
A Model for

Contextual Data Sharing in Smartphone Applications

Harshvardhan J. Pandit

A thesis submitted to the National University of Ireland, Cork

in fulfillment of the requirements for the degree of

Master of Science by Research

June 2015

Research Supervisor Adrian O’Riordan

Head of Department Prof. Barry O’Sullivan

Department of Computer Science,

National University of Ireland, Cork.

Abstract

The advent of smartphones as a computing device has resulted in a shift in focus towards

the design and development of smartphone applications or apps, that allow the user to

complete a wide range of tasks on their devices. The users depend on apps installed on

their smartphones to access services such as emails, photos, music, browsing, messaging

and telephony. However, the overall user experience is disjointed as users are required

to use multiple apps to complete a task where each app requires the user to enter the

same information as the apps cannot share the data contextually.

This thesis investigates how smartphone apps can perform contextual data sharing

with an emphasis on practical integration into the existing platforms and app models.

The identification of information and its associated context is necessary to create con-

text definitions that allow different apps to identify the context of the shared data. An

approach to model the Context Definitions using computer science concepts such as

object-oriented data structures provides flexibility. A context datastore is defined to

store and share contextual information between apps, which creates an independence

between apps for acquiring information and provides compatibility with the existing

security models on various platforms. The model allows apps to retrieve contextual

data in a simple and efficient manner without interacting directly with the other apps.

This thesis explains the author’s hypothesis of creating contextual services in apps

based on the availability of contextual information on a smartphone device. An imple-

mentation of the model proving the hypothesis is presented on Android using native

tools and technologies available on the platform. The demonstration aims to show the

viability of the model through use cases, evaluations and performance metrics.

Finally, the author provides recommendation for developers in adoption of the model,

and the efforts required to integrate the implementation into existing platforms and

apps. Further research avenues are identified that define the future of research in this

area.

ii

Acknowledgments

‘If we knew what it was we were doing,

it would not be called research, would it?”

- Albert Einstein

I started this research course full of eagerness and excitement. There came many

times when I was stuck, stalled, or even frustrated. The support I received from my

parents, friends, and colleagues went a long way in keeping me firmly rooted and

determined to complete my work. I would like to acknowledge and thank them for

everything they have done in support of me and my work.

I would like to thank my supervisor, Adrian O’Riordan, without whom my work

and research would never have been completed. His guidance, support, patience, and

helpfulness were of great help.

I would also like to thank my advisor, John O’Mullane, who gave support, time, and

valuable insight that motivated me to do better.

I would like to thank my colleagues from the Computer Science department, who

provided companionship and gave valuable feedback. I would like in particular to

thank Gareth W. Young, the other inmate in Lab 2.08, for helping me when I was

stuck, tolerating me, and for providing guidance. I also would like to thank Cathal

Hoare, and Michael O’Sullivan for their valuable insights, discussions and guidance. I

would also like to thank the other people I met in lab 2.08 - Tracey, Katie, and Tamara

for their company.

I would like to thank the people I met and helped as a Demonstrator in the various

labs. They taught me patience, perseverance, and debugging skills. I would like to

thank Derek Bridge, John Morrison, and Leslie Brookes for giving me this opportunity.

iii

A thank you also for everyone in the Computer Science administration office for all

their support and help with a variety of issues.

I would like to thank all of those whom I collaborated with for discussions, articles,

and research activities. I would also like to thank anyone that I met in any capacity

during my journey.

A big thank you to my friends, who constantly kept me motivated and supported

me in whatever I did. Thanks to the UCC Indian Society and the wonderful people I

met through it. Thanks to the Cork Creative Writing Group, who helped me relax and

indulge in my hobbies. A special thank you to Ankit, Apra, Apurva, Aseem, Bhavana,

Brijesh, Chandan, Fawaz, Felix, Gauri, Harshada, Justnya, Kara, Kate, Kevin, Lata,

Michael, Mitesh, Monish, Parag, Preeti, Purva, Rohit, Sahil, Supriya, Urvashi, and

many others who I haven’t named; Thank you for being there for me.

Last, but by no means least, I would like to thank my family, in particular my parents.

Without them this work would not have been possible and their everlasting support,

encouragement and belief in me goes way beyond the call of duty.

iv

This thesis is dedicated to my wonderful parents,

Nilima and Jitendra Pandit.

Thank you both for everything.

v

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree or

qualification of this or any other university or other institu-

tion of learning.

Signed:

Harshvardhan J. Pandit

vi

Contents

Abstract ii

Acknowledgments iii

Declaration vi

I Introduction 1

1 Introduction 2

1.1 Existing Problems and Limitations . 3

1.1.1 Apps and the Cloud . 3

1.1.2 Limitations in Data Sharing . 4

1.1.3 Example Use Case: Movie Ticket Booking 4

1.2 Statement of the Problem . 6

1.3 Purpose of Research . 8

1.4 Significance of Research . 8

1.5 Primary Research Questions . 8

1.6 Hypothesis . 9

1.7 Research Design . 9

1.8 Assumptions, Limitations and Scope (Delimitations) 9

1.8.1 Assumptions . 9

1.8.2 Limitations . 10

1.8.3 Scope . 10

1.9 Summary . 10

1.10 Thesis Outline . 11

II Literature Review and Technical Background 13

2 Context-aware Computing 14

2.1 Defining Context . 14

vii

2.2 Context in Mobile Devices . 15

2.3 Context Frameworks utilizing the Cloud 18

2.4 Classification of Context-aware Systems and Services 19

2.5 Context Representations . 20

2.5.1 Resource Description Framework (RDF) 21

2.5.2 Web Ontology Language (OWL) 21

2.6 Smart Apps . 22

2.7 Intelligent Personal Assistants . 22

2.7.1 Siri . 23

2.7.2 Google Now . 23

2.7.3 Cortana . 23

2.7.4 Data Sources and Mode of Operation 24

3 Data Sharing in Smartphone Applications 25

3.1 Sharing Common Data Types . 25

3.2 Custom URL/URI schemes . 27

3.3 Telephony and Messaging data . 29

3.4 Comparison with Traditional Data Sharing Methods 30

3.5 Document Pickers . 30

3.6 Methods exclusive to iOS . 30

3.6.1 Pasteboard . 30

3.6.2 Airdrop . 30

3.6.3 Shared Keychain . 30

3.6.4 iCloud - Shared Storage . 31

3.7 Methods exclusive to Android . 31

3.7.1 Intent and Intent Filters . 31

3.7.2 Broadcast Receivers . 33

3.7.3 Services . 34

3.7.4 Content Providers . 34

III The Contextual Data Sharing Model 37

4 Context Definition 38

4.1 Introduction . 38

4.2 Objectives . 39

4.3 Definition . 39

4.4 Representation . 39

4.5 Extending context . 40

4.6 Embedding context . 43

viii

4.7 Example Use Case: Movie Ticket Booking 44

4.8 Responsibility of owning Context Definitions 46

4.9 Summary . 46

5 Context Database 47

5.1 Introduction . 47

5.2 Overview . 47

5.3 Design and Structure . 48

5.4 Deleting Contexts . 48

5.4.1 Factors affecting efficiency . 49

5.4.2 Deletion Policy . 49

5.5 Performance Considerations . 50

5.6 Summary . 50

6 Contextual Data Sharing Model 52

6.1 Introduction . 52

6.2 System Model . 53

6.2.1 System Components . 53

6.2.2 User App Components . 55

6.3 Context Manager . 55

6.3.1 Errors generated as part of the user apps’ process 56

6.3.2 Checking queries before execution 56

6.4 Security Considerations . 57

6.5 Example: Apps using the Contextual Data Sharing Model 58

6.6 Summary . 59

IV Contextual Data Sharing in Android 61

7 Implementation 62

7.1 Choice of Platform and Software . 62

7.1.1 Platform . 62

7.1.2 Context Definitions . 63

7.1.3 Context Database . 63

7.2 System Model for Implementation . 65

7.3 Context Definitions using Java Classes 65

7.3.1 Context Java Class . 65

7.3.2 Abstract Context class . 68

7.3.3 Extending Contexts . 69

7.3.4 Generalization of Contexts . 70

ix

7.3.5 Embedding Contexts . 71

7.4 Context Database using SQLite . 72

7.4.1 Initializing the database . 72

7.4.2 Context entries and tables . 72

7.4.3 Handling Duplicates in Database 73

7.4.4 Deletion Policy . 75

7.5 Context Manager as a Static Java Class 76

7.6 Usage by Apps . 77

7.6.1 Providing Context Classes in an Android Library 77

7.6.2 The Change vs. New Policy . 79

7.7 Demonstration of Apps using the Contextual Data Sharing Model . . . 80

7.8 Permissions and Security . 81

7.9 Summary . 85

8 Performance Evaluation 86

8.1 Motivation . 86

8.2 Testing Parameters . 86

8.3 Operating Environment . 87

8.4 User Experience Comparison . 88

8.5 Performance of Context Database . 89

8.5.1 Inserting an Event entry in Context Database 89

8.5.2 Retrieving Events from Context Database 89

8.6 Performance of Context Manager . 90

8.6.1 Inserting an Event entry through Context Manager 90

8.6.2 Retrieving Events through Context Manager 90

8.7 Comparison of Insert and Retrieval times 91

8.8 CPU load during retrieval operations . 92

8.9 Summary . 94

V This Research and its Future Potential 95

9 Conclusion 96

10 Future Work 98

Bibliography 103

x

List of Tables

1.1 Information acquired by various apps related to the movie ticket booking

use case . 6

8.1 Information sources used by apps utilizing the Contextual Data Sharing

Model in the movie ticket booking use case 88

8.2 Time required to insert one Event entry into Context Database 89

8.3 Time required to retrieve Event entries from Context Database 89

8.4 Time required to insert one Event context through Context Manager . . 90

8.5 Time required to retrieve Event contexts through Context Manager . . 90

xi

List of Figures

1.1 A use case highlighting the use of multiple apps used in the context of a

movie ticket booking . 7

3.1 Sharing data objects using an app’s Share menu 26

3.2 Calendar (Content) Provider in Android 29

3.3 Illustration of how an implicit intent is used to start another activity . . 34

3.4 A Content Provider and its defined interfaces 35

4.1 Extended contexts in a Context hierarchy 43

4.2 Different apps managing sub-contexts within Event context 45

6.1 Overview of the Contextual Data Sharing Model 54

7.1 Implementation of the Contextual Data Sharing Model on Android . . . 66

7.2 Movie Booking app . 82

7.3 Messaging app . 82

7.4 Maps app . 82

7.5 Reminders app . 82

7.6 Information flow in apps using the Contextual Data Sharing Model . . . 83

8.1 Comparison of insert/retrieval operation times 92

8.2 CPU load during retrieval operation . 93

xii

Part I

Introduction

1

1

Introduction

“Focus on the user and all else will follow.”

– Google’s 9 Principles of Innovation

Smartphones are the most popular computing device [1] due to their ability to offer

features such as web browsing, navigation and media consumption along with commu-

nication. The most popular smartphone operating systems in use today are Android

and iOS [2], which grew in popularity within a short span of time.1 The features in a

smartphone are exploited by apps, which are third-party native applications that pro-

vide functionality and utility on the smartphone. Within a short time, the number of

smartphone applications have increased tremendously2 and has led to the formation of

an ecosystem comparable to software on a traditional personal computer. The term app

is a shortening of the term application software, which became popular in 2009 when

technology columnist David Pogue said that newer smartphones could be nicknamed

“app phones” [6], and when app was listed as “Word of the Year” by the American

Dialect Society [7] in 2010. In a study done in 2012, comScore reported that more users

used apps for a service than using its website [8]. The popularity of apps has lead to

various studies, with research showing that usage of mobile apps strongly correlates

with user context and depends on user’s location and time of the day [9]. Thus, smart-

phone apps have an important relation to the user’s context, as they perform a large

number of tasks on a device that users keep with them at all times.

Different kinds of applications have the potential to utilize different kinds of contex-

tual information, but are restricted when it comes to sharing this information with the

1The first iOS device was the iPhone, released in 2007; and the first Android device was the HTC
Dream, released in 2008

2The Google Play Store (Android) and the App Store (iOS) have over 1.3 million apps published
[3, 4] and over 50 billion downloads [5, 4].

2

1. INTRODUCTION

other applications. Smartphone applications use sandboxing [10], a security model that

prevents an application from accessing or changing another app’s data. A consequence

of this approach is the restrictions in using an app’s data to create contextual services

on the device. Since apps cannot easily share information with each other, the user

is required to input the same information multiple times in different apps used for a

task where various apps handle the different steps related to the task. This restrictive

data sharing between the apps limits the availability of contextual information on the

smartphone as data generated or entered within an app is not available outside the app.

The information locked within the apps can be utilized for generating contextual use

cases and capabilities that can help users complete their tasks in a faster and simpler

way. The Contextual Data Sharing Model described in this research alleviates this

problem by storing related contextual information from different apps, which can be

accessed and utilized to develop contextual services. This increases the usability of the

apps and prevents duplication of effort and information while making it easier for users

to perform the related steps belonging to a task.

1.1 Existing Problems and Limitations

Applications that utilize context generally focus on using a limited set of contextual

information. The various previous approaches [11] related to using contextual informa-

tion on a smartphone have focused on using contexts such as time, location and device

sensor information to model contextual services. The efforts related to providing high-

level contexts to apps on smartphones have not seen the necessary advances in research

required for adoption in spite of the rising popularity of smartphones.

1.1.1 Apps and the Cloud

The interactions between apps and the cloud has made it possible for apps to provide

more information and features. This has led to the creation of Smart apps [12] and

Intelligent Personal Assistants that can answer questions, make recommendations, and

perform actions by delegating requests to a set of web services. These applications

provide services based on the availability of contextual information related to the user.

For example, Google Now [13] shows information about upcoming events it acquires

by parsing emails from the users’ Gmail address [14]. It is possible for Google Now

to access and parse users’ email since both the services exist within the same Google

ecosystem. For other apps that are outside this ecosystem, the contextual information

is not available without requiring some explicit steps from users to make such infor-

mation available. This limited availability of information restricts the development of

contextual services to only those apps that have access to a large dataset of information

3

1. INTRODUCTION

about the user, which is then analyzed and modeled into contextual information.

