, it is convex with respect to {VD,Ω} when
the variables {u(κ), w̃(κ),Σ(κ)} are fixed and vice versa.
As proved in [32], since each variable update yields a non-
decreasing objective value in (20a), solving problem (20)
alternately over these two sets of variables would yield a
solution that is guaranteed to converge to a stationary point.
This is detailed in Algorithm 1 below.

Algorithm 1 Algorithm for Updating VD and Ω

Set κ = 1 and initialize V(κ)
D and Ω(κ) satisfying the

constraints (11b)-(11c).
Repeat

Update u(κ)
k = ũk(V′

R,V
(κ)
D ,Ω(κ)) for k ∈ K.

Update w̃(κ)
k = 1/ek(V′

R,V
(κ)
D ,Ω(κ), u

(κ)
k ) for k ∈ K.

Update Σ(κ)
i = Σ̃i(V

(κ)
D ,Ω(κ)) for i ∈ R.

Update {V(κ+1)
D ,Ω(κ+1)} as a solution of problem (20)

for the given {u(κ), w̃(κ),Σ(κ)}.
Set κ← κ+ 1.

Until convergence.

2) Optimization of RF Beamforming: We now discuss the
optimization of the RF beamformers VR in problem (10) for
fixed digital variables VD = V′

D and Ω = Ω′. The problem
can be stated as

maximize
VR

∑

k∈K
wkfk(VR,V′

D,Ω
′) (21a)

s.t. pi(VR,i,V′
D,Ω

′
i) ≤ Pi, i ∈ R, (21b)

|VR,i,a,b|2 = 1, a ∈ M, b ∈ N , i ∈ R. (21c)

The presence of the constant modulus constraint (21c)
makes it difficult to solve problem (21). To address this
issue, as in [10, Sec. III-A], we relax the condition (21c)
to the convex constraint |VR,i,a,b|2 ≤ 1. Then, the obtained

Algorithm 2 Algorithm for Updating VR

Set κ = 1 and initialize V(κ)
R satisfying the constraints

(21b)-(21c).
Repeat

Update u(κ)
k = ũk(V(κ)

R ,V′
D,Ω

′) for k ∈ K.
Update w̃(κ)

k = 1/ek(V
(κ)
R ,V′

D,Ω
′) for k ∈ K.

Update V(κ)
R as a solution of problem (22) for the

given {u(κ), w̃(κ)}.
Set κ← κ+ 1.

Until convergence.

problem can be solved by again applying the WMMSE method
in [32]. The procedure for solving problem (21) is summarized
in Algorithm 2, where the convex problem of the original
problem (21) is stated as

maximize
VR,u(κ),w̃(κ)

∑

k∈K

wk

ln 2
γk(VR,V′

D,Ω
′, u

(κ)
k , w̃

(κ)
k ) (22a)

s.t. pi(VR,i,V′
D,Ω

′
i) ≤ Pi, i ∈ R, (22b)

|VR,i,a,b|2 ≤ 1, a ∈M, b ∈ N , i ∈ R. (22c)

Since the RF beamforming matrices computed from Algo-
rithm 2, denoted as ṼR, may not satisfy the constraint (21c),
we propose to obtain a feasible RF beamformer VR by
projecting ṼR onto the feasible space [10, Sec. III-A]. Specif-
ically, we find the RF beamformer VR,i such that the distance
‖VR,i − ṼR,i‖2F is minimized. As a result, the beamformer
VR,i is calculated as exp(j∠ṼR,i,a,b) for a ∈M, b ∈ N and
i ∈ R [10, eq. (14)]. In summary, for a joint design of the
digital beamforming VD, the fronthaul compression Ω and
the RF beamforming strategies VR, we run Algorithm 1 and
2 alternately. We note that while both Algorithm 1 and Algo-
rithm 2 are individually convergent in the absence of modulus
constraint for the RF beamforming, due to the projection
step in the update of RF beamforming, the overall alternating
optimization algorithm is not guaranteed to converge. This is
also the case for the related algorithms in [33]. Therefore,
we will observe the convergence behavior of the proposed
algorithm in Sec. V.

