

High-capacity mmW point-to-point radio links for 5G and beyond: >100 GHz, >100 Gbps

Yinggang Li, Mikael Hörberg and Jonas Hansryd

Ericsson Research, Ericsson AB

Gothenburg, Sweden

WSF-8

- Background
- Spectrum Horizon
- Challenges with mmW & submmW
- Ex. D-band research & development
- Conclusions and future perspective

Global mobile traffic growth

• Based on measurement from commercial networks

Smartphone subscriptions by technology source: Ericsson (2018)

nternational Microwave Symp

Evolution of mobile networks

- Evolving in:
 - Network dimensioning and architecture
 - Capacity

All point-to-point links, *the solid lines*, can be realized in microwave

International Microwave Sy

Future transport capacity needs

Backhaul capacity per site in Distributed RAN

C2 (eCPRI) capacity in Centralized RAN

	2018 Low – high sites	2022 Low – high sites	2025 Low – high sites		2022 Low – high sites	2025 Low – high sites
Urban	150 Mbps – 1 Gbps	450 Mbps – 10 Gbps	600 Mbps – 20 Gbps	Massive MIN (1 sector)	O 10 - 15 Gbps	15 - 25 Gbps
Suburban	100 Mbps – 350 Mbps	200 Mbps – 2 Gbps	300 Mbps – 5 Gbps	Massive MIN (3 sector)	O 15 - 25 Gbps	25 - 40 Gbps
Rural	50 Mbps – 150 Mbps	75 Mbps – 350 Mbps	100 Mbps – 600 Mbps	Sc	urce Ericsson (2018)	

Microwave products capable to support the 2025 need available today!

The 2019 IEEE MTT-S International Microwave S 2-7 June 2019 Boston, MA

Global backhaul media distribution

The 2019 IEEE MTT-S International Microwave Sympos

Spectrum Horizon

The W-band and the D-band

100%

20%

0%

Deployment share per frequency Source: Ericsson (2017)

Source: Ericsson Technology Review 2017, https://www.ericsson.com/assets/local/publications/ericsson-technologyreview/docs/2017/etr-beyond-100ghz.pdf

International Microwave Symposiu

The 2019 IEEE MTT-S

FCC Spectrum Horizon: 95-275 GHz for FS

(a) Bands with light-license (similar to the E-band), totally 36 GHz for fixed service

(b) Bands with strict-license (similar to the conventional bands), totally 66.2 GHz

Our next battle field for PtP links is towards sub-millimeter-wave!

International Microwave Sy

Challenges with mmW & sub-mmW

- The output power of solid-state amplifiers decreases with frequency, generally as $f^{-\alpha}$ (α =2~3)
 - Loss 10+ dB from the W-band to the Dband (frequency doubling)
 - The power level is improved by nearly 20+ over the last 10 years
 - Approximately 2dB improvement each year!

Source; Sining An (2018)

Challenges with mmW & sub-mmW

- Chip interconnect and packaging become increasingly difficult, particularly for Si-based MMICs
 - antenna on-chip or in package if possible!
- Unwanted resonance modes may easily develop in MMICs substrates
- Modeling is increasingly difficult at high frequencies
- Phase noise increases, typically by 6 dB per frequency doubling
- Receiver noise figure increases
- → S/N degrades fast with frequency!

D-band RF pad, 30x60 $\mu m^2,$ challenging for wire bonding

Wire-bonding, E-probe, backshort for transition, mmW substrate

AM & PM white noise

The 2019 IEEE MTT-S International Microwave Sympo 2-7 June 2019 Boston, MA

WSF-8

How to transfer the "precious" mmW RF power from MMIC to antenna port?

The solution to be developed must be:

- Volume manufacturable
 - Automatic assembly, good repeatability (= high yield), tolerable (= insensitive to process variations), etc.
- Commercially affordable

WSF-8

Heterogenous system integration on micromachined platform

- Ultra-low loss THz waveguide, silicon micromachined
- Embedded high-Q passives (e.g., filter, diplexer, power splitter/combiner)
- MEMS-based tunable components, e.g., phase shifter, filters
- D-band Tx/Rx modules successfully demonstrated (November, 2018)
 - EU Horizon-2020 project, *M3TERA* (2015-2018)

Silicon Micromachined Waveguide

Example **Structure**:

- Deep-etching
- Wafer bonding
- H-plane split → MMIC placed in H-plane
- H-plane MMIC to waveguide transition is necessary!

ficucial marks for automatic assembly

Source: Joachim Oberhammer (KTH, Sweden)

nternational Microwave Symp

CONTINUES THE 2019 IEEE MTT-S International Microwave Symposium 2-7 June 2019 Boston, MA

D-band Tx/Rx modules in the micromachined platform

- MMICs in 0.13µm SiGe HBT (from Infineon)
- Micromachined platform with DC, IF and LO routing
- Non-gavanic transition between MMIC and the waveguide
- Automatic assembly of the MMIC and the passive components

Proof-of-concept demonstrator

- Example of a completely assembled D-band front-end module (120-150 GHz)
- Circuits and modules developed in the M3TERA project
- Dedicated design for the transition from the micromachined Si chip to a metal waveguide (patent application filed April 2019)

