

Claudia Hinrichs¹, Dmitry Sein¹, Qiang Wang¹, Thomas Jung¹ ¹ Alfred-Wegener Institut

Influence of Atmospheric and Oceanic Model Resolution on Volume and Heat Transports through Arctic Gateways

The coupled climate model OASIS AWI-CM = FESOM (ocean/sea-ice) \leftrightarrow ECHAM (atmosphere)

The experiment (Sein et al. 2018) Six 150-year RCP 8.5 simulations:

- LR ocean (~25km*) + LR atmosphere (T63)
- LR ocean (~25km*) + HR atmosphere (T127)

Unstructured ocean grids

- HR ocean (~10km*) + LR atmosphere (T63)
- HR ocean (~10km*) + HR atmosphere (T127)
 - + 2 control runs

* at the Arctic gateways/Nordic Sea

Fig 2: Net volume transport [Sv] through Atlantic gateways, 10-year moving mean

	me	ean*	Volumo transport in [Sv]		
Scenario	1990-2015	2070-2095	Obs***	6.6+/-0.4	
Volume transpor	+ [Sv]		core_T063_scen	6.9	5.2
Obe**	2 0 . / 2	7	core_T127_scen	7.5	5.5
005**	-2.0+/-2.	/	bold T063 scen	6.9	6.9
core_1063_scen	-1.2	-2.7	hold T127 scen	59	6.6
core_T127_scen	-2.5	-3.3	5010_112/_5001	5.5	
<pre>bold_T063_scen</pre>	-1.0	-1.2	Volume transport	out [Sv]	
bold_T127_scen	-1.5	-1.4	core_T063_scen	-8.1	-7.8
<pre>* positive into the Arctic Ocean ** Ilical of al 2016</pre>			core_T127_scen	-10.0	-8.8
			bold_T063_scen	-7.9	-8.1
·· IIICak et a	11. 2010		1 1 1 7407	7 4	0.0

Fig 3: Net heat transport [TW] through Atlantic gateways, 10-year moving mean

- LR ocean greater future change in absolute net volume transports at both gateways
- At Fram Strait, in LR ocean, decrease in inflow (and outflow), HR ocean little change
- At BaSO, LR ocean greater change in inflow only (not shown)
- BaSO heat transport correlated to volume increase

bold_ll2/_scen ***Besczynska-Moeller et al. 2012

Tab1: Fram Strait mean volume transports

- Both ocean and atmosphere resolution contribute to AMOC representation in a complex way (see Sein et al. 2018)
- All scenarios show decrease of AMOC strength towards the end of 21st century
- HR ocean sees greater decrease of AMOC (here shown at 60°N)
- Fram+BaSO inward transport also downward trend, but correlation with AMOC 60N varies over time

- Besides the large scale NAO-pattern, local wind patterns are also important for transports into the Barents Sea and Fram Strait (see e.g. Chafik et al. 2015)
- E.g. HR ocean shows higher wind stress (curl) over the GIN Sea in present and future scenario and an along-shore wind pattern at the Norwegian coast

Conclusion

- When assessing the exchange between the Nordic Seas and the Arctic Ocean in future scenarios both ocean and atmospheric resolution play a role for volume and heat transport estimates
- Each resolution has complicated impacts on upstream (AMOC) and local (Nordic Seas and Arctic Ocean) conditions
- Not shown here are the SSH pattern for each scenario which are also important for Arctic inflow and outflow

References

Beszczynska-Möller, Agnieszka, et al. "Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010." ICES Journal of Marine Science 69.5 (2012): 852-863

Chafik, L., et al. "On the flow of Atlantic water and temperature anomalies in the Nordic Seas toward the Arctic Ocean." Journal of Geophysical Research: Oceans 120.12 (2015): 7897-7918

Ilicak, Mehmet, et al. "An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes." Ocean Modelling 100 (2016): 141-161 Sein, Dmitry V., et al. "The relative influence of atmospheric and oceanic model resolution on the circulation of the North Atlantic Ocean in a coupled climate model." Journal of Advances in Modeling Earth Systems 10.8 (2018): 2026-2041

APPLICATE.eu **HELMHOLTZ** HELMHOLTZ-ZENTRUM EÜR POLA **GEMEINSCHAF** dvanced prediction polar regions and beyond BREMERHAVE Am Handelshafen 27570 Bremerhaver

Telefon 0471 4831-0 www.awi.de