B. Network Energy Efficiency Maximization

We now consider jointly designing RF and digital beam-
forming along with fronthaul compression with the aim of
maximizing the overall network EE. The network EE is
defined as the ratio of the WSR to the corresponding power
consumption. Accordingly, the problem is formulated as

maximize
VR,VD ,Ω

∑
k∈K wkfk(VR,VD,Ω)
PT (VR,VD,Ω)

(23a)

s.t. (10b), (10c), (10d). (23b)

Problem (23) is also non-convex due to the objective function
(23a) and the constraints (23b). In the following subsection,
similar to Sec III-A, we adopt alternating optimization to
tackle problem (23).
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1) Optimization of Digital Beamforming and Fronthaul
Compression: For a given RF beamforming VR = V′

R,
the digital beamforming VD and the fronthaul compression
strategies Ω are optimized by solving the following problem

maximize
VD ,Ω

∑
k∈K wkfk(V′

R,VD,Ω)
PT (V′

R,VD,Ω)
(24a)

s.t. (11b), (11c). (24b)

Since problem (24) is non-convex, we also apply a similar
approach proposed in Sec. III-A.1. To make problem (24)
more tractable, we first introduce a new objective function
as a natural logarithm of the objective function (24a)

ln
( ∑

k∈K
wkfk(V′

R,VD,Ω)
)
− ln

(
PT (V′

R,VD,Ω)
)
. (25)

Then, we consider a convex lower bound of the function (25)
as

ln(
∑

k∈K
wkfk(V′

R,VD,Ω))− ln(PT (V′
R,VD,Ω))

≥ ε(V′
R,VD,Ω,u(κ), w̃(κ), ρ(κ)), (26)

where we define the function

ε(V′
R,VD,Ω,u(κ), w̃(κ), ρ(κ))

= ln
( ∑

k∈K

wk

ln 2
γk(V′

R,VD,Ω, u
(κ)
k , w̃

(κ)
k )

)
− ln(ρ(κ))

− PT (V′
R,VD,Ω)
ρ(κ)

+ 1, (27)

with arbitrary parameters u(κ)
k , w̃(κ)

k ≥ 0 and ρ(κ) ≥ 0.
One can show that for fixed {V′

R,VD,Ω}, the lower bound
in (26) holds with equality when the variables u(κ), w̃(κ) and
ρ(κ) are given as

u
(κ)
k = ũk(V′

R,VD,Ω), k ∈ K, (28)

w̃
(κ)
k =

1

ek(V′
R,VD,Ω, u

(κ)
k )

, k ∈ K, (29)

ρ(κ) = PT (V′
R,VD,Ω). (30)

Based on the bounds (17) and (26), the problem is formu-
lated as

maximize
VD ,Ω,u(κ),w̃(κ),Σ(κ),ρ(κ)

ε(V′
R,VD,Ω,u(κ), w̃(κ), ρ(κ)) (31a)

s.t. (20b), (20c). (31b)

Similar to Algorithm 1, to obtain a solution {VD,Ω},
we alternately update the sets of variables {VD,Ω} and
{u(κ), ũ(κ),Σ(κ), ρ(κ)} until convergence.

