Towards Understanding the Origin and Evolution of Ultra-Diffuse Galaxies

Abell 85, *z*=0.05

Remco van der Burg ESO Garching

Cristóbal Sifón, Adam Muzzin, Henk Hoekstra, Jérémy Fensch, Eric Emsellem KiDS & GAMA Collaborations

A long history of Low Surface-Brightness galaxies...

van Dokkum et al. 2015b, after Brodie et al. 2011 LSBs have been known before

 (Impey+88, Bothun+91, Turner+93, Dalcanton+97, ...)

 Ultra-Diffuse Galaxies (UDGs)

 are extremes in the sizeluminosity diagram:

r_{eff}>1.5 kpc

 $\langle \mu(r, r_{eff}) \rangle \approx 25 \text{ mag arcsec}^2$

How do these large variations in dwarf galaxy properties fit in our LCDM model of galaxy formation?

What do we know/ need to know?

- Abundant in galaxy clusters
 (e.g. van Dokkum+15, Mihos+15, vdBurg+16, Venhola+17)
 - Tidally disturbed/heated "normal" dwarf galaxies?
 - Massive halo "failed" to form proper galaxy?
- Also in groups and some in isolation
 - Where do they originate from?

(e.g. Merrit+16, Roman&Trujillo 17)

- How have they formed?
 - External processes or internal to a galaxy?
 - Most models suggest internal processes

(e.g. Amorisco & Loeb 2016, Di Cintio+17, Chan+18, Carleton+18)

Systematic studies in other environments and halo mass measurements essential to make progress

The UDG abundance from clusters to groups

- Kilo-Degree Survey (KiDS)
 - Clean *r*-band imaging down to $\sim 25.5 \text{ mag arcsec}^2$ over $> 1000 \text{ deg}^2$

vdBurg+17 A&A, 607, 79

- Galaxy And Mass Assembly (GAMA) spectroscopic survey (with AAT)
 - 325 spectroscopic groups up to redshift 0.10 (three equatorial fields)
- 200 deg² overlap between GAMA and KiDS

The UDG abundance from clusters to groups

• UDGs also in groups

(cf. Román & Trujillo 17; Merritt+16)

• Abundance scales steeply with mass

The UDG abundance from clusters to groups

vdBurg+17

Bright galaxies "Richness -mass relation" shallower than 1:1 0 UDGs are relatively more common in more massive haloes 0

UDGs are relatively more common in more massive haloes

- Why? Not yet clear...
- Are they a fixed fraction of the general dwarf galaxy population?
 - Possible upturn of the luminosity function at the faint end (Popesso+05, Beñados+10, Lan+16)
- Combination of UDGs formed in different ways?
 - O Internal versus externally driven processes?

Measuring halo masses of UDGs

- Using Globular Clusters
 - N_{GC} tight correlation with halo mass (Forbes+18)
 But some UDGs seem to have very strange GC systems
- (Beasley+16, Amorisco+16, Toloba+18, Prole+19)
 - Using Globular Clusters as dynamical tracers
- Use stellar tracers of the potential
 - Becoming more efficient with IFU spectrographs

MUSE@VLT KCWI@Keck MANARA@GTC

- Measure masses of UDGs using weak gravitational lensing
 - 784 UDGs in 18 clusters
 - \circ 2σ upper limit average M₂₀₀ ≤ 10^{11.8} M_☉ (Sifón, vdBurg+18)

Direct mass measurements of UDGs

AN OVERMASSIVE DARK HALO AROUND AN ULTRA-DIFFUSE GALAXY IN THE VIRGO CLUSTER

MICHAEL A. BEASLEY^{1,2}, AARON J. ROMANOWSKY^{3,4}, VINCENZO POTA⁵, IGNACIO MARTIN NAVARRO^{1,2,4}, DAVID MARTINEZ DELGADO⁶, FABIAN NEYER⁷, AND AARON L. DEICH³

A HIGH STELLAR VELOCITY DISPERSION AND ${\sim}100$ GLOBULAR CLUSTERS FOR THE ULTRA-DIFFUSE GALAXY DRAGONFLY 44

Pieter van Dokkum¹, Roberto Abraham², Jean Brodie³, Charlie Conroy⁴, Shany Danieli¹, Allison Merritt¹, Lamiya Mowla¹, Aaron Romanowsky^{3,5}, and Jielai Zhang²