1.1.2 Limitations in Data Sharing

Mobile operating systems such as Android (v5.0.2) and iOS (v8.1.2) provide various

ways for apps to share data, but lack a comprehensive framework to share contextual

information across apps. Apps that wish to share contextual information must conform

to a standard format for the data being exchanged that is understood uniformly by all

involved apps. This places a burden on app developers to explicitly program interac-

tions between different apps in order to facilitate the sharing of information though a

mutually agreed API. The applications and their developers are thus unable to utilize

all the contextual information available on a device, and are limited in the extent to

which they can provide context-aware services.

The ranking of top apps is dominated by apps from developers Facebook, Google,

Apple, Yahoo, Amazon and eBay. These six companies account for 9 of the top 10 most

used apps, 16 of the top 25, and 24 of the top 50 [15]. This shows the preference of users

to use apps within the same ecosystem which provides them with contextual features

across apps developed by the same developer. This leads to other app developers

prioritizing the integration of services and APIs from such popular apps the user is

most likely to install. For example, the calendar app Sunrise [16] integrates birthdays

and reminders from Facebook and Google+ along with a few others.3 Information from

only these services are synced and shown within Sunrise. Other comparable calendar

apps that do not integrate these services can be deemed as being less attractive by the

users based on the absence of features. This reduces the users’ choice, and increases the

pressure on app developers to integrate more services and APIs in their apps. The lack

of a framework that supports the implicit sharing of information restricts developers

to focus on a few services that are popular. This creates a necessity for apps to expose

APIs to facilitate integration and cohesion which may help adoption by users. This

leads to developers depending on APIs which are sometimes unsupported for interacting

with an application that does not explicitly support integration. X-Callback-Url [17] is

one such effort that provides documentation for services that can be integrated in other

apps, but does not provide any way to structure or identify the data being shared.

1.1.3 Example Use Case: Movie Ticket Booking

In most common use cases, all the related information is available on a smartphone, but

is distributed across different applications which are unable to share the information

with each other. This creates difficulties in generation and consumption of contexts in

3As of January 01, 2015 Sunrise has the most number of connected services (16) integrated in a
calendar app. A full list of services can be found at https://calendar.sunrise.am/

4

1. INTRODUCTION

a smartphone, and forces the user to interact with different apps in order to complete

a task covering a single context. This situation can be described using the movie ticket

booking use case shown in Fig. 1.1, where the various steps taken by an user from

booking the movie ticket to attending the movie show require the use of separate apps

that do not share related information even though acting in the same context. The

various steps followed by the user and the duplication of information and effort can be

seen in the following steps:

1. Movie Booking App: The user enters or selects the movie’s title, theater loca-

tion, the show’s date and time. The app generates the ticket and seat information

which is stored within the app or sent to the user as an email or a text message.

2. Calendar App: The user creates an entry for the movie in the calendar. The

title, date/time and location fields of this entry are duplicated by the user from

the movie’s title, show time and theater location. The user also has the option

of adding a list of contacts who will be attending the movie with him/her.

3. Messaging App: The user forwards or copies the information containing the

movie information sent by the movie booking app in a text message. The list of

recipients is most likely related to the contacts added in the calendar. Here the

user duplicates the movie information when entering the message contents, and

the list of contacts as the recipients.

4. Maps App: The user uses the maps app to access route and navigational infor-

mation when going to the theater, which requires entering the theater’s address

to set it as the destination. This information is duplicated along with the user

being required to remember the location or look it up in a previously stored place

such as the movie booking app or within messages. Some calendar apps offer

navigational features within the app [18, 16], which require the user to open the

calendar app in order to use this feature. Calendar apps that provide a naviga-

tional link in the notification only do so when the notification is displayed to the

user. To access the navigational features at other times, the user needs to open

the maps app or the calendar app containing a map.

5. Accessing seat information: At the theater, the user may require the seat

numbers and ticket information to enter the theater or to print the tickets. This

information can be accessed from the movie booking app, or in the copy stored

as a message or an email, which involves several steps from opening the app to

finding the relevant information. To make this information easily accessible at

the theater, the user can use an app that offers reminders based on the location.

The contents of such a reminder would include the required movie information,

5

1. INTRODUCTION

and the trigger would be the theater’s location. Setting up the reminder requires

effort on the part of the user and further duplication of the movie information.

Table 1.1 shows the information entered by the user in various apps, with the fields that

were entered multiple times being counted as being duplicated information. The label

APP denotes information generated by the app, USER denotes information entered by

the user for the first time, and DUP denotes duplicated information. It can be clearly

seen from the table that a large amount of information is duplicated, which increases

the effort required to complete the task as the user enters the same information in

different apps. The overall user experience becomes disjointed as each app acts in an

individual capacity based on the information available to it. This example shows the

need for related information (in this case the movie’s information) to be shared between

apps to facilitate contextual services that will offer users a unified experience resulting

from the availability of information across apps pertaining to the same context.

Table 1.1: Information acquired by various apps related to the movie ticket booking
use case

App used Movie

Title

Show

Date/Time

Attending

Contacts

Theater

Location

Ticket

Info

Booking USER USER NA USER APP

Calendar DUP DUP USER DUP DUP

Messages DUP DUP DUP DUP DUP

Maps DUP DUP DUP DUP DUP

Reminder DUP DUP DUP DUP DUP

1.2 Statement of the Problem

The problems and limitations described in the previous section can be mitigated with

a Contextual Data Sharing Model that pervasively manages and mediates access to

contexts on a smartphone. The model would allow for simple and intuitive access to

contextual information stored across applications. The design and implementation of

such a model is motivated by three key challenges in the area of context-awareness:

1. Identifying the contextual information;

2. An effective method for accessing this information;

3. Defining a contextual data store for storing the information.

6

1. INTRODUCTION

Figure 1.1: A use case highlighting the use of multiple apps used in the context of a
movie ticket booking

7

1. INTRODUCTION

The model allows apps to access contextual information without requiring explicit inter-

action and identifications of other apps, which leads to creation of features and services

that help create a better user experience.

1.3 Purpose of Research

The purpose of this research is to design a Contextual Data Sharing Model and its

various components in a manner that can be easily integrated and used by existing

applications. The implementation of the model is a proof-of-concept demonstration

that shows the viability of the model, and its impact on the user experience.

1.4 Significance of Research

The Contextual Data Sharing Model provides applications access to contextual infor-

mation which can be easily stored and shared, and allows app developers to integrate

contextual use cases in a simpler and more intuitive way. The contextual services can

be designed relevant to the user’s tasks without directly collaborating or sharing infor-

mation with other apps. This allows a better user experience on the device, and leads

to better features that allow recognizing and handling tasks the user is most likely to

perform.

1.5 Primary Research Questions

The primary research questions that motivated the design and implementation of the

Contextual Data Sharing Model are-

1. How can contextual information be structured in a uniform way?

2. How can contextual information be stored in a context datastore?

3. How can apps share contextual information through the Contextual Data Sharing

Model without direct interaction or awareness of other apps?

4. Can an implementation of the model be created using a platform’s native tech-

nologies?

5. What is the viability and performance of such an implementation?

6. Is the implementation stable and efficient to be used practically?

7. What are the impacts of the implementation on user experience?

The answers to these questions form the basis and motivation of this research.

8

1. INTRODUCTION

1.6 Hypothesis

Primary - availability of contextual information leads to a better user ex-

perience

The primary hypothesis of this research is that the availability of contextual information

for smartphone applications can lead to better features and an intuitive user experi-

ence. The hypothesis can be tested by comparing the user experience of use cases with

and without the use of the Contextual Data Sharing Model. The conclusions reached

through testing verify the impact of contextual information on user experience and app

development.

Secondary - use of native technologies makes it easier to develop and manage

contextual information

The secondary hypothesis of this research is that using native technologies in imple-

mentation allows for easier development and management of contextual information.

The hypothesis states that using native technologies to implement the Contextual Data

Sharing Model makes it easy to manage the information on a device and facilitates the

sharing of information across applications without the need for developing or utiliz-

ing complex technologies that a platform does not natively support. It also makes it

easy for developers to integrate contextual information and services into applications,

which allows them to focus on developing contextual services rather than acquiring

information.

1.7 Research Design

Different parts of the work follow different research designs. The representation of con-

texts is largely evolved from previous approaches and research in this area. The storage

of contextual information is more considerate about the restrictions of a smartphone

device, and is based on managing efficiency with performance. The implementation of

the model is experimental in its approach as it attempts to combine the various com-

ponents of the Contextual Data Sharing Model with the existing smartphone platform

environment.

1.8 Assumptions, Limitations and Scope (Delimitations)

1.8.1 Assumptions

1. All apps involved or specified will use the Contextual Data Sharing Model in the

specified manner.

9

1. INTRODUCTION

2. The app that generates or identifies contextual information will correctly add it

to the context data store.

3. Apps are aware of the contextual nature of the information acquired or entered

by the user.

1.8.2 Limitations

The research is cognizant of the following limitations-

1. Apps need to adapt and use the Contextual Data Sharing Model in order for it

to work across the device.

2. Apps can only provide contextual services based on the availability of informa-

tion in the context datastore. When such information is absent, the app cannot

provide contextual services.

3. The onus is on apps generating or identifying contextual information to insert it

in the context datastore. If apps fail to add information to the datastore, the

apps may not be able to provide contextual services.

4. The implementation of the model varies in some aspects depending on changes

in platforms, devices and use cases.

1.8.3 Scope

The scope of the research is to make contextual information accessible to apps within

the smartphone ecosystem through a framework that is designed with a bias towards

popular smartphone operating systems like Android and iOS. The implementation of

such a framework is based on the demonstration of the model on an unmodified version

of Android with the aim to demonstrate the feasibility, impact and performance of the

model. The implementation is termed as working, but experimental, and needs further

efforts for testing and handling more use cases.

1.9 Summary

The Contextual Data Sharing Model enables apps to access contextual information

without explicitly interacting with each other. This allows apps to create contextual

services based on the availability of data which leads to the creation of better features

and services that make the user experience richer and more engaging. The described

movie ticket booking use case requires the user to enter the same information multiple

times in different apps which duplicates information and increases effort. By using the

10

1. INTRODUCTION

Contextual Data Sharing Model, the amount of effort and information entered by the

user can be significantly reduced as apps share the information based on the context

of the task implied by the user. The apps identify the nature of shared information

and provide related contextual services accordingly. This allows features such as the

calendar showing the movie event without requiring the user to enter any data. The

maps app can provide routes to the theater based on the show time of the movie with a

reminder at the theater showing the ticket and seat information. The use of contexts as

defined in the model does not require dependence on the apps that generate or identify

the information, which allows various apps to act independently.

1.10 Thesis Outline

This thesis is structured as follows:

Part II - Literature Review and Technical Background

Chapter 2 - Context-aware Computing. Chapter two looks at the previous

approaches that identify and use contextual information. The emergence of context-

aware computing and its use in mobile devices is also examined.

Chapter 3 - Data Sharing in Smartphone Applications. Chapter three dis-

cusses the various data sharing methods available to smartphone applications on An-

droid and iOS.

Part III - The Contextual Data Sharing Model

Chapter 4 - Context Definition. Chapter four discusses the structuring of contex-

tual information using Context Definitions. The chapter introduces the use of Context

Definitions to store contextual information in a structured schema to provide a uniform

representation across apps. The design and structure required for an implementation

of the Context Definitions is also discussed.

Chapter 5 - Context Database. Chapter five introduces the Context Database

used for storing contextual information. The design and structure of the Context

Database along with its performance is also discussed.

Chapter 6 - Contextual Data Sharing Model. Chapter six introduces the

Contextual Data Sharing Model and its components. The chapter discusses the var-

ious components and their responsibilities along with how contextual data sharing is

11

1. INTRODUCTION

achieved through the model. A demonstration of how apps would use the model is also

discussed through a use case.

Part IV - Contextual Data Sharing in Android

Chapter 7 - Implementation. Chapter seven discusses the implementation of the

Contextual Data Sharing Model on Android. The software and design approaches used

in the implementation of the various components are also discussed. A demonstration

of an use case with the apps using the Contextual Data Sharing Model on Android is

also provided.

Chapter 8 - Performance Evaluation. Chapter eight discusses the various per-

formance and user effort metrics of the implementation of the Contextual Data Sharing

Model on Android. The focus of the evaluation is on the user effort, the operation times

of the queries and the CPU utilization of the apps.

Part V - This Research and its Future Potential

Chapter 9 - Conclusion. Chapter nine presents an overview of the research,

listing the advantages and validation of using the Contextual Data Sharing Model.

Conclusions are drawn regarding the performance and user experience of the model

along with its outcomes.

Chapter 10 - Future Work. Chapter ten discusses the various approaches that

can extend and improve upon this research. The chapter provides various approaches

to extend the model to other devices and platforms such as iOS, wearable computing,

and smart devices. An idea of an ecosystem of devices where users are provided services

based upon their contextual information is also discussed.

12

Part II

Literature Review and Technical

Background

13

2

Context-aware Computing

“If I have seen further it is by standing on the shoulders of giants.”

– Isaac Newton

2.1 Defining Context

The word context, derived from Latin con meaning with or together, and textere mean-

ing to weave, denotes context as a profile and an active process dealing with the way

humans weave their experiences within their whole environment to give it meaning.

The word ‘context’ also denotes the study of human ‘text’ and the idea of ‘situated

cognition’. The idea that context changes the interpretation of text goes back many

thousand years.

In computer science, context awareness refers to the idea that computers can both

sense, and react based on their environment. Context aware devices try to react based

on rules and intelligent stimulus based on the user’s current situation. The term context

awareness in ubiquitous computing was first defined in 1994 as: “software that adapts

according to its location of use, the collection of nearby people and objects, as well as

changes to those objects over time.” [19, 20] Previous research in this area has resulted

in several adaptive and personalized applications based on the notion of user profile

and context [21]. Some of them that have motivated and influenced this research are

summarized in this section.

The definition of context as given by Dey [22] is: “Context is any information

that can be used to characterize the situation of an entity. An entity is a person,

place, or object that is considered relevant to the interaction between a user and an

application, including the user and applications themselves.” A definition of context-

aware systems is also provided as: “A system is context-aware if it uses context to

14

2. CONTEXT-AWARE COMPUTING

provide relevant information and/or services to the user, where relevancy depends on the

user’s task.” Their paper discusses the different ways context can be used by context-

aware applications. Three categories of features that a context-aware application can

support are given as: presentation of information and services to the user, automatic

execution of a service for a user, and tagging of context to information to support later

retrieval.