2) Optimization of RF Beamforming: In this subsection, for
fixed digital variables VD = V′

D and Ω = Ω′, we focus on
optimizing the RF beamforming by solving the following non-
convex problem

maximize
VR

∑
k∈K wkfk(VR,V′

D,Ω
′)

PT (VR,V′
D,Ω′)

(32a)

s.t. (21b), (21c). (32b)

To solve problem (32), by using the bound (26) and relaxing
the modulus constraint (21c), we express the relaxed problem
as

maximize
VR,u(κ),w̃(κ),ρ(κ)

ε(VR,V′
D,Ω

′,u(κ), w̃(κ), ρ(κ)) (33a)

s.t. (22b), (22c). (33b)

Similar in Sec. III-A.2, the sets of variables VR and
{u(κ), w̃(κ), ρ(κ)} are alternately updated until convergence,
and then the obtained RF beamforming matrices are projected
onto the feasible space to satisfy the modulus constraint
(21c). To sum up, the digital beamforming VD, the fronthaul
compression Ω and the RF beamforming VR are jointly
obtained by optimizing alternately {VD,Ω} and VR. The
effectiveness of the proposed algorithm will be confirmed by
numerical results in Sec. V.

IV. DESIGN WITH IMPERFECT CSI

In the previous section, we have assumed that the instan-
taneous channel vectors h � {hk for k ∈ K} are per-
fectly known at the BBU. In this section, we study a
more practical case in which low-dimensional effective
CSI {V̄H

R hk for k ∈ K} is acquired by the RRHs via uplink
channel training in a TDD operation. The key challenge is that
the analog beamforming matrices affect the signal received on
the uplink during the training phase. Therefore, the design of
the analog beamforming cannot rely on the knowledge of full
CSI h. Instead, it is assumed that only the covariance matrices
{Rk,i for k ∈ K, i ∈ R} of the channel vectors are available
at the BBU when designing analog precoding. In practice, this
long-term CSI can be estimated by means of time average
if the fading channels are stationary for a sufficiently long
time [11], [34].

A. Uplink Channel Training

In the TDD operation, the downlink CSI is obtained
based on the uplink training signals by leveraging reciprocity
between downlink and uplink channels. The channel matrix
Hi = [h1,i, · · · ,hNU ,i] ∈ C

M×NU between all UEs and the
ith RRH is estimated at the RRH and forwarded to the BBU.
Importantly, since channel estimation is performed based on
the low-dimensional output of RF beamforming, the design
of the RF beamforming VR affects the channel estimation as
well as the WSR performance. For the rest of this subsection,
we describe the relationships between VR and the channel
estimation error.

To elaborate, on the uplink, UE k transmits the orthogonal
training sequence ψk ∈ C

L×1 of L symbols with transmit
power pk, where the condition L ≥ NU is required in order
to ensure the orthogonality of the training sequences. We have
ψH

k ψl = Lpkδkl for k, l ∈ K, where δij denotes the Kronecker
delta function. The signal matrix Yi ∈ C

N×L received at the
ith RRH during uplink training is given as

Yi = VH
R,iHiΨT + VH

R,iNi, (34)

where Ψ = [ψ1 · · ·ψNU ] ∈ C
L×NU represents the orthogonal

training sequence matrix with ΨHΨ = diag(Lp1, · · · , LpNU )



KIM et al.: JOINT DESIGN OF FRONTHAULING AND HYBRID BEAMFORMING FOR DOWNLINK C-RAN SYSTEMS 4429

is the matrix of training signal powers, and Ni =
[ni,1 · · ·ni,L] ∈ C

M×L indicates the additive Gaussian noise
matrix at the ith RRH with ni,l ∈ C

M×1 ∼ CN (0, σ2
UIM )

for l ∈ {1, · · · , L}.
To estimate the channel Hi from the received signal Yi,

we define the received signal vector yi ∈ C
NL×1 of the ith

RRH as

yi = vec(Yi)
= (Ψ⊗VH

R,i)vec(Hi) + (IL ⊗VH
R,i)vec(Ni), (35)

where vec(X) denotes the vector obtained by stacking all
columns of the matrix X on top of each other. Note that the
signal (35) depends on the RF beamforming matrix VR,i.