GLOBULAR CLUSTERS INDICATE THAT ULTRA-DIFFUSE GALAXIES ARE DWARFS

MICHAEL A. BEASLEY^{1,2} AND IGNACIO TRUJILLO^{1,2}

The globular cluster systems of 54 Coma ultradiffuse galaxies: statistical constraints from HST We find no candidate for a GCS

data as rich as that of the Milky Way, our sample has GCSs typical of dwarf galaxies. N C Amorisco ☎, A Monachesi, A Agnello, S D M White

A galaxy lacking dark matter

Pieter van Dokkum¹, Shany Danieli¹, Yotam Cohen¹, Allison Merritt^{1,2}, Aaron J. Romanowsky^{3,4}, Roberto Abraham⁵, Jean Brodie⁴, Charlie Conroy⁶, Deborah Lokhorst⁵, Lamiya Mowla¹, Ewan O'Sullivan⁶ & Jielai Zhang⁵

CURRENT VELOCITY DATA ON DWARF GALAXY NGC1052-DF2 DO NOT CONSTRAIN IT TO LACK DARK MATTER

NICOLAS F. MARTIN^{1,2}, MICHELLE L. M. COLLINS³, NICOLAS LONGEARD¹, ERIK TOLLERUD⁴

The ultra-diffuse galaxy NGC 1052-DF2 with MUSE:I. Kinematics of the stellar body*ArXiv:1812.07345

Eric Emsellem^{1,2}, Remco F. J. van der Burg¹, Jérémy Fensch¹, Tereza Jerabkova^{1,3,4}, Anita Zanella¹, Adriano gnello^{1,5}, Michael Hilker¹, Oliver Mller⁶, Marina Rejkuba¹, Pierre-Alain Duc⁶, Patrick Durrell⁷, Rebecca Haba Federico Lelli¹, Sungsoon Lim⁹, Francine R. Marleau⁸, Eric Peng^{10,11}, Rubén Sánchez-Janssen¹²

The ultra-diffuse galaxy NGC 1052-DF2 with MUSE: ArXiv:1812.07346 II. The population of DF2: stars, clusters and planetary nebulae*

Jérémy Fensch¹**, Remco F. J. van der Burg¹, Tereza Jeřábková^{1,2,3}, Eric Emsellem^{1,4}, Anita Zanella¹, Adriano Agnello^{1,5}, Michael Hilker¹, Oliver Müller⁶, Marina Rejkuba¹, Pierre-Alain Duc⁶, Patrick Durrell⁷, Rebecca Habas⁸, Sungsoon Lim⁹, Francine R. Marleau⁸, Eric Peng^{10,11} and Rubén Sánchez Janssen¹²

NGC 1052 – DF2 – Stellar body VLT/MUSE spectrum: 5.1h on-source integration ArXiv:1812.07345

NGC 1052 – DF2 – Stellar body VLT/MUSE spectrum: 5.1h on-source integration ArXiv:1812.07345

- Deep spectrum to constrain velocity dispersion of the stellar body and possible velocity trend
- Independent constraint using 15 tracers (instead of 10)
 - Velocities for 2 additional globular clusters, improved velocities for 5 others
 - Identification and velocity measurements of 3 Planetary Nebulae

 $\sigma_{\text{tracers}} = 10.6^{+3.9}_{-2.3} \text{ km/s}$ $\sigma_{\text{stars}} = 10.8^{+3.2}_{-4.0} \text{ km/s}$

NGC 1052 – DF2 – Stellar body

Emsellem,vdB+19 ArXiv:1812.07345

 $M_{\rm dyn} \approx 2 - 4 \cdot 10^8 \, {\rm M}_{\odot}$

- Appears to indeed have a low total mass for its stellar mass (cf. Danieli+19 for complementary spectrum with Keck/KCWI)
- Large scatter in halo mass versus stellar mass in this regime
 - Other galaxy in the same group seems to have similar properties, but not yet measured $\sigma_{\text{stars}(\text{van Dokkum+19})}$

Summary

- Formation and evolution of UDGs poorly understood
 - How do they fit in our current framework of galaxy formation?
 - Theoretical models and simulations make testable predictions
- A study combing KiDS with GAMA groups shows that UDGs are relatively more common in clusters than in groups
 vdBurg+17
- Weak lensing study rules out (at 2σ) that they are "failed massive galaxies"
 Sifón,vdBurg+18
 - Evidence for extreme individuals and thus large intrinsic scatter
- Both studies suggest combination of different mechanisms to form UDGs