Micromachined Si chip-to-antenna transition

Link test setup

 $\langle \Phi \rangle$

The 2019 IEEE MTT-S International Microwave Symposium 2-7 June 2019 Boston, MA

Real-time data transmission

ARFTO REIC

- 0 **X**

 Using Ericsson's Modem for commercial products

5. 2		19) S.A.	n y ar ge
			S. 19 15 16
1		\$. \$	a w y a
÷.			* * *
a.	Я.,	S) 8	* * * *
نى ئۇر	· •	*	
		* * * *	
		· · · · · · · · · · · · · · · · · · ·	

Receiver Information	n			-Lock Indicators	
Int AGC Gain	4.6 [dB]			🔴 AGC	
Ext AGC Gain/Pwm:	8.8	17.6 [%]		Timing	
Ext. Back Off [Input/Inband]] -12.0 [dB]	-16.6 [dB]			
MSE [Norm/Rad/Worst]	-25.0 [dB]	-24.3 [dB]	-24.9 [dB1	Preamble	
Res Phase Noise:	1.5 [deg]			FEC	
ACMB Profile:	10 [64QAM]			Lock	
ACMB Engine (Rx):	Enabled				
ACMB Engine (Tx):	Enabled			Network	
Symbol Rate:	222.000 [MBaud]				
Decimation Ratio	0.082223			ACMB Engine	
LDPC Decoder Stress:	N/A			Enable ACMB Set	
Total Freq Correction	144 010 288 [Hz]				
PSAM Freq Correction	-4 [Hz]			Local 10 💌	
Freq. Correction	-144 010 284				
Transmitter Informat		Remote 10 -			
ACMB Profile:	0 [64QAM]			Inc Local+Remote	
Symbol Rate: 2	22.000 [MBaud]			Deal and Deals	
nterpolation Ratio 2	1.621643			Dec Local+Remote	
Freq Correction) [Hz]			Acquire Parameters	
Gain Correction 4	.5 [dB]			Acquisition Last used	
Symbol Time Factor 1	.000000 129.635 [Mbps]			Spectral Inv Mode:	
Actual Bit Rate 1					
Remote MSE/RPN: F	Remote LOL	Remote LOL		Last Acquire SUCCESS Error:	
				Acquire	

The 2019 IEEE MTT-S International Microwave Symposium

Measurement results

Outdoor D-band link, long-term measurement

Ref. M. Hörberg, Y. Li, V. Vassilev, H. Zirath, and J. Hansryd, "A 143 GHz InP-Based Radio Link Characterized in Long-Term Outdoor Measurement," Asia-Pacific Microwave Conference (APMC), 2018, pp. 234-236

Breaking the 100 Gbps barrier

Spectrum efficiency required for 100 Gbps

- ~ 40 bps/Hz spectrum efficiency is required to achieve 100 Gbps using a ~2.5 GHz channel
- Line-of-sight MIMO is necessary in addition to polarization multiplexing

Line-of-sight MIMO

Line-of-sight MIMO setup in Athens

- 8x8 LoS-MIMO (4 spatial + 2 pol.)
- Using commercial E-band radios (Ericsson)
- Hop distance, 1.5 km
- Optimal antenna separation, 1.72 m

100+ Gbps using single carrier frequency

- First 100+ Gbps microwave link using commercial radios
- World record throughput, 139 Gbps over 1.5 km
- World record spectrum efficiency, 55.6 bps/Hz
- 99.995% availability with 100 Gbps data rate
- 99.99% availability with 125 Gbps data rate

Sucessfully demostrated on April 12, 2019 at Athens

Ex. 64QAM in 2.5 GHz channel bandwidth

Spectrum efficiency: state of the art

International Microwave Symposium

Throughput at non-optimum antenna separation

>99.99% availability at 100 Gbps for 0.8m offset

333

RFIC

Summary and conclusions

- Microwave solution: capable to support the evolution of backhaul networks towards 2025
 - up to 40 Gbps demonstrated using existing E-band radios
- Higher and higher frequencies (>100 GHz) will be taken into use for fixed services, e.g., point-to-points radio links
 - short-term: the W- & D-band to be in commercial first
 - longer term: towards sub-mmW (up to 275 GHz proposed)
- Chip interconnect and packaging are challenging at mmW & sub-mmW, particularly for Si-based MMICs
 - Heterogenous integration, antenna-on-chip or in-package if possible
- 100+ Gbps microwave link using single carrier frequency is no longer a dream but a reality
 - Microwave: a future-proof solution for beyond 5G

Some future perspective

- High-order line-of-sight MIMO is promising when the frequency goes up,
 - Short hop distance & high frequency → compact antenna arrangement
- With 100 Gbps being achieved, what is the next barrier to break?
 - Tbps microwave is not impossible

A mock-up for 8x8 LoS-MIMO at D-band (target at 200m hop distance)

Acknowledgement

- Dr. Klas Eriksson (Ericsson): for his module test and measurement
- All partners in M3TERA project, especially
 - Dr. Simon He and Prof. Herbert Zirath (Chalmers), for the development of MMICs and the MMIC-to-micromachined waveguide transition
 - Dr. James Campion and Prof. Joachim Oberhammer (KTH), for the design and manufacturing of the micromachined platform
- Part of the presented data are results from M3TERA project funded by EU's Horizon 2020 programme under grant agreement No 644039