Minimizing the MSE yields the estimated channel vector as

ĥi = [ĥH
1,i · · · ĥH

NU ,i]
H = Wiyi, (36)

where ĥk,i ∈ C
M×1 stands for the kth subvector of ĥi

corresponding to the kth UE and Wi � Ri(ΨH⊗VR,i)((Ψ⊗
VH

R,i)Ri(ΨH ⊗VR,i) + (IL ⊗ σ2
UVH

R,iVR,i))−1 with Ri =
diag(R1,i, · · · ,RNU ,i). RRH i sends the estimated channel
vector ĥi to the BBU via the fronthaul link. We assume
that the coherence block is sufficiently large, so that the
CSI overhead is amortized over many fronthaul channel uses.
As a result, the estimated channel vectors {ĥi for i ∈ R}
are available at the BBU without additional distortion due
to fronthaul transmission and does not violate the fronthaul
capacity constraint [35].

B. Weighted Sum-Rate Maximization

We consider the problem of maximizing the average WSR
of the UEs, while satisfying the per-RRH transmit power, fron-
thaul capacity and constant modulus constraints. The problem
is written as

maximize
VR

Eh

(
maximize
VD(h),Ω(h)

∑

k∈K
wkfk(VR,VD(h),Ω(h))

)

(37a)

s.t. gi(VD(h),Ωi(h)) ≤ Ci, i ∈ R, ∀h, (37b)

pi(VR,i,VD(h),Ωi(h)) ≤ Pi, i ∈ R, ∀h, (37c)

|VR,i,a,b|2 = 1, a ∈ M, b ∈ N , i ∈ R. (37d)

In problem (37), we account for the fact that while the RF
beamforming can only depend on long-term CSI, the digital
beamforming and fronthaul compression can be a function of
the instantaneous CSI.

1) Design of RF Beamforming: As discussed before, the RF
beamforming matrix affects both the downlink rate and
the quality of the estimated CSI via uplink training. In
this subsection, we focus on the design of matrices VR

by assuming only the long-term CSI on the covariance
matrices {Rk,i for k ∈ K, i ∈ R}. Adopting the SAA
method [22], we generate T instantaneous channel samples
h̃ � {h̃t for t ∈ T � {1, · · · , T }} based on the second-order
statistic {Rk,i for k ∈ R, i ∈ R} of the downlink channel
vectors. By approximating the objective function (37a) with an
empirical average as

∑
k∈K wkEh(fk(VR,VD(h),Ω(h))) ≈

∑
k∈K

∑
t∈T

wk

T fk(VR,VD(h̃t),Ω(h̃t)), we formulate the
problem as

maximize
VR,VD(h̃),Ω(h̃)

∑

k∈K

∑

t∈T

wk

T
fk(VR,VD(h̃t),Ω(h̃t)) (38a)

s.t. gi(VD(h̃t),Ωi(h̃t)) ≤ Ci, i ∈ R, t ∈ T , (38b)

pi(VR,i,VD(h̃t),Ωi(h̃t)) ≤ Pi, i ∈ R, t ∈ T , (38c)

|VR,i,a,b|2 = 1, a ∈M, b ∈ N , i ∈ R. (38d)

Similar to problem (10), we update the variables
{VD(h̃),Ω(h̃)} from Algorithm 1 and the analog RF
beamforming matrices VR from Algorithm 2 alternately until
convergence.

2) Design of Digital Beamforming and Fronthaul Compres-
sion: Based on the channel estimate obtained for the RF
beamforming matrices VR in Sec. IV-B.1, the BBU optimizes
the digital strategies VD and Ω. We write the downlink
received signal yk in (6) of the kth UE as

yk =
∑

l∈K
(ĥH

k V̄R + eH
k )vD,lsl + (ĥH

k V̄R + eH
k )q + zk, (39)

where ĥk = [ĥk,1 · · · ĥk,NR ] ∈ C
MNR×1 represents the

estimated channel vector from all RRHs to the kth UE, and
ek � hk − ĥk indicates the estimation error vector from all
RRHs to the kth UE, which is distributed as ek ∼ CN (0,Ek)
with Ek = diag(Ek,1, · · · ,Ek,NR). Here, the error covariance
matrix Ek,i is given as