Zimmermann et al. [23] extend the context definitions with the idea of defining the

task itself as part of the context since it characterizes the situation of the user. This

central role of task in context is shared by Crowley et al. [24] and Kofod-Petersen

et al. [25], who assume that the user’s actions are generally identified by a set of

tasks (actions) and are goal driven. Henricksen [26] gives more importance to task in

her definition of context, which is: “The context of a task is the set of circumstances

surrounding it that are potentially of relevance to its completion”. Dey et al. [27]

extend their definition of context with the statement “Context is typically the location,

identity and state of people, groups and computational and physical objects.” Abowd

et al. [28] discuss how context can be considered a part of the process along with the

state in which the users are involved. Chen [29] uses location as a context-providing

parameter with activities and tasks taking place in a location.

2.2 Context in Mobile Devices

Battestini et al. [30] discuss how mobile phones can be used to create intelligent

applications that are able to understand user needs through context and have the

ability to adapt and provide recommendations. They extend the idea of a statistical

approach to context recognition by defining contexts as clusters in the data [31], which

can be used to recognize clusters unambiguously associated with high-level contexts or

situations. Two examples of context-aware applications given are the Context Watcher

and the Family Maps, built using the MobiLife1 architecture and which utilizes various

sources of information to predict and infer the users’ needs. The authors express the

need for a user-centric privacy and trust framework that will allow flexible information

exchange while controlling the access to user data.

Malik and Mahmud [32] identified the following challenges for middleware that

addresses context awareness:

1. Context acquisition to collect the items of the context: context-aware middleware

can centralize context data from various sources and sensors.

1MobiLife is a user-centric architecture that aims to provide communication and sharing of items
in order to manage complex lifestyles. http://www.ist-mobilife.org

15

2. CONTEXT-AWARE COMPUTING

2. Context representation that provides an efficient structure for retrieving context.

The authors mention the various approaches for representing context. [33]

3. Context storage which stores correctly represented context in a structured and

persistent manner.

4. Context interpretation based on different strategies and fields of research such as

machine learning or complex event processing to enable context-awareness.

5. Context adaptation to use the context after interpretation in context-aware sce-

narios.

Yau et al. [34] describe RCSM, a system that creates ad hoc communication between

devices to facilitate information exchange. They present two categories of middleware

in pervasive computing based on interaction between devices or entities. Their imple-

mentation uses various sensors to detect light, noise, etc. in a classroom to trigger

communication activity between students and instructor. The system uses a state-

trigger based scenario where context states trigger activities.

Klein et al. [35] describe a context management architecture based on the producer-

consumer role model and designed to acquire, manage, and distribute context informa-

tion and to control the context quality. The architecture consists of a Context Provider

where context information originates from and is provided to other entities of the archi-

tecture; a Context Broker that acts as a middleman to perform lookups and resolutions;

and Context Consumers that use context data as an input for providing functionality.

The authors note the the dependence of the quality of context information on connec-

tivity and its impact on delay, accuracy, relevance, and confidence, which requires a

Context Quality Enabler incorporated into the architecture to control the provision of

context information.

Korpipaa et al. [36] describe a framework for the development of context-aware

mobile applications that manages raw contextual information gained from multiple

sources and enables higher-level context abstractions. The framework contains a central

node that provides context information to clients through direct querying, subscribing

to context change notification services or higher-level composite contexts managed by

the context manager. Each context is described using six properties where each context

expression contains at least one type and value, which together form a verbal description

of the context.

Alidin and Crestani [37] describe the “just-in-time” approach where relevant infor-

mation is retrieved without the user requesting it. This reduces the users effort, time

and interaction and presents the relevant information to the user in the right time and

place. The authors note how smartphones can react and adapt to the context to min-

imize user interaction and use context as information triggers to pro-actively present

16

2. CONTEXT-AWARE COMPUTING

information to the user. This is also known as Just-In-Time Information Access system

[38]. In this system, if the information is no longer relevant to the user interaction,

then it is not considered to be a part of the context. The authors describe how some

researchers incorporate too many dimensions of context which make the context models

too complex to be implemented in smartphones. But if there are fewer dimensions of

context, it can lead to context models being unable to understand the whole context.

In their approach, they define 10 dimensions of context including time, location, sound

and user profile. The context model has structured levels of context where sensor data

is at the bottom level. Context dimensions or low-level context are characterized by

interpreting multiple sensor data. High-level contexts are generated from multiple con-

text dimensions and describe the user’s current context. A user scenario depicts the

situations encountered by the user and is made up of one or more high-level context.

The system works by monitoring context, predicting user information needs in any given

context and pro-actively providing the user with relevant information with the aim to

reduce user interaction. The system infers user information need in context based on

the user’s current context and an information need analyzer. If this information is not

available, the system predicts user information need by acquiring context from other

closely similar users, or by utilizing the user’s location, preference, and context.

Falcarin et al. present an architectural framework for context-aware services called

Context Data Management [39] that provides interoperability and domain indepen-

dence for third-party context-aware applications. The authors describe a high-level

framework that provides a set of defined roles for abstract components that offer APIs.

The framework provides context data management, context analysis and integration of

context in mobile devices, with a focus on sensor data. The main component called

Context Broker manages communications with the other components, while Context

Providers store information that can be queried by Context Broker or Context Con-

sumers. Context Sources provide data to the Context Broker through asynchronous

communication and are typically located on mobile devices. The Context Broker orga-

nizes data into different Context Scopes, which are subscribed by Context Consumers

in a publisher-subscriber model. A Context Cache stores recent context data, which is

moved to a Context History database upon expiry.

Context Directory [40] is a framework that helps mobile applications to achieve

context-awareness through context models, interpretation methods and adaptation pos-

sibilities. The framework consists of context clients, which communicate with the

sensors on the mobile devices to collect context attributes for creating context rep-

resentations. It uses a key/value model for simplicity and to allow multiple context

clients to collect context attributes on different devices which can be merged into con-

text directories. The communication between directories and clients is handled by the

17

2. CONTEXT-AWARE COMPUTING

context directory protocol. A context-aware API allows development of context-aware

applications for specific mobile platforms and can be used to build a context-aware ap-

plication based on the interface. Developers can directly interact with context clients

for more control over the sensitivity of contexts. The context is interpreted using a

variety of algorithms based on usability of context-aware scenarios. A demonstration

of the framework is shown through a context-aware application for Android, where the

context-aware API was modeled to be similar to the Android API. Context commands,

which describe the adaptation of user interfaces and the behavior of executed com-

mands are developed based on the context. Contextual information is implemented by

a context-matching module that sorts information based on time and relevancy. The

authors note the possibility and complexity of using automatic contextual reconfigura-

tion using Dalvik’s reflection mechanism.2 The application model and possible actions

need to be registered in the context directory for executing context-triggered actions.

Most definitions and implementations of context-aware systems focus on using as-

pects such as time, location and sensor information to model contextual systems. While

these can be used to cover a large variety of common use cases in mobile devices, there

is more information associated with other contexts on mobile devices that needs to be

recognized and used.

2.3 Context Frameworks utilizing the Cloud

Many contextual models use a cloud-based approach, where the cloud is utilized to

offer services not possible on a mobile device and to share information between multiple

devices. Offloading work to the cloud enables services not previously possible on mobile

devices as described in [41, 42, 43, 44, 45].

One such approach related to this research is COSMOS [46], which describes a

cloud-based PaaS (Platform as a Service) system that provides infrastructure for mo-

bile apps to share data. The authors emphasize the incentive for mobile apps to share

information with one another on a large scale through a service based in the cloud

and hosting the mobile apps’ datasets. They provide an implementation model that

hosts app data in the cloud and provides seamless experience by sharing that data with

multiple apps. The COSMOS PaaS system contains Sharing Middleware (SMILE) that

mediates sharing between mobile tenants and the COSMOS data store. The implemen-

tation focuses on sharing data across apps hosted in COSMOS and targets user services

towards contextual information gathered from various datasets. An example provided

is that of a user going to a conference, where his conference date and location is used

2Dalvik is the process virtual machine (VM) in Android and executes applications written for
Android. Reflection is the ability of a computer program to examine and modify the structure and
behavior (specifically the values, meta-data, properties and functions) of the program at runtime.

18

2. CONTEXT-AWARE COMPUTING

to book airline tickets and the hotel room. The COSMOS datasets provide all the

information required without the user specifying these requirements. For all services

to work, the app must be hosted in COSMOS and must use its architecture.

The Cloud Personal Assistant [47] is a cloud service that manages the access of

mobile clients to cloud services. It provides service discovery and invocation, and stores

the results and history for delivery to the mobile client. The assistant receives a set

of tasks to execute, and returns the results when the mobile client needs them. There

are three tiers called the user tier, the task tier and the service tier. The framework

provides independence from connectivity as the results are stored in the cloud and

returned when the mobile client requests them.

2.4 Classification of Context-aware Systems and Services

A surveys and comparison of context-aware systems and models is presented in [21].

Baldauf and Dustdar [48] survey various context-aware middleware and frameworks

and present a comparative analysis focusing on the context services. They conclude

their analysis with two points, the first being that appliances should vanish into the

background to make the user and his tasks the central focus rather than computing

devices and technical issues. The second is that context-aware systems are able to

adapt their operations to the current context without explicit user intervention and

thus aim at increasing usability and effectiveness by taking environmental context into

account.

According to Strang et al. [33] there are six ways of modeling and representing

context data amongst existing works:

1. Key-value pairs, which are primitive and cannot handle complex context infor-

mation, but easy to integrate;

2. Graphical models, which describe the structure of context, but do not separate

the data layer from code layer;

3. Object-oriented models, which encapsulate the context in objects and can provide

special interfaces, but are not efficient at large-scales;

4. Logic-based models, which define context as a set of facts and evaluative expres-

sions which can be used to derive new facts, but are complex and restrictive;

5. Ontology-based models, which use formally specify concepts and interrelations of

the human language, and can grow to a large size;

19

2. CONTEXT-AWARE COMPUTING

6. XML models, which are hierarchal data structures made up of XML tags with

attributes and contents and offer dynamicity of information, but are require sep-

arate services to interact with the data.

Schilit et al. [19] defined four categories of context-aware applications that overlap

with the categories defined by Pascoe [49], who defined the following five categories of

context-aware applications:

1. Contextual information or proximate selection or contextual sensing, which de-

scribes the supply of context-aware content by an application. This is a form of

matching or rating of information by context.

2. Contextual commands, which are the category of applications that change their

presentation or execution flow based on the context.

3. Automatic contextual reconfiguration, which exchanges parts of the software

based on context.

4. Context-triggered actions that enable executing applications and operations with-

out inputs based on the context. Similar mechanisms are used by online shopping

systems.

5. Contextual augmentation, which enhance the perspective on the environment by

adding additional information to the reality.

Chihani and Bertin [11] give a new approach for classifying context-aware commu-

nication systems, where adaptation is performed based on how context is used. They

identify services as Instant or Deferred and On Device or On Cloud based on their im-

plementation instead of their functionalities. They also note that the most used context

sources are physical information such as location and time, environmental information

such as weather, personal information such as health, mood and social information

such as relationships and applicative information such as emails. They discuss how

high-level knowledge can be derived from raw contextual information to give a better

understanding of the user.

2.5 Context Representations

There have been various ways proposed to represent context. Most researchers represent

context using formats tied to their particular approach. Some of the commonly used

and popular formats for representing contexts are Resource Description Framework

(RDF) [50] and OWL [51].

20

2. CONTEXT-AWARE COMPUTING

2.5.1 Resource Description Framework (RDF)

RDF is a data model that uses statements about resources in the form of subject-

predicate-object expressions known as triples. The subject denotes the resource, the

predicate denotes the traits or aspects of the resource and expresses a relationship

between the subject and the object. For example, for representing the English language

statement ‘New York has the postal abbreviation NY’ in RDF, ‘New York’ would be the

subject, ‘has the postal abbreviation’ would be the predicate, and ‘NY’ would be the

object. To be encoded as a triple, the subject and predicate need to be expressed as URI

resources, and the object can be a resource or a literal element. The example expressed

in Listing 2.1 is in N-Triples form, where ‘urn:x-states:New%20York’ is the URI for a

resource that denotes the US state New York, ‘http://purl.org/dc/terms/alternative’ is

the URI for this predicate3, and ‘NY’ is a literal string.

1 <urn:x-states:New%20York>

2 <http://purl.org/dc/terms/alternative>

3 "NY"

Listing 2.1: Schema for Event Context

2.5.2 Web Ontology Language (OWL)

The Web Ontology Language (OWL) is a family of knowledge representation languages

or ontology languages for authoring ontologies or knowledge bases. The languages are

characterized by formal semantics and RDF/XML-based serializations for the Semantic

Web. The data described by an ontology in the OWL family is interpreted as a set of

individuals and a set of property assertions which relate these individuals to each other.

An ontology consists of a set of axioms which place constraints on sets of individuals

(called classes) and the types of relationships permitted between them. These axioms

provide semantics by allowing systems to infer additional information based on the data

explicitly provided.

Languages in the OWL family are capable of creating classes, properties, defining

instances and its operations. An instance is an object and corresponds to a description

of an individual logic. A class is a collection of objects and corresponds to a description

of a logic concept. A class may contain individuals and any number instances of the

class. An instance may belong to none, one or more classes. A class may be a subclass of

another, inheriting characteristics from its parent superclass. All classes are subclasses

of owl:Thing, the root class. All classes are subclassed by owl:Nothing, the empty class.

No instances are members of owl:Nothing. Modelers use owl:Thing and owl:Nothing

3An alternative title with a human-readable definition is available at http://dublincore.org/

documents/dcmi-terms/index.shtml

21

http://dublincore.org/documents/dcmi-terms/index.shtml
http://dublincore.org/documents/dcmi-terms/index.shtml

2. CONTEXT-AWARE COMPUTING

to assert facts about all or no instances. A property is a directed binary relation that

specifies class characteristics. It corresponds to a description logic role. They are

attributes of instances and sometimes act as data values or link to other instances.

Properties may possess logical capabilities such as being transitive, symmetric, inverse

and functional. Properties may also have domains and ranges.

Context representation in smartphones

Knowledge graphs and collective data banks utilize RDF and OWL or their related

formats to store contextual data and its relations. Web services utilize different formats

such SOAP, WSDL, UDDI [52] or JSON [53] to communicate data. All of these forms

are non-native on smartphone platforms and require parsing before the data can be

utilized or manipulated. This places limitations on the utilization of models that use

these formats for interacting with context since smartphone applications are developed

using different technologies which makes it difficult to integrate traditional context

representations into the application design.

