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Global mobile traffic growth
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e Based on measurement from commercial networks
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* Evolving in:

Evolution of mobile networks

— Network dimensioning and architecture
— Capacity

(clfin

5G network
architecture

(\
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@ Distributed RAN
@ Centralized RAN
@ Virtualized RAN
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Future transport capacity needs
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Backhaul capacity per site in Distributed RAN C2 (eCPRI) capacity in Centralized RAN

PAONRS 2022 2025

2022 2025
Low — high sites Low — high sites Low — high sites

Low — high sites Low — high sites
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Suburban  $100 Mbps = 350 Mbps 300 Mbps — 5 Gbps SEESIE Wl

15-25Gb 25-40Gb
(3 sector) Ps Ps

50 Mbps — 150 Mbps 100 Mbps — 600

Mbps Source Ericsson (2018)

Microwave products capable to support the 2025 need available today!
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Global backhaul media distribution G
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Spectrum Horizon @3
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The W-band and the D-band &
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In total 46.5 GHz for fixed wireless application
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FCC Spectrum Horizon: 95-275 GHz for FS ®%
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(a) Bands with light-license (similar to the E-band), totally 36 GHz for fixed service
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(Ref. Y. Li and J. Hansryd, APMC 2018)

Our next battle field for PtP links is towards sub-millimeter-wave!
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Challenges with mmW & sub-mmW

 The output power of solid-state
amplifiers decreases with frequency,

generally as f % (a=2~3)

50

Psat (dBm)

— Loss 10+ dB from the W-band to the D-
band (frequency doubling)
— The power level is improved by nearly 20+

over the last 10 years ° 2010 2012 ]
* Approximately 2dB improvement each year!

Source; Sining An (2018)
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Challenges with mmW & sub-mmW

e Chip interconnect and packaging become

increasingly difficult, particularly for Si-based
MMICs

* antenna on-chip or in package if possible!

* Unwanted resonance modes may easily develop [ R sad 30x60 une 7
in MMICS Su bStrateS ere,bondlng E- probe backshort

] .. . L . for transition, mmW substrate
* Modeling is increasingly difficult at high
frequencies

* Phase noise increases, typically by 6 dB per '?2*;‘:'::‘}% if::f:g:;
frequency doubling ( (1IN ) s ::::
. . . . \N\\N~~wrs/ Eiiidaded
* Receiver noise figure increases Q::-::Z'. :;;;:ig
> S/N degrades fast with frequency! Phase noise impact AM & PM white noise
$IEEE /W LY R —
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How to transfer the “precious”
mmW RF power from MMIC to
antenna port?

The solution to be developed must be:

* Volume manufacturable

— Automatic assembly, good repeatability (= high yield), tolerable
(= insensitive to process variations), etc.

e Commercially affordable

o 18
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e Heterogenous system integration on
2% micromachined platform

* Ultra-low loss THz waveguide,
silicon micromachined

« Embedded high-Q passives (e.g.,
filter, diplexer, power

MMIC (SiGe, InP, GaAs)

splitter/combiner) epto2s Tz

« MEMS-based tunable -
CompOneﬂtS, eg, phase Sh|fter’ reconfigurability
filters

* D-band Tx/Rx modules o e
successfully demonstrated

Source: Joachim Oberhammer (KTH, Sweden)

(November, 2018)

— EU Horizon-2020 project, M3TERA
(2015-2018)
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A
Silicon Micromachined Waveguide ®
Example Structure:
Silicon wafer-2
5 mw T o 2 BTl s
» Deep-etching M3TERA ficucial
> Wafer bonding ¢ marks for
automatic
assembly

» H-plane split =& MMIC placed in H-plane
» H-plane MMIC to waveguide transition is
necessary!
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MMIC to waveguide transition
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D-band Tx/Rx modules in the micromachined platform

= - -‘4:,, o e - & 4 5

HBT (from Infineon)

 Micromachined platform
with DC, IF and LO routing

* Non-gavanic transition
between MMIC and the
waveguide

* Automatic assembly of the
MMIC and the passive
components

(Platform)

i SiCbogrd 5
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Example of a completely
assembled D-band front-end
module (120-150 GHz)

Circuits and modules
developed in the M3TERA
project

Dedicated design for the
transition from the
micromachined Si chip to a
metal waveguide (patent
application filed April 2019)

Proof-of-concept demonstrator

A receiver module

Micromachined Si chip-to-antenna transition




Link test setup
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The 2019 IEEE MTT-§
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CW test results
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* Using Ericsson’s
Modem for commercial
products

Real-time data transmission
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Outdoor D-band link, long-term measurement

Received power vs time and rain
T T T T
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Breaking the 100 Gbps barrier ®§

E-, W- and D-band
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Spectrum efficiency required for 100 Gbps ®§

60

e ~40 bps/Hz
spectrum efficiency is
required to achieve
100 Gbps using a
~2.5 GHz channel

* Line-of-sight MIMO is
necessary in addition
to polarization
multiplexing

50

40 = - 100Gbps
1

30

20

Spectrum efficiency [bps/Hz]

10

0 500 1000 1500 2000 2500 3000 3500 4000
Channel bandwidth [MHz]

Source: Ericsson (2017)
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Line-of-sight MIMO &2

RFIC
Adaptive signal
processing

THE HUE OF MICROWAVES

Spatially separated
antennas give path
phase difference A

Optimal antenna
separation: d,d, = DA/2
give A = 90°

<$IEEE /VW\
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Line-of-sight MIMO setup in Athens
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e 8x8 LoS-MIMO (4 spatial + 2 pol.)

* Using commercial E-band radios (Ericsson)
 Hop distance, 1.5 km

* Optimal antenna separation, 1.72 m ——— ‘ e
T - -3 (E

d d

i // '\\ / \\
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MIMO channel 3

MIMO channel 4
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data rate
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data rate
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i\\? 139 Gbps (55.6 bps/Hz)
April 12, 2019
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Throughput at non-optimum antenna o
separation
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Summary and conclusions
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 Microwave solution: capable to support the evolution of backhaul networks
towards 2025

— up to 40 Gbps demonstrated using existing E-band radios
* Higher and higher frequencies (>100 GHz) will be taken into use for fixed services,
e.g., point-to-points radio links
— Short-term: the W- & D-band to be in commercial first
— longer term: towards sub-mmW (up to 275 GHz proposed )

* Chip interconnect and packaging are challenging at mmW & sub-mmW, particularly
for Si-based MMICs

— Heterogenous integration, antenna-on-chip or in-package if possible

100+ Gbps microwave link using single carrier frequency is no longer a dream but a
reality

— Microwave: a future-proof solution for beyond 5G

o The 2019 IEEE
$IEEE /V\ 0 IMS Eirmmn
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Some future perspective

* High-order line-of-sight MIMO is promising
when the frequency goes up,

— Short hop distance & high frequency =
compact antenna arrangement

* With 100 Gbps being achieved, what is
the next barrier to break?

— Tbhps microwave is not impossible

A mock-up for 8x8 LoS-MIMO at D-band
(target at 200m hop distance)
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