Ek,i =
(
IM +

Lpk

σ2
U

Rk,iVR,i(VH
R,iVR,i)−1VH

R,i

)−1
Rk,i. (40)

Assuming that the estimation error and interference are
treated as the additive noise [36], the achievable rate for the
kth UE is computed as

f̄k(VD,Ω = log2 det
(
|ĥH

k V̄RvD,k|2 + ζ̄k(VD,Ω)
)

− log2 det(ζ̄k(VD,Ω)), (41)

where

ζ̄(VD,Ω)�
∑

l∈K\{k}
|ĥH

k V̄RvD,l|2+
∑

l∈K
vH

D,lV̄
H
R EkV̄RvD,l

+ ĥH
k V̄RΩ̄V̄H

R ĥk + tr(V̄H
R EkV̄RΩ̄) + σ2

D. (42)

Then, the WSR maximization problem is formulated as

maximize
VD ,Ω

∑

k∈K
wkf̄k(VD,Ω) (43a)

s.t. gi(VD,Ωi) ≤ Ci, i ∈ R, (43b)

pi(VR,i,VD,Ωi) ≤ Pi, i ∈ R. (43c)

As in problem (11), we adopt Algorithm 1 with minor modi-
fications.

C. Network Energy Efficiency Maximization

We also address the problem of jointly optimizing RF and
digital beamforming and fronthaul compression design with
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the goal of maximizing the average network EE. The problem
is written as

maximize
VR

Eh

(
maximize
VD(h),Ω(h)

∑
k∈K wkfk(VR,VD(h),Ω(h))
PT (VR,VD(h),Ω(h))

)

(44a)

s.t. (37b), (37c), (37d). (44b)

1) Design of RF beamforming: Adopting the SAA method,
the approximation problem of the original problem is written
as

maximize
VR,VD(h̃),Ω(h̃)

∑

t∈T

∑
k∈K wkfk(VR,VD(h̃t),Ω(h̃t))

TPT (VR,VD(h̃t),Ω(h̃t))
(45a)

s.t. (38b), (38c), (38d). (45b)

Since the objective function (45a) is a sum of ratios unlike the
average WSR maximization problem, the proposed algorithm
in Sec. III-B cannot be directly applied to the average network
EE maximization problem. To tackle this issue, we introduce
additional optimization variables α � {αt for t ∈ T } which
satisfy the non-convex constraint

ln(αt) ≤ ln(
∑

k∈K
wkfk(VR,VD(h̃t),Ω(h̃t)))

− ln(PT (VR,VD(h̃t),Ω(h̃t))), t ∈ T . (46)

Then, the problem can be equivalently recast as

maximize
VR,VD(h̃),Ω(h̃),α

∑

t∈T

αt

T
(47a)

s.t. (38b), (38c), (38d), (46). (47b)

However, since ln(αt) in (46) is a concave function, it is still
difficult to solve problem (47). To make the constraint (46)
more tractable, we also consider a convex upper bound on
ln(αt) as

ln(αt) ≤ ln(β(κ)
t ) +

αt

β
(κ)
t

− 1. (48)

By using the convex bounds (17), (26) and (48) and relaxing
the modulus constraint (38d), we formulate the problem

maximize
A

∑

t∈T

αt

T
(49a)

s.t. g̃i(VD(h̃t),Ωi(h̃t),Σ
(κ)
i (h̃t))≤Ci, i∈R, t∈T , (49b)

pi(VR,i,VD(h̃t),Ωi(h̃t)) ≤ Pi, i ∈ R, t ∈ T , (49c)

ε(VR,VD(h̃t),Ω(h̃t),u(κ)(h̃t),w̃(κ)(h̃t),ρ(κ)(h̃t)) (49d)