2.6 Smart Apps

The word Smart Apps is derived from the word smartphone, which stands for a mobile

phone with an operating system that offers features such as a personal digital assistant,

a digital camera, a media player, and/or a GPS navigation unit. The word smart in

smart apps is used to denote the capability of an app to help users with the completion

of their task by utilizing contexts such as location, time, sensor information or offering

recommendations and automation which allow the task to be completed in lesser time

and/or fewer steps [12]. The features and design of smart apps depend on the avail-

ability of contextual information. An example of a smart app is Fantastical [18], which

allows users to type entries in natural language in a single text box to create events in

the calendar instead of interacting with multiple entry fields and UI elements.

2.7 Intelligent Personal Assistants

An intelligent personal assistant is a mobile software agent that can perform tasks or

services for an individual. These tasks or services are based on user input, location

awareness, and the ability to access information from a variety of online sources (such

as weather or traffic conditions, news, stock prices, user schedules, retail prices, etc.).

Intelligent personal assistant technology is achieved through the combination of mobile

devices, application programming interfaces (APIs), and the proliferation of mobile

apps. An intelligent personal assistant can be designed to perform specific, one-time

22

2. CONTEXT-AWARE COMPUTING

tasks specified by user voice instructions, or to perform ongoing tasks autonomously.

One of the key aspects of an intelligent personal assistant is its ability to organize and

maintain information such as emails, calendar events, files, and to-do lists.

2.7.1 Siri

Siri [54] is an intelligent personal assistant and knowledge navigator developed by Apple

for its iOS platform. The application uses a natural language user interface to answer

questions, make recommendations, and perform actions by delegating requests to a set

of web services. The software adapts to the user’s language usage and searches with

use, and returns results that are individualized. Siri allows users to make reservations

at specific restaurants, buy movie tickets or get a cab by dictating instructions in

natural language. The application integrates with default iOS functionality, such as

contacts, calendars and text messages and supports services from providers such as

Google, Bing, Yahoo, Wolfram Alpha, Google Maps, Yelp! and Wikipedia. Siri also

contains numerous pre-programmed responses to conversational and amusing questions.

2.7.2 Google Now

Google Now [13] is an intelligent personal assistant developed by Google. It is available

within the Google Search mobile application for Android, iOS, and the Google Chrome

web browser on personal computers. Google Now uses a natural language user inter-

face to answer questions, make recommendations, and perform actions by delegating

requests to a set of web services. Along with answering user-initiated queries, Google

Now pro-actively predicts information the user will want based on their search habits,

and by utilizing data from users’ other Google services. Google Now is implemented

as an aspect of the Google Search application and recognizes repeated actions such

as common locations, repeated calendar appointments, and search queries a user per-

forms on the device to display relevant information to the user in the form of ‘cards’.

The application system leverages Google’s Knowledge Graph project4 to assemble more

detailed search results by analyzing their semantic meanings and connections.

2.7.3 Cortana

Cortana [55] is an intelligent personal assistant for Windows Phone 8.1 and the Mi-

crosoft Band. Cortana’s features include being able to set reminders, recognize natural

voice without the user having to input a predefined series of commands, and answer

questions using information such as current weather and traffic conditions, sports scores,

4The Knowledge Graph is a knowledge base used by Google to enhance its search engine’s search
results with semantic-search information gathered from a wide variety of sources. More information
can be found at http://www.google.ie/insidesearch/features/search/knowledge.html

23

http://www.google.ie/insidesearch/features/search/knowledge.html

2. CONTEXT-AWARE COMPUTING

and biographies from Bing. The ‘Notebook’ is a data collection unit where personal in-

formation such as interests, location data, reminders, and contacts are stored for access.

Cortana uses this data in order to learn the user’s specific patterns and behaviors and

can add information as it learns. The user can view this information and specify what

information is collected, which offers greater control over privacy settings compared to

other assistants. Users can also delete information from the ‘Notebook’ if they deem it

undesirable for Cortana to know.

2.7.4 Data Sources and Mode of Operation

Intelligent personal assistants work on the principle of analyzing and interpreting data

to provide contextually relevant information and services. In order to replicate the

functionality of personal assistants, an app needs access to data and resources which it

can utilize to formulate the contextual responses to the users’ queries. In the case of

Google Now, it has access to data aggregated from all of Google’s diverse services, and

needs the user to actively use those services in order to function as intended. Siri does

not provide personalized recommendations beyond those obtained from data limited to

some services on the device. It however, uses natural language processing based in the

cloud to identify the users requests and to provide appropriate responses. Similarly,

Cortana utilizes data acquired from the device and Microsoft’s services in order to

provide functionality similar to Google Now.

Developing features in apps comparable to personal assistants requires access and

analysis of data related to the user’s context, whose availability is limited to a developer.

This can be seen through the difference between the advent of smart apps and personal

assistants, where smart apps are developed based on using functionality and comparably

lesser data. Making such data available to developers is not possible due to concerns

about security and privacy, which do not exist for personal assistants as they utilize

data within a single ecosystem or tightly coupled ecosystems.

24

3

Data Sharing in Smartphone

Applications

“Data! Data! Data! I can’t make bricks without clay!”

– Sir Arthur Conan Doyle

Data sharing can be defined as the ability to share the same data resource with

multiple applications or users (collectively called clients) [56]. It implies that the data is

stored or generated in one or more applications on a device and there is some framework

or middleware that allows it to be shared between applications.

Unlike applications on traditional operating systems, smartphone applications have

a much more restrictive security model called sandboxing. Sandboxing is a security

mechanism that separates applications from each other and restricts any unspecified

access between them. This prevents one application from corrupting or over-writing

another application’s data. This results in aggressive restrictions that limit interactions

with other applications. Data sharing is possible only through the use of APIs provided

by the system. The following sections discuss the various data sharing mechanisms

available in iOS and Android. Apart from the data sharing methods described below,

applications cannot utilize or define other APIs, and neither can they directly access

data from another app due to the restrictions placed by the sandboxing model.

3.1 Sharing Common Data Types

Both iOS and Android support sharing of common data types such as text and images

through a dedicated share menu that can send data objects from within an app to other

apps. On Android, this is achieved through the Intent and Intent-filter mechanism [57],

25

3. DATA SHARING IN SMARTPHONE APPLICATIONS

whereas on iOS, the same is achieved through UIActivityViewController [58]. Both

platforms allow the selected data object to be shared with all applications that have

registered the capability to handle the object’s MIME type [59]. The destination of the

target app is selected by the system or by the user themselves though a UI element as

seen in Fig. 3.1.

(a) Android 4.4 (b) iOS 8

Figure 3.1: Sharing data objects using an app’s Share menu

The system populates the sharing list with applications that have explicitly declared

the capability to handle the type of context being shared. Applications declaring the

ability to handle data objects of type image are displayed in the list shown when an

image is selected and shared. In Android, the explicit declaration is mentioned through

the applications’ manifest [60] file, whereas on iOS it is declared programmatically via

code.

The system provides the required APIs for handling and sharing commonly used

data types such as image, audio, web-pages, and text. Any other data type must be

explicitly known and uniformly interpreted by all the apps that want to share data

objects of that type. For example, a calendar event can be considered a complex data

type available through the system’s calendar API. Events such as a restaurant booking

or a movie show are similar to a calendar event, but are not recognized data types.

Apps that wish to declare or share these data types cannot guarantee that other apps

will correctly recognize and interpret them.

26

3. DATA SHARING IN SMARTPHONE APPLICATIONS

3.2 Custom URL/URI schemes

In computing, a Uniform Resource Locator (URL) is a subset of the Uniform Resource

Identifier (URI) that specifies where an identified resource is available and the mech-

anism for retrieving it. The scheme name (or protocol) of a URL is the first part of

a URL. For web pages, the scheme is usually http or https. iOS and Android support

some URL schemes related to web-pages, telephony and messaging by default [61, 62].

Applications can specify their own custom URL scheme such as myapp://something

which is resolved by the system to open the particular functionality within an app as-

sociated with the scheme. This allows other apps to communicate with an app through

a protocol defined by its URL/URI scheme.

The resolution of URL/URI links is done by the system, which identifies the correct

app associated with the scheme and opens it. If there is more than one app associated

with a scheme, the system shows a dialog to select an application similar to the dialog

shown in the share menu. The system restricts the resolution of some schemes to fixed

applications, which cannot be changed. If some user application declares a URL/URI

that is identical to a restricted scheme, the default system app is launched instead of

the user app. URL handling on Android devices works through the Intents mechanism,

where apps register to get launched in response to certain specified actions.

Applications can use custom URL/URI schemes to directly navigate to activities

within an app, or to send and receive data. Small amounts of data can be easily encoded

into the URL/URI in a way similar to how websites are accessed, though the system

does not require network connectivity to resolve these schemes. Applications can behave

differently based on the data passed in the URL. For example, the Map app can be

sent location coordinates as parameters in the URL to open an activity displaying the

location specified by the coordinates on the map. The app that generates the URL/URI

needs to be aware of the correct syntax the Map app requires. In general developers

are required to know the various schemes and syntaxes required to integrate popular

services from other apps. Some developers have created a public library of custom

URL/URI schemes [8] supported by various apps as a way for other developers to

discover services easily. Using such libraries still requires the developers to be explicitly

aware of the exact URL/URI scheme required by the target app in order to interact

with it.

Deep Linking

In the context of the Web, deep linking consists of using a hyperlink that links to a

specific generally searchable or indexed piece of web content on a website. For example

using http://example.com/path/page to navigate to a particular page rather than the

27

3. DATA SHARING IN SMARTPHONE APPLICATIONS

home page at http://example.com/. In mobile apps, deep linking consists of using a URI

that links to a specific location within a mobile app (exampleApp://location/123456),

rather than simply launching the app (exampleApp://).

The greatest benefit of mobile deep linking is the ability for marketers and app

developers to bring users directly into the specific location within their app with a

dedicated link. Unlike deep links on the web, where the link format is standardized

based on HTTP guidelines, mobile deep links do not follow a consistent format. This

causes confusion because different sets of links are required to access the same app on

different platforms.

Alternate solutions developed include one approach where a smarter deep link is

created that triggers the most appropriate response depending on the device being

used. A solution developed by AppsFlyer called OneLink [63] detects the device type

and the installed apps and triggers a Web or Mobile deep link or opens the appropriate

App Store in case the requested app is not installed on the user device, also known as

deferred deeplinking. Another solution proposed by URX called Omnilinks [64] requires

prefixing a web link with urx.io/ to convert it into a deep link, which works across all

devices. This routes users into a specific page in an app if that user has the app installed.

App Links [65] is a deep linking standard developed by Facebook that makes it possible

to launch an app containing content shared on Facebook (or another App Links-enabled

app). Quixey created AppURL [66] which is an open standard for deep linking across

platforms and also allows search engines to crawl in-app links. Quixey also produces

search algorithms for in-app searches that provides results in the form of deep links.

For example, if the user searches for “Mexican food”, the user is provided with results

from apps that provide restaurant services such as Yelp, GrubHub, OpenTable, and

Foursquare, where the results act like a shortcut that take the user directly into that

page in the app if it is installed.

Google provides App indexing [67], which allows developers to connect pages from

their website with specific content within their smartphone app on Android. This

enables smartphone users who have the app installed to open it directly from relevant

mobile search results on Google. Developers can make it possible for Google Search to

open specific content in their app by providing intent filters for relevant activities. This

requires configuring both the app and the website along with a description of how they

are related to to oder to show Open in app deep links in search results. This feature is

limited to apps that also have a website that Google can search and index. Currently,

only Google search can make use of app indexing. Such kinds of contextual information

sharing is not available to all applications in general.

28

3. DATA SHARING IN SMARTPHONE APPLICATIONS

3.3 Telephony and Messaging data

Applications can share data inherently through the use of various options made avail-

able by system. Commonly required data such as Calendar and Contacts are provided

as part of standard APIs that are made available to developers. EventKit [68] on iOS

provides developers access to calendar and reminders, which lets applications interact

with the user’s calendars and reminders. For accessing contacts, iOS has Address Book

[69] that provides a centralized database of the user’s contacts that any application can

access and update. Android features Content Providers [70] that act like a centralized

database providing access to other apps through the use of specific APIs. Data such

as contacts and calendars are made available to other apps by exposing their content

provider API. Every version of Android includes these two Content Providers by default,

and others can be added by apps when they are installed on a device. Fig. 3.2 shows

the Calendar Provider which is a Content Provider that provides access to calendar

data on Android. Accessing Content Providers for user apps requires permission and

access to the Content Provider’s URL/URI. There is no abstract mechanism whereby

apps can discover and/or connect to Content Providers already present on the device.

Figure 3.2: Calendar (Content) Provider in Android

29

3. DATA SHARING IN SMARTPHONE APPLICATIONS

3.4 Comparison with Traditional Data Sharing Methods

Android and iOS, despite being based on or closely related to POSIX based systems1

do not allow apps to use traditional data sharing mechanisms such as file-copy, pipes

or data dumps.

3.5 Document Pickers

A document picker allows an application to request selection of data objects through

another app. Common uses include selecting image files or contacts within an app that

does not have access to these resources. Android uses the Storage Access Framework

(SAF) [71] that allows users to browse and open documents, images, and other files

across all of their their preferred document storage providers. iOS has a similar mech-

anism known as Document Picker [72] that lets users select documents from outside an

apps sandbox.

3.6 Methods exclusive to iOS

3.6.1 Pasteboard

iOS has a common data dump, called UIPasteBoard [73] which acts like a clipboard

sharing service. Apps can place data on the pasteboard that is accessible globally.

Pasteboards can be given unique identifiers that can be shared between apps. The

data on a pasteboard persists even if the app that used it is terminated. Pasteboards

are flexible in the size of data to be shared. However, any applications accessing the

pasteboard can overwrite or change its contents.

3.6.2 Airdrop

AirDrop [74] is used to share photos, documents, URLs, and other types of data with

apps and nearby devices. It uses peer-to-peer networking to find nearby devices and

connect to them.

3.6.3 Shared Keychain

A keychain [75] is an encrypted container that holds passwords for multiple applications

and secure services, used by iOS as a password management system [7]. Applications

1POSIX is an acronym for Portable Operating System Interface, and defines the application pro-
gramming interface (API) and utility interfaces for software compatibility with variants of Unix and
other operating systems. Android uses the Linux kernel, while iOS uses Darwin, both of which are
loosely based on POSIX systems.

30

3. DATA SHARING IN SMARTPHONE APPLICATIONS

can store data securely to a shared keychain which is accessible only to other appli-

cations using the same app ID prefix. The amount of data stored in the keychain is

limited as it is not suitable for storing large amounts of data.