≥ lnβ(κ)
t +

αt

β
(κ)
t

− 1, t ∈ T ,

|VR,i,a,b| ≤ 1, i ∈ R, a ∈M, b ∈ N , (49e)

where A � {VR,VD(h̃),Ω(h̃),u(κ)(h̃), w̃(κ)(h̃),Σ(κ)(h̃),
ρ(κ)(h̃),α,β} with β � {βt for t ∈ T }. As in Sec. III-B,
to obtain the RF beamforming matrices VR, we update
the variables {VD(h̃),Ω(h̃)} and VR alternately until
convergence.

2) Design of Digital Beamforming and Fronthaul Compres-
sion: After channel estimation based on the RF beamforming
matrices VR in Sec. IV-C.1, the digital beamforming VD

and the fronthaul compression strategies Ω are computed by
solving the following problem

maximize
VD ,Ω

∑
k∈K wk f̄k(VD,Ω)
PT (VR,VD,Ω)

(50a)

s.t. (43b), (43c). (50b)

Problem (50) can be solved by the algorithm in Sec. III-B.1
with minor modifications. The performance of the proposed
algorithm will be evaluated by numerical results in Sec. V.

V. NUMERICAL RESULTS

In this section, we present numerical results to validate
the effectiveness of the proposed joint design of the RF
and digital processing strategies. Throughout the simulation
results, we consider the case of NU = 4 UEs, NR = 2 RRHs,
and M = 10 RRH antennas, and evaluate the sum-rate of the
UEs with wk = 1 for all k ∈ K. The length of pilot sequences
is set to L = NU , the uplink transmit power of all UEs is given
as pk = 1 for all k ∈ K, the circuit power per RF chain and
the static power consumed at the UE are respectively fixed as
PRF = 1 and PNU = 1, and each RRH has the same fronthaul
capacity C and the same downlink transmit power P for all
i ∈ R, i.e., Ci = C and Pi = P . In addition, we set the
downlink noise variance to be σ2

D = 1 so that the downlink
signal-to-noise ratio (SNR) is defined as SNR = P .

Following [34] and [37], we adopt the half wavelength-
spaced uniform linear antenna array model of the RRH anten-
nas such that the channel covariance matrix Rk,i is given as

Rk,i,a,b =
1

2Δk,i

∫ θk,i+Δk,i

θk,i−Δk,i

e−jπ(a−b) sin φdφ, (51)

where the angle of arrival θk,i and the angular spread
Δk,i have the distributions θk,i ∼ U(−π

3 ,
π
3 ) and Δk,i ∼

U( π
18 ,

2π
9 ), respectively. Here, the notation U(a, b) represents

a uniform distribution between a and b.

A. Perfect CSI Case

For the perfect CSI case, we compare the performance of
the proposed scheme in Sec. III with the following baseline
schemes.

• Fully digital: Fully digital beamforming is carried out
across all RRH antennas, where beamforming is designed
using Algorithm 1 with M = N .

• Reduced-rank digital: Fully digital beamforming is per-
formed under rank constraint equal to N . This is done by
running Algorithm 1 while omitting the projection step
in the update of RF beamforming.

• Random RF and optimized digital: The phases of the
RF beamforming matrices are randomly selected from an
independent and identically distributed (i.i.d.) distribution
U(0, 2π).

Fig. 2 illustrates the convergence behavior of the proposed
algorithm for one channel realization with C = 5 bps/Hz and
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Fig. 2. Convergence behavior for NU = 4, NR = 2, N = 2, M = 10,
C = 5 bps/Hz and SNR = 10 dB.

Fig. 3. Average sum-rate performance with respect to SNR with NU = 4,
NR = 2, N = 2 and M = 10.