3.6.4 iCloud - Shared Storage

Developers can use the iCloud service [76] to store large amounts of data, which can

be accessed by apps having the same ID prefix. Therefore, apps not having the same

ID prefix and looking to share data must use third-party libraries or frameworks which

will allow them to share data with other apps that agree to use the same framework.

3.7 Methods exclusive to Android

3.7.1 Intent and Intent Filters

An Intent [57] is an abstract description or an intention of the operation to be per-

formed. Intents are asynchronous messaging objects used to request functionality from

other app components, which allows an app component to interact with other compo-

nents within the same application as well as with components in other applications.

An Intent provides a facility for performing late runtime binding between the code in

different applications. Its most significant use is in the launching of activities, where it

can be thought of as the glue between activities.

Intents are generally used to launch Activities,2 to interact with services, and to send

broadcast messages. Android supports explicit and implicit intents. An application can

define the target component directly in the intent (explicit intent) or ask the Android

system to evaluate registered components based on the intent data (implicit intents).

Explicit Intents

Explicit intents explicitly define the component which should be called by the Android

system, by using the Java class as identifier. Explicit intents specify the component to

start by its fully-qualified name.3 Listing 3.1 shows a function in app1 that starts an

activity in app2. Without the fully qualified name and necessary permissions, it is not

possible to start or interact with activities from other apps. When an explicit intent is

2An Activity is an application component that provides a screen with which users can interact in
order to do something, such as dial a number, take a photo, send an email, or view a map. Each
activity is given a window in which to draw its user interface. The window typically fills the screen,
but may be smaller than the screen and float on top of other windows.

3In Android, each app is defined by a unique package namespace. In order to start another app’s
activities, the app’s package and the activities’ name must be known. Also, the app must declare the
necessary permissions to let another app start its activities.

31

3. DATA SHARING IN SMARTPHONE APPLICATIONS

used to start an activity or service, the system immediately starts the app component

specified in the Intent object.

1 package msc.prototype.demo.app1;

2 someFunction() {

3 Intent intent = new Intent(this, "msc.prototype.demo.app2.Activity);

4 intent.putExtra("Value1", "This value one for ActivityTwo ");

5 intent.putExtra("Value2", "This value two ActivityTwo");

6 startActivity(intent);

7 }

Listing 3.1: Starting an activity in another app by using an explicit intent

Implicit Intents

Implicit intents declare a general action to perform which is handled by a component

from any app that has declared the capability to perform the requested action. For

example, to show the user a location on a map, an implicit intent can be used to request

another app to show a specified location on a map. When using an implicit intent, the

Android system finds the appropriate component to start by comparing the contents of

the intent to the intent filters declared in the manifest file of other apps on the device.

If the intent matches an intent filter, the system starts that component and delivers it

the intent object. If multiple intent filters are compatible, the system displays a dialog

so the user can pick which app to use. This is also how a share menu is populated by

the system. Fig. 3.3 shows how an implicit intent is handled by the system to open

another application. The onCreate method is used to open an application’s activity and

perform initialization operations. Listing 3.2 shows an example of an implicit intent,

used to send ACTION_SEND text MIME type PLAIN_TEXT_TYPE to other apps capable of

handling text.

1 Intent intent = new Intent();

2 sendIntent.setAction(Intent.ACTION_SEND);

3 sendIntent.putExtra(Intent.EXTRA_TEXT, textMessage);

4 sendIntent.setType(HTTP.PLAIN_TEXT_TYPE);

5 startActivity(intent);

Listing 3.2: Sending contents to other apps by using an implicit intent

Intent Filters

An Intent Filter specifies the type of intents that an app component wants to respond

to. An intent filter declares the capabilities of its parent component such as what it

can do and what types of broadcasts a receiver can handle. It opens the component to

32

3. DATA SHARING IN SMARTPHONE APPLICATIONS

receiving intents of the advertised type, while filtering out those that are not meaningful

for the component. For example, declaring an intent filter for handling text shows the

app in the share menu whenever some text is selected. An intent filter is declared in

the app’s manifest. If an activity does not contain an intent filter, it can be started

only with an explicit intent. Listing 3.3 shows an intent filter that tells the Android

system to launch the given activity launching the app.

1 <activity android:name="MainActivity">

2 <!-- This activity is the main entry, should appear in app launcher -->

3 <intent-filter>

4 <action android:name="android.intent.action.MAIN" />

5 <category android:name="android.intent.category.LAUNCHER" />

6 </intent-filter>

7 </activity>

Listing 3.3: Declaring an intent filter that opens the activity upon app launch

Intent Data

An Intent object carries information that the Android system uses to determine which

component to start (such as the exact component name or component category that

should receive the intent), and information that the recipient component uses in order

to properly perform the action (such as the action to take and the data to act upon).

An intent primarily contains the name of the component to start, the action to perform,

a URI object that references the data or the MIME type of the data, a category about

the kind of component required to handle the intent, flags that define the metadata

and extras, which are key-value pairs containing additional information required to

complete the action. Intent objects can be used to marshal data across apps and

processes, provided that the apps at both side of the connection are aware of the exact

type and contents of the data object.

3.7.2 Broadcast Receivers

Broadcast Receivers [77] respond to broadcast messages (also called events or intents)

from other applications or from the system itself. For example, applications can initiate

broadcasts to let other applications know that some data has been downloaded to the

device and is available for them to use. The broadcast receivers declared in the apps

will intercept this communication and will initiate appropriate action. The broadcast

receivers are declared by an app in its manifest, and must contain the details of the

type of messages they wish to receive. To receive updates or information from another

app’s broadcasts, the app must know and declare the correct broadcast identifier in its

manifest.

33

3. DATA SHARING IN SMARTPHONE APPLICATIONS

Figure 3.3: Illustration of how an implicit intent is used to start another activity

3.7.3 Services

A Service [78] is an application component that can perform long-running operations in

the background and does not provide a user interface. Another application component

can start a service and it will continue to run in the background even if the user

switches to another application. Additionally, a component can bind to a service to

interact with it and even perform interprocess communication (IPC). For example, a

service might handle network transactions, play music, perform file I/O, or interact

with a content provider while executing in the background. Just like with activities,

other apps must know the fully-qualified name of the service, and must have sufficient

permissions required to access and interact with it.

3.7.4 Content Providers

Content Providers [70] are used to encapsulate data, and are the standard interface

that connects data in one process with code running in another process. A Content

Provider represents data as one or more tables similar to a relational database. An

application accesses the data from a Content Provider with a Content Resolver object.

The Content Resolver is a single global object per application that provides access

to Content Providers. The Content Resolver accepts requests and resolves these by

directing them to the Content Provider, which acts as an abstraction layer between the

repository of data and its external appearance as tables. The Content Resolver stores

a mapping from authorities (URIs) to Content Providers, which provides a simple

and secure means of accessing other applications’ Content Providers in the Android

34

3. DATA SHARING IN SMARTPHONE APPLICATIONS

ecosystem. Fig. 3.44 shows a Content Provider and its defined interfaces that apps use

to interact with the data.

Figure 3.4: A Content Provider and its defined interfaces

The Content Resolver includes the CRUD (create, read, update, delete) methods

corresponding to the abstract methods (insert, query, update, delete) in the Content

Provider class. The Content Resolver does not know the implementation of the Content

Providers it is interacting with as each method is passed as an URI that specifies the

Content Provider to interact with. The Content Resolver object is situated in the

application’s process and the Content Provider object is in the application that owns

the provider, and both automatically handle the required inter-process communication

needed to send queries and results. A content URI is an argument passed that contains

the URI used to identify data in a Content Provider. Content URIs include the symbolic

name of the entire provider (its URI authority) and a name that points to a table (a path

in the data). The Content Resolver object parses out the URI’s authority, and uses it to

resolve the provider by comparing the authority to a system table of known providers.

The Content Provider uses the path part of the content URI to choose the table to

access. The URI, the path and its parsing can be defined through code, which allows

handling the URI depending on the requirements. Listing 3.4 shows a URI authority

corresponding to a Content Provider where msc.prototype.demo.contentprovider ←↩
is the provider’s authority, and context is the table’s path. The string content:// is

4source: http://www.compiletimeerror.com/2013/12/content-provider-in-android.html

35

3. DATA SHARING IN SMARTPHONE APPLICATIONS

the scheme, and is always present as it identifies the URI as a content URI.

1 content://msc.prototype.demo.contentprovider/contexts

Listing 3.4: Example of a Content URI for accessing the contexts table within a Content

Provider

To retrieve data from a provider, an application needs read access permission for

the provider, which cannot be requested at run-time. The app needs to specify this

permission in its manifest using the <uses-permission> element and the exact permis-

sion name defined by the provider. The exact name of the read access permission and

any other access permissions used by the provider may be available in an app’s docu-

mentation if the developer has explicitly decided to share it with others. If the Content

URI or access permissions are unavailable, the app cannot access the data within the

Content Provider. If a provider’s application doesn’t specify any permissions, then

other applications do not have access to the provider’s data.5

5It is possible to access data in a Content Provider without proper access permissions by sending
an intent to an application that already has the required permissions and receiving back a result intent
containing URI permissions. These permissions are limited to a specific content URI that lasts until
the activity that receives them is terminated.

36

Part III

The Contextual Data Sharing

Model

37

4

Context Definition

“Context is worth 80 IQ points.”

– Alan Kay

4.1 Introduction

Different apps have access to different kinds of information. Even if this information

were to be shared, apps need to understand the information’s context in order to utilize

the information to present related services. For example, if the Movie booking app

shared the Movie date/time information with other apps, without a proper reference to

the context (in this case - a movie) the apps will only see the information as representing

time. In order to utilize the information contextually, it is important to refer to context

for any data. Along with a reference, the app also needs to access the various fields

of information available in relation to the given context so that it can provide services

designed around that information. For example, the Movie context should always have

the Movie title, the show time, and the theater Location as key pieces of information

that make up the context. Other information such as for ticket and seats is optional, and

only adds to the contextual information already present about that event. Therefore,

in order to utilize contextual information, an app needs to recognize the context and

the fields of information available within that context.

Different apps can represent the same context in different ways. It is important to

ensure that all apps interpret contextual information in a similar way. This is important

for sharing contextual information across apps and to prevent confusion that may arise

from ambiguity in the information. For example, some apps may assume that the

Movie context contains ticket information, while other apps may not. This will create

problems when these apps share contextual information that both interpret differently.

38

4. CONTEXT DEFINITION

The sharing and understanding of contexts in apps that look for fields of information

not available or not supported by other apps creates different uses of context that

introduce differences in the sharing of contextual information.

The apps use Context Definitions to prevent such problems and enable sharing of

contextual information in a uniform way. Using Context Definitions allows the apps to

define and share contextual information that is interpreted similarly across all apps that

use the definition. This provides a common information format that is structured and

understood by all apps using the same definition, which makes sharing of information

easier.

4.2 Objectives

These are the three main objectives fulfilled by Context Definitions:

1. To allow apps to recognize the context of shared information;

2. To represent the various fields that are defined or present for a particular context;

3. To define a structure for contextual information that different apps use to repre-

sent contextual information in a uniform format.

4.3 Definition

A formal definition of context used for the purpose of this research is based on extending

Deys [22] definition: Context comprises of any information related to or affecting the

users activities and tasks. This information includes time, location, weather, sensor

information, and all information the user is presented with or enters on or related to

a task.

The information shown by apps to the user and the inputs and choices made by

the user also constitute contextual information as they are relevant to the task at

hand. This information can be used contextually and therefore also comprises useful

context. The app responsible for displaying or accepting such information is tasked

with declaring the contextual nature of acquired information.

4.4 Representation

Contextual information can be broadly classified into different types based on their

use. The different contexts are represented by a schema based on the information

they represent. Each schema is referred to by a unique name and a set of fields that

39

4. CONTEXT DEFINITION

attribute the different information pertaining to the context. Apps use this schema as

the definition for that particular context when accessing related contextual information.

Listing 4.1 below shows the schema for the Event context :

1 Event {

2 Title

3 Date/Time

4 Location

5 Contacts

6 }

Listing 4.1: Schema for Event Context

The schema has a unique name called “Event” which defines the nature of contextual

information contained within it. The title, date/time, Location (representing the GPS

co-ordinates) and Contacts (a Contact object similar to the phonebook) are used to

refer to the information represented by an Event context. These fields together provide

information that tells which Event (title) is taking place where (Location) and when

(date/time), and who will be attending (Contacts).

Apps use the definition to instantiate context objects for that particular type of

context. When an app uses an Event object, it uses the schema or definition to interpret

the information available within the Event object. Whenever it refers to an Event

context, it knows that there are title, date/time, Location and Contacts fields accessible

to it. By making this definition of Event context uniform across different apps, the

representation of an Event object and its associated contextual information is also

uniform across all apps. This ensures that different apps represent a particular context

in the same way irrespective of how it was generated or acquired.

4.5 Extending context

Certain contexts can be modeled as an extension to existing contexts. This allows us

to add more information to existing contexts, and also makes representing additional

contexts easier. The extended context only has to define the additional fields. The fields

from the base or parent context are implicitly included in the schema of the extended

context. This creates a relation or compatibility between contexts which reflects how

contexts are used in real-world use cases.

For example, a schema for Movie context is be described in Listing 4.2. Some of

the fields are similar to the schema of Event context. The Movie Title is similar to the

Event title, the show date/time is similar to the Event date/time, the theater Location

is similar to Event’s Location and both schema have a contacts field representing the

people that will be attending the said event. The Ticket and Seat Information fields

40

4. CONTEXT DEFINITION

in Movie context do not have a corresponding field in Event context, and are therefore

unique to the Movie context. This shows that in terms of contextual information, the

Movie context is similar to the Event context, and shares some of its fields. Contex-

tually we can say that a Movie is an Event. Which means that a Movie context is

a special case of an Event context, or that a Movie is a type of Event. Therefore we

model the schema for Movie to be an extension of the schema for Event. We define the

schema for Movie as shown in Listing 4.3 using only the fields that are added such as

Ticket and Seat information. The other fields belonging to Event context are implicitly

included in Movie context.

1 Movie {

2 Movie Title

3 Show Date/Time

4 Theater Location

5 Attending Contacts

6 Ticket Information

7 Seats

8 }

Listing 4.2: Information in Movie Context

1 Movie (extends Event) {

2 // fields implicitly included from Event

3 Movie Title

4 Show Date/Time

5 Theater Location

6 Attending Contacts

7

8 //fields defined

9 Ticket

10 Seats

11 }

Listing 4.3: Information in Movie Context

An app instantiating a Movie context object has access to all fields related to Movie

context. This includes the fields implicitly inherited from the Event context, and the

fields declared in the Movie schema. For apps, all fields in the Movie schema, including

those inherited from Event schema appear as part of the Movie schema. When using

the Movie context object, the app will store the Movie title in the title field, the theater

Location in the Location field, and the show time in Date/Time field.

If we structure the contexts according to how they extend other contexts, we get

a tree representing the hierarchy of contexts. The root of this tree is an abstract

41

4. CONTEXT DEFINITION

entity called Context, which acts as a common ancestor. Having a common ancestor

and a hierarchy allows for generalization of contexts through which contexts can be

reused based on their placement in the hierarchy. For example, if a Calendar app

provides services for Event context, it will not require modifications and duplication

of effort in order to provide the same services for Movie context. With generalization,

the Calendar app will receive an instance of the Movie context as an Event context

which it can recognize and act on. This allows the Calendar app to provide services for

Event context as well as all contexts that have extended from Event without additional

modifications or the need to recognize the new contexts.

Relation between extended contexts

A context hierarchy as depicted in Fig. 4.1 contains the context P with all contexts

extending P situated below it. The context C1 and C2 extend P , and context C3

extends C1. The extending context P is called the parent of the extended context C1.

Also C1 is called a sub-type of P .

The context C3 can be generalized to C1, and C2 can be generalized to P as they

are the children of the respective contexts. Therefore, we can generalize C3 to P as

relations are associative.

In general, all contexts situated below P in the hierarchy can be generalized as

instances of P since it is their common ancestor. Therefore, if a service is designed

to handle context P , and it receives any context Cx that has been extended from P

or any of its descendants, it will receive the context object as an instance of context

P . While accessing this context object, it will have access to only those fields defined

in the schema for P . Thus, the service works with P and all its descendants Cx in

the hierarchy without modifications or special handling. This allows for contexts to be

extended freely while still allowing apps that handle a particular context to receive and

work with new contexts extended from it.

Single inheritance

To simplify the hierarchy and reduce complexity, a context can extend only one other

context. If a context were to extend more than one parent, it could create confusion

regarding access to similarly named fields. For example, context A contains a field

called Title. Context B and C both extend A and inherit the Title field. Context D

extends both context B and context C, and inherits the Title field from both of them.

Now when an object of context D is generalized to an instance of context A, it creates

ambiguity regarding the field Title. There are two copies of the Title field, inherited

from context B and C which can be used to represent the Title field. In this case, it is

not clear whether the Title field inherited from B should be used or the one from C. This

42

4. CONTEXT DEFINITION

Figure 4.1: Extended contexts in a Context hierarchy

leads to confusion and complexity in design, which can be avoided by forcing a context

to extend a single context only. This problem is also known as the diamond inheritance

problem which is one of the complications associated with multiple inheritance [79].

4.6 Embedding context

Contexts that represent a part of the contextual information of another context are

embedded as sub-contexts. The embedded context acts like an attribute of the parent

context while having its own distinct schema and definition. In that case of Event

context, a Location context provides information about where the Event is taking

place, and is therefore embedded in the schema of the Event context. An app referring

to the Location in an Event context object will be aware of Location being a separate

context and will be able to access all of its fields. The Location field acts as a container

that holds all the information about a particular location associated with the Event

context. The schema for the Location context is given in Listing 4.4. By including

the sub-context within the schema of the main context, apps have access to related

43

4. CONTEXT DEFINITION

1 Location {

2 placename

3 co-ordinates(lat,lon)

4 }

Listing 4.4: Schema for Location Context

contextual information within a single object.

The embedded contexts can be updated without knowledge of the contexts that

embed them. For example, an app that provides location-based services such as navi-

gation, that updates the co-ordinates in a Location context to denote a particular place.

If this information is not linked with the Event contexts taking place at that particular

location, the contexts will have outdated Location co-ordinates. By linking Location

and Event contexts, updates to any instance of Location context are reflected across all

Event instances that use the particular Location context. An app can add or update

information to a context without being aware of it being embedded in another context.

For example, an app can access and use Location context objects without being aware

of how certain contexts like Event embed Location in their schema.

If we create a tree based on how contexts are embedded, we get a figure like the one

in Fig. 4.2. The contexts at the top are those that do not embed any other context, and

are called Simple contexts. Those that embed other contexts are situated below the

contexts they embed and are called Complex contexts. Apps that use complex contexts

must be aware of all sub-contexts in order to access all the contextual information asso-

ciated with that context. Using a simple context does not require knowledge of contexts

that embed it since the contextual information in a simple context is independent of

the contexts that embed it.

Services from apps that handle simple contexts can be utilized by apps that offer

services for complex contexts. This allows re-use of functionality and sharing of con-

textual information in an efficient way. For example, even though the Event context

embeds Contact contexts in its schema, it does not have to provide management of

contacts. This service is provided by the Phonebook app which allows users to add

and update contact information, which is then automatically reflected in the Contact

context in an instance of Event context.

4.7 Example Use Case: Movie Ticket Booking

In the Movie booking use case if the apps use Context Definitions to identify and share

contextual information, the resulting user experience becomes simpler and better as

the apps use the available contextual information to offer related services. The effort

required to access and utilize the contextual information becomes significantly less

44

4. CONTEXT DEFINITION

Figure 4.2: Different apps managing sub-contexts within Event context

compared to the apps trying to acquire this information on their own. By extending

and embedding contexts, the user can use more contextual services with less effort for

app developers to provide such services.

The Calendar app that provides notifications for Event contexts will also provide

notifications for Movie contexts since it is extended from Event. This enables the user

to use Calendar services like notifications and reminders for Movies. The Location

services provided by a Map application are based on using the Location context. The

Event context embeds a Location context in its schema, and which is implicitly included

in Movie. By using this Location field, the Map application can provide directions to

the theater without requiring the user to input this information. This saves effort and

duplication of information, and provides easier navigation for the user. Contacts are

handled by the Phonebook app that offers users the ability to change contact informa-

tion. A change or update to a particular contact is reflected across all contexts that

embed it. If a particular contact was added to the Movie context, and the contact

information was changed by the user through the Phonebook, the contact in the Movie

context will also reflect this updated information. This allows for up-to-date informa-

tion to be available across all shared contexts and allows apps to share and update

information freely. The Movie booking app only has to create the Movie context re-

lated to the ticket booking. Other services such as notifications and navigation are

provided by other apps without being aware of how the Movie context was created or

updated. This allows for a variety of related services to work together on shared con-

textual information without being aware of how other service use the same or related

contexts.

45

4. CONTEXT DEFINITION

4.8 Responsibility of owning Context Definitions

While definitions form an important aspect of recognizing, declaring and using contexts,

it is important to note who manages the creation and handling of definitions. While

we provide no recommendation as to who should create definitions, it is important to

note from an implementation point of view that the definitions have to be available at

the system level as well as to app developers to include in their apps. Therefore some

level of involvement from OS manufacturers may be necessary in order to get these

definitions on devices and in APIs related to the app development.

4.9 Summary

A Context Definition is used to represent contexts uniformly across apps and devices.

A definition constitutes a schema with a unique name and fields that make up the

contextual information associated with that particular type of context. Apps use the

context definition to initialize context objects of that context type. A context can

extend other contexts, which implicitly includes all fields from the parent context in

its schema. While the context definition only contains the additional fields defined,

apps can also access the implicitly included fields in the context object. A context

can embed other contexts, where the embedded context is used as a field representing

contextual information about the main context. Extending and embedding contexts

allows reuse of functionality, information and services. This makes it easy to develop

apps for contexts as services can reuse other services that handle a context without

dependence on how the other contexts extend or embed it.

46

5

Context Database

“Knowledge is of two kinds. We know a subject ourselves, or we know where

we can find information on it.”

– Samuel Johnson

5.1 Introduction

Context Definitions allow an app to structure contextual information through a schema

which other apps can interpret and understand. After an app has identified or created

contextual information, it needs to store the context so that it can retrieve and/or act on

it later. The Context Database allows apps to persist contextual information between

uses. The Context Database acts like a central repository, where apps can save and

retrieve contexts. The app that generates the context inserts it to the Context Database

and other apps query the Context Database to retrieve this information at later times.

The saving and retrieval of contextual information is asynchronous, which allows apps

to access contextual information when they need it.

5.2 Overview

The Context Database stores contextual information using Context Definitions, which

allows for easier sharing of contextual information between smartphone applications.

The Context Database assumes responsibility for management and storage of the con-

texts. It will store contexts generated by an app even after the app has been uninstalled.

This preserves the contextual information on a device which would have been otherwise

lost. Apps can add or modify contexts in the Context Database and can share them

with other apps indirectly through the Context Database.

47

5. CONTEXT DATABASE

5.3 Design and Structure

The design and structure of the Context Database is based on the type of database

or data store used in the implementation. The features and services supported or

provided by the database software are be used to determine the types of queries the

Context Database supports. In general, the database software should allow CRUD

(Create, Request, Update, Delete) operations for a basic working of the Contextual

Data Sharing Model. This includes a way to add contexts to the database, to query

contexts based on their type, update context entries in the database and a way to delete

contexts.

The Context Database should be managed by the system so as to maintain indepen-

dence from any particular app. On most implementation platforms, this also includes

implementing the Context Database outside the memory space of any user app. This

safeguards the Context Database against any malicious processes that may crash the

database or corrupt data. If the smartphone operating system uses Sandboxing to

isolate process data, it can be used for additional security measures.

The location of the Context Database does not have an impact on the contextual

data sharing model, but can potentially have some impact on the user experience. The

actual storage backend depends on the implementation and can be based in the cloud,

or in a local data store.

5.4 Deleting Contexts

Apps are prohibited from deleting contexts in the Context Database due to security

concerns. The deletion of contexts in the Context Database is handled by the system.

This is done to prevent loss of information and to prevent misuse of the deletion op-

eration by apps. If apps are allowed to delete contexts from the Context Database,

it can lead to complications and loss of information. For example, if some app no

longer requires a context and deletes it, it can lead to loss of information for another

app that may still be using the same context. Also deletion causes permanent loss of

information which could have been useful in the future. In cases where there is a link

or a relation between contexts such as embedding, the deletion can cause errors. If a

context being deleted is referenced as a sub-context in another context, it will lead to

loss of contextual information. This can affect the operations when querying for the

context next time, as the query may return a reference to a non-existing context which

will cause errors, and may stall database operations or crash the app.

48

5. CONTEXT DATABASE

5.4.1 Factors affecting efficiency

The size of the Context Database will have an impact on performance of queries.

A database with more records (having greater size) will take more time to execute

the same query than a database with fewer records. To keep the database within an

acceptable range of values, the Context Database manages the deletion of contexts

through a Deletion Policy. The Deletion Policy is used to manage the size of the

database and to keep the average query execution time under permissible values. The

time taken by a query to successfully execute depends on the number of records, device

configuration and app usage. The device configuration is fixed, and cannot be changed.

A high specification device can execute complex queries faster than a comparably lower

specification device. Therefore the effect of device configuration on query time will be

fixed. The app usage depends on user interactions, which can vary greatly and are

difficult to classify into expected user interaction patterns. Multiple apps accessing

the Context Database simultaneously will also have an impact on its performance.

Therefore, the only factor which is manageable and can be used to keep the Context

Database operating efficiently is managing the size of the database.

5.4.2 Deletion Policy

The Deletion Policy is activated whenever the size of the database or the number of

contexts reaches some threshold value t that is determined as the maximum size of the

database for which the average query time is within an acceptable range. The value of

t will vary between devices depending on the specification, use of apps and available

space.

The Deletion Policy is an implementation consideration addressing the following

points:

1. What - Selecting contexts to delete: The Deletion Policy selects the contexts to

be deleted based on some parameter like time, size, cost or need which marks the

contexts to be deleted.

2. When - Condition to trigger deletion: Along with the value of t, it is important

to consider other activities that will affect when the deletion can be safely run. If

some apps are querying contexts in the database, then the deletion policy should

be stalled until such apps have finished querying. Also, the phone state, active

processes and performance and battery life considerations should also be used to

come up with an optimum time for initiating the deletion.

3. How - Handling context relationships and conflicts: If a context entry about to

be deleted has a sub-context, should that be deleted as well? Or if the context

49

5. CONTEXT DATABASE

is a sub-context of some other context, what should be done about the reference.

Such considerations can be affected by the implementation platform and backend

software used to implement the Context Database. In general, the following cases

will help when implementing the Deletion policy:

• When the context to be deleted has a sub-context;

• When the context to be deleted itself is a sub-context;

• When the context to be deleted has some complex relationship with another

context.

5.5 Performance Considerations

The apps using the contextual data sharing model will be interacting with the Context

Database whenever they need contextual interactions. In some use cases, this inter-

action can happen on a regular basis. Multiple apps can try to access the contextual

information in the Context Database simultaneously. The user experience in many

apps is dependent on the use of contextual information. For example, in Calendar the

Events are shown on screen in some format. For this, the app must query the Context

Database to retrieve all the Events. Simultaneously, another app may also be request-

ing Events from the Context Database, to check if there is an upcoming Event for the

day. Various other apps may also query the Context Database for different purposes.

If the Context Database does not respond in a specified time period, it can affect the

UI interactions of the app. If there is a delay in returning the Events to Calendar, then

the user may notice a time gap where nothing is happening on screen, or things are

being updated slowly. To prevent such delays and to offer a smooth user experience

across apps, it is necessary that the Context Database has to be efficient in its queries,

returning the requested results to apps in a shorter time period, which allows for faster

UI interactions. To make the efficient use of available resources, the database design

and schema should be kept simple so as to not impact the system performance.

5.6 Summary

The Context Database is used to persist contexts through a backend consisting of a

database or data store software. Apps query the Context Database to insert and retrieve

contexts. The sharing of contexts is done asynchronously as apps can query for contexts

without being aware of which app performs the inserts. The software used to implement

the Context Database is an implementation choice as long as it follows the basic CRUD

operations required for the functioning of the contextual data sharing model. A few

performance considerations such as access time and average query execution time need

50

5. CONTEXT DATABASE

to be taken into account to keep the user interactions within apps running smoothly.

The managing of query execution time is tackled by managing the size of the database.

The Deletion Policy is responsible for handling the deletion and is an implementation

choice as the actual deletion operations are affected by the design, schema and software

being used.