SNR = 10 dB. The dashed line is obtained by the reduced-
rank digital scheme, while the solid line is attained from the
proposed algorithm. The figure shows that in spite of the
projection step, the proposed algorithm converges within a
few tens of iterations. In addition, the average per-iteration
running time of the proposed algorithm and the fully digital
scheme are 1.73 sec and 8.65 sec, respectively. As can be
seen, the number of RF chains is a important factor of the
algorithm’s running time.

Fig. 3 shows the average sum-rate with respect to the
downlink SNR for a C-RAN with C ∈ {2, 5} bps/Hz. The
proposed joint design of the RF and digital processing strate-
gies always outperforms the random RF beamforming scheme,
particularly at lower SNR, where the downlink channel sets
the performance bottleneck of the system. In a similar way,
the optimization of RF beamforming has a more significant
impact when the fronthaul capacity is larger. As the SNR
increases, the fronthaul capacity limitations become important,
and thus the proposed joint design approaches the sum-rate
of the fully digital scheme in spite of the limited number
of RF chains. Furthermore, by comparing the proposed WSR
maximization and the reduced-rank digital scheme, we can
check that the performance loss caused by the projection
step in the update of RF beamforming is small. In addition,
it is seen that the sum-rate performance of the proposed EE
maximization is consistent with the WSR approach at low
SNR, but is saturated to a lower value at high SNR. This is
because in this regime the additional power needed to further

Fig. 4. Average sum-rate performance with respect to N with NU = 4,
NR = 2, M = 10 and C = 5 bps/Hz.

Fig. 5. Average EE performance with respect to SNR with NU = 4, NR =
2, N = 2 and M = 10.

increase the sum-rate is not necessary from the viewpoint of
the EE.

In Fig. 4, we plot the average sum-rate with respect to
the number N of RF chains for the downlink of a C-RAN
with C = 5 bps/Hz and SNR ∈ {0, 20} dB. The sum-rate
of the proposed joint design increases more rapidly with N
as compared to that of the random RF beamforming scheme.
Also, when N is sufficiently large, both the proposed scheme
and random RF beamforming achieve sum-rate performance
very close to that of the fully digital beamforming scheme.
Similar to Fig. 3, the impact of RF beamforming is more pro-
nounced when the SNR is small for fixed fronthaul capacity. It
also confirms that the sum-rate performance gap between the
proposed WSR maximization and EE maximization becomes
larger as the SNR grows.

Next, to investigate the EE performance of the proposed
algorithm, Fig. 5 depicts the average EE with respect to the
downlink SNR for C ∈ {2, 5} bps/Hz. The figure illustrates
the fact that as the SNR increases, WSR becomes extremely
inefficient in terms of energy minimization. This is in contrast
to the schemes designed for EE maximization. Furthermore,
the fully digital architecture shows poor EE performance due
to the energy consumed by M RF chains at each RRH.

This point is further explored in Fig. 6, which shows the
average EE with respect to the number N of RF chains for
C = 5 bps/Hz and SNR = 20 dB. The main observation here
is that increasing the number of RF chains may exhibit a nega-
tive impact on the EE, particularly when the RF beamforming
is optimized.
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Fig. 6. Average EE performance with respect to N with NU = 4, NR = 2,
M = 10, C = 5 bps/Hz and SNR = 20 dB.

Fig. 7. Average sum-rate performance with respect to SNR with NU = 4,
NR = 2, N = 2, M = 10 and C = 5 bps/Hz.

B. Imperfect CSI Case

For the imperfect CSI case, we present the performance of
two baseline schemes for comparison. The first is a regularized
ZF method, whereby RF and digital beamforming is obtained
from the algorithm in [11] and fronthaul compression is
determined using Algorithm 1 for given digital beamform-
ing. The second is a channel estimation error minimization
scheme, where the RF beamforming matrices are computed
by minimizing the MSE based on the algorithm in [30], and
the digital processing is calculated from Algorithm 1.

Fig. 7 plots the average sum-rate with respect to the SNR for
a C-RAN with C = 5 bps/Hz and σ2

U ∈ {0, 1}. We consider
the cases of a noiseless uplink channel σ2

U = 0 (dashed line)
and a noisy uplink channel σ2

U = 1 (solid line). In spite
of the fact that the RF beamforming matrices are designed
based on long-term CSI, we can check that the proposed
WSR algorithm shows effective sum-rate performance. In the
presence of the channel estimation error σ2

U = 1, it is clear
that the proposed digital beamforming is much more robust
to the estimation errors in comparison to the regularized ZF
scheme. Also, although the impact of RF beamforming on the
channel estimation error is considered, the channel estimation
error minimization scheme is seen to yield suboptimal sum-
rate performance.

In Fig. 8, we illustrate the impact of the fronthaul capacity
C for a C-RAN with SNR = 5 dB and σ2

U ∈ {0, 1}.
The proposed WSR scheme exhibits the average sum-rate
which increases more rapidly with C as compared to the
random RF beamforming and regularized ZF schemes. It is

Fig. 8. Average sum-rate performance with respect to C with NU = 4,
NR = 2, N = 2, M = 10 and SNR = 5 dB.

Fig. 9. Average sum-rate performance with respect to M with NU = 4,
NR = 2, N = 2, C = 5 bps/Hz and SNR = 10 dB.

Fig. 10. Average EE performance as a function of SNR with NU = 4,
NR = 2, N = 2, M = 10 and C = 5 bps/Hz.

also observed that the proposed WSR scheme achieves the
sum-rate performance close to the fully digital scheme at a
small C. In addition, the performance loss caused by the
channel estimation error is relatively minor for the proposed
WSR scheme as compared to the fully digital and random RF
beamforming strategies, although the impact of RF beamform-
ing on the channel estimation error is ignored.

Fig. 9 depicts the average sum-rate in terms of the number
M of antennas for a C-RAN with SNR = 10 dB, C = 5
bps/Hz and σ2

U ∈ {0, 1}. We can see that the average sum-
rate performance gap between the fully digital scheme and
the proposed WSR scheme becomes smaller as M grows.
One interesting observation is that while the performance of
the schemes with the optimized RF beamforming increases
with M , the sum-rate of the random RF beamforming scheme
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decreases. This implies that the optimization of RF beamform-
ing is more significant when M is larger.

Fig. 10 shows the average EE as a function of the SNR with
C = 5 bps/Hz and σ2

U ∈ {0, 1}. Similar to Fig. 5, we observe
that when the SNR is sufficiently large, the proposed EE max-
imization scheme outperforms WSR. Furthermore, the pro-
posed joint design exhibits performance robust to channel
estimation errors compared to randomized beamforming.

VI. CONCLUSIONS

We have studied the joint design for the downlink of a
C-RAN with hybrid analog-digital antenna arrays. Specif-
ically, we have jointly optimized the digital beamforming,
the fronthaul compression and the RF beamforming strategies
with the goal of maximizing the WSR and the network EE,
while satisfying the per-RRH power, fronthaul capacity and
constant modulus constraints. We have proposed an iterative
algorithm that achieves an efficient solution under perfect
CSI. Furthermore, we have discussed the case of imperfect
CSI based on the uplink channel training. Numerical results
have confirmed the effectiveness of the proposed algorithm.
Also, we have illustrated the impact of imperfect CSI on
the downlink sum-rate and network EE performance and
shown that the proposed scheme is robust to the estimation
errors. As some interesting directions for future researches,
we mention the development of a globally optimal algorithm
and a design with low-resolution analog RF beamforming. In
addition, it will be interesting to consider joint multivariate
compression also for this structure where the RRH focuses on
analogue processing. Furthermore, an uplink-downlink duality
for this linear type pre-processing at the RRH remains as future
work, where the idea is to extend the single user case [38] to
multiple users.
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