51

6

Contextual Data Sharing Model

“You never change things by fighting the existing reality. To change something,

build a new model that makes the existing model obsolete.”

– Buckminster Fuller

6.1 Introduction

The Contextual Data Sharing Model describes the various components required to cre-

ate a framework that enables applications to store and share contextual information.

The responsibility of each component and its relation with other components is speci-

fied in the model. Designing and implementing the components individually or separate

from other components can create a disparity in the working and sharing of information.

The Contextual Data Sharing Model describes the responsibilities of various compo-

nents, which allows a design-level understanding of the working and limitations of each

component. This allows the components to be designed and implemented in different

ways as long as each component fulfills the responsibilities in the model. This allows

the model to be designed and implemented on a variety of platforms.

Components in the model constitute the Context Definitions, which allow applica-

tions to identify contextual information, and to share it with other applications. The

Context Database provides a way to persist contexts, that allows sharing of contex-

tual information across apps. Utilizing Context Definitions and storing it in Context

Database allows collection of information related to a context in a single, uniform and

identifiable structure, and allows it to be stored and queried by apps independently. The

module responsible for managing interactions between apps and the Context Database

is the Context Manager.

52

6. CONTEXTUAL DATA SHARING MODEL

The Contextual Data Sharing Model ties in the various components to provide

contextual information to apps. The availability of such contextual information allows

apps to design services that allow users to carry over tasks seamlessly across different

apps.

6.2 System Model

The various components of the Contextual Data Sharing Model are depicted in Fig. 6.1.

The components are separated into System and User App partitions based on their

responsibility, access and usage. The Context Database and Context Definitions lie

within the System partition. The Context Manager lies within the User App partition.

The partitioning of components allows separation of responsibility and provides security

and stabilization to the Contextual Data Sharing Model.

6.2.1 System Components

The components in the system process are managed by the system and lie outside

and separate from any user app’s process. The separation of Context Database allows

control of access to information, and provides stability and security. It acts as a barrier

to prevent corruption of data and malicious access from harmful apps. The separation

also allows changes to the underlying components such as the Context Database without

affecting the overall design of the Contextual Data Sharing Model. The changes made

would be transparent to the user apps, who would continue to interact with the Context

Database in a specified manner.

Context Definitions

The Context Definitions are used by the system to instantiate context objects. When-

ever an app creates a context object, the system refers to the Context Definitions to

create an object of the specific context. Since the Context Definitions represent the

structure of shared contexts, they are immutable and managed by the system. This

prevents any app from corrupting the definitions stored in the system.

The Context Definitions can be used to instantiate context objects outside of the

Contextual Data Sharing Model. Developers can use the context objects in their app

without the information being added to the Context Database. This allows the Context

Definitions to be used freely in any way the developers see fit.

Context Database

The Context Database acts as a repository where apps can store and retrieve contexts.

This allows apps to share contexts without a direct interaction between them. The

53

6. CONTEXTUAL DATA SHARING MODEL

Figure 6.1: Overview of the Contextual Data Sharing Model

54

6. CONTEXTUAL DATA SHARING MODEL

Context Database comprises of the actual backend data store or database used to store

the contexts, and the API used to interact with it. All access to the Context Database

is through the API, which allows a limited selection of queries to be executed by the

apps. The selection of queries is based on the functionality of services the Context

Database offers. The actual API and queries are dependent on the implementation of

the Context Database.

6.2.2 User App Components

Context Manager

The Context Manager acts as the middleware between an app and the Context Database.

Apps that wish to interact with the Context Database can only do so through the Con-

text Manager. This forms the access control mechanism used to restrict access to the

Context Database. The Context Manager performs the necessary communications to

request queries to be run in the Context Database. It is also responsible for interpret-

ing the response from the Context Database in a format understood by the app. This

involves requesting context entries from Context Database and instantiating context

objects from them. The Context Manager is also responsible for performing any error

checks and verifications on the correctness of a context being added to the database.

More information about the Context Manager is given in Section. 6.3

Using Context Objects

An app has no ownership or control over the context object after it has been inserted

in the Context Database. Other apps can update or modify contexts irrespective of

whether the context was inserted by them. This allows various apps to access and

update contextual information, which results in greater sharing of information keeps

the information updated. A context updated by an app is instantly reflected across all

other contexts that use or refer to the changed context. This allows any app to update

contextual information available to it, and allows other apps to receive the updated

contextual information without being aware of the update.

6.3 Context Manager

The Context Manager is a user app component, part of the user app itself. The Context

Manager is embedded in the user app as a separate module or library, which cannot

be changed or modified by the developers or the app itself. Each app will hold its

own instance of the Context Manager at runtime or during execution. This creates a

greater abstraction between the user apps and the system components, which permits

55

6. CONTEXTUAL DATA SHARING MODEL

more freedom in implementing the various components of the Contextual Data Sharing

Model.

The Context Manager provides a way for apps to insert and retrieve contexts from

the database without interacting with the Context Database directly. Additional fea-

tures such as error checking for context objects are based on the implementation of the

model and are not necessary for the working of the Contextual Data Sharing Model.

6.3.1 Errors generated as part of the user apps’ process

Since the Context Manager is a part of the user app, all operations performed by

the Context Manager are executed as part of the user app’s process. If any fault

of error is generated during an operation in the Context Manager, then the fault or

error is generated as part of the user app. This keeps all faults and errors generated

within the app from affecting other components, and prevents apps from crashing the

Context Database. If the app tries to run some operation within the Context Manager

that causes instability in the system or potentially crashes any process, then the app’s

process itself will become unstable and will crash. The unstable operations run as part

of the Context Manager are actually being run in the user apps process. This provides

stability and security to other apps and the system from potential crashes and errors.

This also allows the Context Database to continue working in case a query causes errors,

as the error is generated in the process containing the Context Manager. This allows

other apps to interact with the Context Database without interruptions, and allows the

Context Database to continue to handle requests from other apps.

6.3.2 Checking queries before execution

The Context Manager acts as a mediator between the app and the Context Database.

It accepts requests from the app, creates appropriate queries and sends them to the

Context Database. It interprets the results of those queries and creates context objects

which the app understands. For the app, the Context Manager is the sole interface

to the Context Database and all inserts and requests are completed through it. This

allows all operations requested by the app to be checked for errors or completeness

before passing on to the Context Database.

For example, if an app requests an Event context to be added to the database, the

Context Manager will first check whether all fields of the context object are properly

initialized. Only then will it send the query to the Context Database to add the context

object. Doing so provides additional security as incorrect requests are not sent to the

Context Database but are handled by the Context Manager itself. This reduces the

checks performed by the Context Database, and allows faster execution of requests.

56

6. CONTEXTUAL DATA SHARING MODEL

This increases the efficiency of operations run by the Context Database and allows

more apps to interact with the Context Database simultaneously.

The Context Manager requests queries to be run on the Context Database on behalf

of the app. The queries requested by Context Manager are based on a fixed subset of

queries explicitly allowed to be run by user apps, and cannot be changed. If a malicious

app somehow manages to make the Context Manager request execution of queries other

than those specified, the request will fail as the Context Database will not execute the

query. So operations and requests from the Context Manager to the Context Database

are safe, and are checked before execution.

6.4 Security Considerations

The contextual nature of information stored within the Context Database can lead

to security concerns. These include handling privacy of information and preventing

corruption of data. It is important to be aware that sensitive information may be

stored within the Context Database and it is important to ensure that proper checks

are put in place to access such information.

One way many smartphone operating systems (including Android and iOS) handle

access to information and resources is through the use of Permissions. The app requests

or declares the intention of using certain information or resource and requests access to

it. The system or the user, depending on the implementation of such a model, will grant

or reject access to the app if they choose to do so. This system of using permissions to

explicitly declare the resources and information an app needs to work can also be used

to control access to information stored in the Context Database.

Permissions can be utilized to restrict access to the Context Database and to the

use of contexts itself. An app can provide explicit read-write permissions for each

kind of context they intend to use at the time of installation of during each use of

that context. The system or the user can use these permissions to be aware of the

information the app is accessing and can act if the information being requested does

not match the activities of the app. Separate read and write permissions can be used

for apps that want to use contexts from the Context Database, but will not insert

contexts. This will prevent apps from corrupting information in the Context Database

under the guise of providing some service that relates to only reading of information

in the database. A malicious app can still take advantage of the system by offering

some service that requires the write permission, and then inserting corrupt data to the

Context Database. Such apps can be better scrutinized for suspicious actions through

explicit context permissions that declare what contexts the app wishes to read or write

from the database. For example, a movie ticket booking app requesting access to Movie

contexts can be considered as normal. But if the same app requests access to all Event

57

6. CONTEXTUAL DATA SHARING MODEL

contexts, then the app should be scrutinized more carefully.

6.5 Example: Apps using the Contextual Data Sharing

Model

In the movie ticket booking use case, the task requires the use of several apps that store

the acquired information in a way that is not shared with other apps. This leads to

other apps depending on the user to acquire the contextual information, which leads

to duplication of information and efforts required to enter it in to the app. With the

Contextual Data Sharing Model, each app designs its services on the assumption that

contextual information is available to it. In cases where suitable contextual informa-

tion is not available, the app has the option of asking the user to enter the required

information.

The app responsible for generating or interpreting the contextual information stores

it in the Context Database so that it can be shared with other apps. The movie

ticket booking app saves the appropriate information in the form of a Movie context

that contains the details about the movie such as title, show times, ticket and seat

information and also the theater location and contacts who are attending the movie.

Some of this information such as theater location and contacts may not be available at

this stage, but can be filled in by other apps who have access to this information.Once

the booking app has inserted the contextual information in the Context Database, other

apps can access it and provide services based on the information.

The user is likely to perform actions related to the context, which in this case is to

forward the details of the booking to other attendees, or to find a route on a map to

the theater, or to access seat information once at the theater. Each app that provides

one or more of these services access the contextual information of the movie context

in the database to provide services that are directly related to the user’s task. This

is more useful for the user as related services are offered without the user having to

navigate within the app or having to enter information.

The Messaging app which is used to send movie details of the booking can utilize the

Contextual Data Sharing Model to access the contextual information in to the Movie

context. It can then offer to insert this information in to the message saving the user the

effort of entering the information or copying it from another source. Additionally, it can

allow the user the choice of selecting the fields from the Movie context to be inserted

into the message body, and to use the Contacts from the context as the recipients. To

make it easier for the user to retrieve contextual information, the messaging app can

show the recently used or recently added contexts. Such filtering of contexts based on

time is dependent on the Context Database implementation.

58

6. CONTEXTUAL DATA SHARING MODEL

By providing information to the user in an easily usable format, the user is more

likely to complete tasks in fewer steps. Additionally, the user is presented with infor-

mation and services most likely required, which increases the quality of user experience

and decreases the time taken to complete tasks. When the user opens a Maps applica-

tion that provides navigational services, the app can retrieve a list of upcoming Events

from the Context Database to offer a choice of locations for routes. If the user selects

a route displayed within the list, the Location field of the corresponding Event is used

as the destination in the navigation. This saves the user the effort of typing in the

address of the Event and also prevents ambiguity or confusion with similar addresses

and areas. Further, the user can select routes for the theater as well due to the model

generalizing the Movie as an instance of Event. This reduces the effort required by the

Maps developer to integrate different context types into their app.

Once at the theater, the user would want the ticket and seat information at various

times. An app providing location-based reminders can show a notification containing

this information for easier access to the user. It can use the Location field from the

Movie context to trigger the reminder, and then show the ticket and seat informa-

tion from the same context. This saves the user the effort of creating the reminder

themselves by entering all the associated information.

By using specific queries that retrieve data based on some parameters, the apps can

utilize contexts more efficiently. This allows apps to design more services based on the

specific nature of contexts that they can request from the Context Database.

For example, a daily planner app that generates an agenda for the day will query

the Context Database for Events and other related contexts that occur on a given date.

This allows the app to pull in only those contexts which are useful to it at the given

moment. Another example can be a restaurant app that queries the Context Database

for Events and their location to provide recommendations in nearby areas. By filtering

contexts, apps can tailor specific services based on the results of such queries.

6.6 Summary

The Contextual Data Sharing Model consists of three parts - the Context Definitions

that provide a uniform representation of contexts, the Context Database that stores

the contexts and the Context Manager that acts as a middleware between the app and

the Context Database. Apps that wish to use the Contextual Data Sharing Model and

interact with the Context Database can only do so through the Context Manager. All

means of sharing contextual information between the apps is indirect and through the

Context Database, whose purpose is to store and allow sharing of contextual informa-

tion across applications.

The Contextual Data Sharing Model enables the collection of information related

59

6. CONTEXTUAL DATA SHARING MODEL

to a context in a single structure, and enables apps to provide services using contextual

information available in the Context Database. This allows users to carry over tasks

across different apps by sharing contextual information related to their actions.

60

Part IV

Contextual Data Sharing in

Android

61

7

Implementation

“Talk is cheap. Show me the code.”

– Linus Torvalds

The implementation described in this thesis is a proof-of-concept meant to test

and demonstrate the working and impact of the Contextual Data Sharing Model. The

model was implemented on the Android platform, chosen for its openness and ease

of modification. The various components were developed with technologies that are

native or work well with Android.

The Context Definitions are modeled using Java Classes which allows context ob-

jects to be instantiated as Java objects. The Context Database uses SQLite for the

backend to store contexts objects. The Context Manager is realized as a static Java class

embedded in every application. Components of the model such as the Context Database

and the Context Definitions are designed to facilitate porting to other platforms. Other

components such as the Context Manager and the implementation of Context Defini-

tions utilize technologies specific to the Android ecosystem and require additional effort

for porting to other platforms such as iOS. The code for the implementation is hosted

in a git repository at https://github.com/coolharsh55/ContentProvider.

7.1 Choice of Platform and Software

7.1.1 Platform

Of the major smartphone operating systems in use today (iOS and Android), Android

offers more choice and freedom of implementation due to its openness and availability

of source code. The platform allows a greater degree of data sharing than iOS, which

allows for easier demonstration of the Contextual Data Sharing Model.

62

7. IMPLEMENTATION

The platform used in the implementation is Android version 4.4.4, also known as

KitKat. At the time of inception of this research, this was the latest stable version of

Android available. A newer version of Android, version 5.0 also known as Lollipop was

released in November 2014. The newer version does not include any major change that

affects the design or the working of the Contextual Data Sharing Model. As such, the

existing implementation will work with minor adjustments on the newer platform.

7.1.2 Context Definitions

Contexts can be referenced and implemented in a number of ways. The main concern

of implementing Context Definitions is storing the entire contextual information in a

single context object. Traditional representations of context such as RDF and OWL

use a structured schema to represent contextual information and relationships. Using

such formats on a smartphone has the drawback of requiring parsing every time the

information is to be used. Furthermore, such formats cannot encapsulate the associ-

ated functionality that is associated with a context object. This introduces additional

complexity in the design of the system and the code.

Data on smartphone operating systems is often serialized in formats native to the

platform and code for easier management and access at a later time. The formats

discussed previously are not native on smartphone platforms and will need to be con-

verted or interpreted to native forms before use. This makes the serialization and

representation of contexts difficult and introduces additional steps in the code.

Therefore, a context is represented using Java Classes which are native to the An-

droid platform and are familiar to the developers of apps on Android. Using Java to

represent the contexts simplifies the code as there is no need for parsing or extraction.

All related functionality such as error-checks and marshaling is encapsulated into the

class itself, which leads to cleaner code and better management of contexts.

Since Android uses a native Java runtime environment, the Java classes used to

represent contexts are instantiated as Java objects. This results in better management

of memory during execution and allows sharing of information across apps without

conversion. The developers of apps can use data structures and code management

techniques related to Java for managing contexts.

7.1.3 Context Database

Local versus Cloud

The design of the Contextual Data Sharing Model allows the Context Database to

be implemented abstractly with different backends. The Context Database can be

implemented as a cloud-based data store which performs operations in the cloud and

63

7. IMPLEMENTATION

returns the result back to the device. Such an implementation would have the advantage

of additional features possible due to the increased storage and processing power of the

cloud. The drawbacks of such an implementation would include the need to access the

cloud provider on every request, the constant dependence on network connectivity for

the Contextual Data Sharing Model to work and the effect of network QoS on the time

required for various operations.

The contextual information discussed in this thesis is generated and consumed by

the apps installed on a smartphone. A local database situated on the device and

working as the backend for the Context Database offers the advantage of keeping all

information generated, stored and consumed within the same ecosystem. It also makes

it possible to use cloud offloading to offer additional functionality and resources. The

database system used in this implementation is situated locally on the device.

Backend database software

It is necessary to use database systems that are stable and readily available as they

provide high availability across a large variety of devices. Storing hierarchical data

like the context hierarchy in relational database becomes increasingly complex and

restrictive as more nodes are added to the hierarchy [80]. The increase in complexity

creates difficulty in storing contexts efficiently in the database.

The structure and querying of contextual information is highly dependent on the

type of database software used. A RDBMS restricts the flexibility to change or update

the context schema without first migrating all data outside the database. In contrast

to this, NoSQL database solutions [81] such as graph and document databases are

more suitable for storing hierarchical data. A graph database is useful for storing

relationships between various contexts, which can increase the quality of contextual

information stored on a device. However, the use of graph databases is restricted by

the lack of availability of popular and stable products that work well on mobile devices.1

The Context Database component in the specified implementation uses SQLite

version 3.7.11 [82], which is a popular serverless SQL database available on all major

platforms. SQLite is pre-installed on all Android devices, and the version specified is

found on all devices running Android 4.4.4 (Kit-Kat).

1Available NoSQL graph database for Android include Titan (https://wuman.github.io/
titan-android/), Neo4j (https://github.com/neo4j-contrib/neo4j-mobile-android) and Spark-
see (http://www.sparsity-technologies.com/), all of which are under development and do not have
the level of stability suitable for mass adoption.

64

https://wuman.github.io/titan-android/
https://wuman.github.io/titan-android/
https://github.com/neo4j-contrib/neo4j-mobile-android
http://www.sparsity-technologies.com/

7. IMPLEMENTATION

7.2 System Model for Implementation

Fig. 7.1 shows the system model for the implementation of Contextual Data Sharing

Model on Android. The system components are managed by the Android system and

run under the system process. The components in the user app are run under the user

app’s process.

The Context Definitions are represented using Java Classes, which are pre-installed

to provided a uniform implementation across devices. Developers access these classes

as part of an API when writing the app code. During execution, apps use the Context

Definitions which are a part of the system to instantiate context objects.

The Context Database is managed by the system and is exposed to the apps through

an API handled by Android’s Content Provider mechanism. For storing data, the

Context Database uses SQLite which is pre-installed on Android. The SQLite database

used is considered pre-installed and part of the system, though in practice an app was

used to instantiate the Content Provider and the corresponding tables.

All queries from an app to the Context Database are handled through the Context

Manager. The Context Manager is instantiated as a static Java class in the user app’s

process, and is responsible for querying the Context Database through the Content

Provider interface. It interprets the results returned from the Context Database to

instantiate context objects which are then passed back to the app.

Every app has its own instance of the Context Manager which acts as a middleware

between the app and the Context Database. Apps use the API provided by the Context

Manager to insert or retrieve context entries from the Context Database. The Context

Manager in turn uses the API provided by the Content Provider to communicate with

the Context Database. Except for the actual database queries, all other operations

such as field-checking, marshaling and error-checks are performed by Context Manager

in the user apps process. Apps are free to create and utilize context objects. The

Context Manager performs the error and instantiation checks only when objects are

being inserted or updated in the database.

7.3 Context Definitions using Java Classes

7.3.1 Context Java Class

Context Definitions are represented through Java classes which are then instantiated

into Java Objects. Each context type is represented using its own unique Java class.

Listing 7.1 represents the Event context using a Java class called EventData. Each

context class is suffixed with -Data to prevent clashes with other classes that may have

the same name. For example, Android has several classes named Event in different

65

7. IMPLEMENTATION

Figure 7.1: Implementation of the Contextual Data Sharing Model on Android

66

7. IMPLEMENTATION

1 package msc.prototype.context;

2
3 import android.net.Uri;

4 import Java.util.Date;

5 import android.os.Parcelable;

6
7 class EventData extends ContextData {

8 String title;

9 Date date;

10 LocationData location;

11 ArrayList<ContactData> contacts;

12 Uri uri;

13 // other methods and parameters

14 }

Listing 7.1: Schema for Event Context

packages. For the sake of brevity, this text omits the suffix when speaking about specific

Java classes. For example, the Event Java class actually refers to the EventData Java

class in code. The code listings provided contain the actual class name with the suffix.

All context classes are defined in the package msc.prototype.context and are ex-

tended from a common context class called Context. The Event class shown in List-

ing 7.1 belongs to this package that groups it together with other context classes. The

title field is a String that depicts the Event title. The date is a Date object that stores

the date and time. The Location context is a sub-context that refers to the location of

the event. The contacts are stored as an ArrayList of Contact contexts.

URI field

The URI field stores links for related information about a context. A URI in Android

can be used to refer to information in websites and also in apps. For Event, the link

can point to the event website or an app that holds this information. Apps that

want to handle a particular URI scheme need to register the scheme with the system.

This is done by declaring the scheme in the app’s manifest. The manifest of an app

acts as a declaration of the requirements and components and is used by the system

during installation of the app. The system reads the scheme information declared in

the manifest during installation of the app and associates that particular scheme with

the app. For example, an app registers the scheme http:// which is used to browse

webpages. Anytime the user clicks on a link that starts with the specified scheme

http:// the system will show a list of all apps that handle the particular link. In case

of the Event’s URI field, the link is opened by the system with appropriate apps that

can handle the scheme.

Apps can store links to information or services offered by them through this URI

67

7. IMPLEMENTATION

1 package msc.prototype.context;

2
3 import android.os.Parcelable;

4
5 class ContextData implements Parcelable {

6 private long _id;

7 public final long get_id(SystemToken token) {

8 return _id;

9 }

10 public final void set_id(SystemToken token, long _id) {

11 this._id = _id;

12 }

13 public abstract String shortDescribe(); // short description

14 public abstract String longDescribe(); // long description

15 public abstract boolean checkFields(); // perform field checking

16 }

Listing 7.2: Schema for Event Context

field. A restaurant booking app can store a link that points to the booking activity

within that app. Clicking on this link will take the user directly to the activity in the

booking app where they can manage the booking or use additional services offered by

the app.

The URI links can be opened or triggered inside any app as the system handles all

links and opens the appropriate app. This allows apps to display links to information

and services belonging to other apps. This allows related services to be displayed which

helps users to perform tasks related to the context without explicitly switching apps.

7.3.2 Abstract Context class

The abstract Context which acts as the ancestor of all contexts is realized using the

ContextData Java class. Listing 7.2 shows the Context class and its associated fields

and methods. It contains an id field of type long (long integer, holds larger values) that

represents the particular id of that context object in the Context Database. To retrieve

or set this id, the get/set methods require an object of type SystemToken, which can

only be generated by the system. This ensures that only the system has access to the

id field and that apps cannot change or modify it. By declaring the id field in the

Context class, all contexts that extend it inherit the id field as a property of that class.

The abstract methods shortDescribe and longDescribe are used to retrieve infor-

mation about the context in a String format. This can be used by apps to display

information about contexts in an easier way than manually accessing the various fields.

For example, the shortDescribe method of the Event class returns information about

68

7. IMPLEMENTATION

the title and date/time of the event. The longDescribe method returns more informa-

tion including the title, date/time, location, contacts and a URI link. These methods

can be useful when an app is dealing with different kinds of contexts and needs to

display information about them without having to access individual fields within the

context objects. For example, a calendar app can simply call shortDescirbe on context

objects to get their descriptions to be displayed in an agenda view.

The abstract method checkFields is used to perform field-checking over the context

object. The method checks if the fields are properly initialized and if the informa-

tion they contain can be safely added to the Context Database. Apps can use this

information to check information in a context object for correctness.

The ContextData class implements the Parcelable [83] interface which is the pre-

ferred method for marshaling data across processes in Android.2 The Parcelable in-

terface and its associated methods are inherited by all context classes by extending

the Context class. This allows all context objects to be efficiently marshaled across

processes through the Parcelable implementation provided by the Android system.

The abstract methods declared in the Context class need to be implemented in

every concrete context class that extends it. Since the methods are context-specific,

every context type will have a different implementation of the methods based on the

functionality and fields contained within that context class.

7.3.3 Extending Contexts

Extending contexts is achieved through Java’s object-oriented concepts [84] which allow

one class to extend another class. Context classes extend existing classes and behavior

by extending the respective Java class. For example, Listing 7.3 shows the Movie class.

The Movie class extends the Event class, which corresponds to the Movie context

extending the Event context. The fields title, date/time, location, contacts and URI

are inherited by Movie from the Event class. The Movie class declares the fields for

ticket and seat information which are not present in the Event class.

The hierarchical structure of contexts is similar to Java’s object model, where each

class has a common ancestor called Object. Every class can only extend one other class

which keeps the class organization simple and prevents the problems associated with

multiple inheritance. If a use case requires the use of multiple inheritance in relation to

contexts, one possible solution is to extend one parent and to embed the other parents

as sub-contexts.

2Parcelable and Serialization are implementations used for marshaling and unmarshaling Java ob-
jects. Android’s Parcelable implementation allows objects to read and write from Parcels (data object)
which can contain flattened data inside message containers, which offers better performance results on
constrained platforms like Android.

69

7. IMPLEMENTATION

1 package msc.prototype.context;

2
3 import android.net.Uri;

4 import Java.util.Date;

5 import android.os.Parcelable;

6
7 class MovieData extends EventData {

8 String ticket;

9 Stirng seats;

10 // other methods and parameters

11 }

Listing 7.3: Schema for Movie Context extended from Event Context

1 void handleEventContext(EventData event) {

2 // do something with event

3 }

4
5 void foo() {

6 // movie context object

7 MovieData movie = new MovieData();

8 // pass handleEventContext a movie object

9 handleEventContext(movie);

10 }

Listing 7.4: Schema for Event Context

7.3.4 Generalization of Contexts

Generalization of an object to its parent class means interpreting an object of the

derived class as if it were an object of the parent class. This increases the re-usability

of code as the same code can handle multiple types of objects based on how they are

derived from a particular context. This allows creation of apps that target contexts

situated higher in the hierarchy and work with all contexts directly below it. In terms of

implementation using Java classes, this allows apps to include code written to work with

one context, which will work with all contexts that have extended the specified context.

Therefore, functions written for Event objects will also work with Movie objects as the

system generalizes the Movie object into an instance of the Event object. In Java

terminology, this is called type casting. Here the Movie object is cast as an Event

object by the system.

Listing 7.4 shows a function handleEventContext that accepts Event objects. An-

other function foo calls handleEventContext and passes it a Movie object. The sys-

tem automatically casts the Movie object to an Event object before passing it to the

handleEventContext function.

Apps such as Calendar that primarily handle Event contexts can provide the same

70

7. IMPLEMENTATION

1 package msc.prototype.context;

2
3 class LocationData extends EventData {

4 protected Stirng placename;

5 protected double xpos;

6 protected double ypos;

7 // other methods and parameters

8 }

Listing 7.5: Schema for Event Context

1 void useLocation{EventData event} {

2 // gets location’s / place name

3 doSomething(event.getLocation().getPlaceName());

4 }

5
6 void updateLocation(EventData event) {

7 // sets event’s location to current location

8 LocationData location = getCurrentLocation();

9 event.setLocation(location);

10 }

Listing 7.6: Using Location context

services for all contexts that extend the Event class. This means contexts such as

Movie, Lunch, Meeting, and Concert that extend the Event class are automatically

converted to Event context objects before being used by the Calendar app. This allows

the Calendar app to handle all types of events while writing minimal code and focusing

on the features provided rather than putting in effort to support more context types.

7.3.5 Embedding Contexts

Embedding contexts is achieved by including the sub-context as an object reference

inside the context class. This allows the embedded context to be referenced as a field.

Listing 7.5 shows the Location class which is embedded in the Event class.

The Location class contains the fields and methods necessary to represent a Lo-

cation context. By embedding the context in the Event context, every Event object

will contain a reference to a Location object. This allows a context object to contain

references to associated information even if the information itself may not be stored

collectively with that context. The Location reference can be used to modify the loca-

tion information associated with the Event, or to point it to another existing Location

context. Listing 7.6 shows how the Location reference can be used to access the location

information, and how different locations can be associated with an Event.

71

7. IMPLEMENTATION

1 create table if not exists LOCATION(

2 _id INTEGER PRIMARY KEY AUTOINCREMENT,

3 place TEXT NOT NULL,

4 xpos REAL NOT NULL,

5 ypos REAL NOT NULL

6);

Listing 7.7: Table schema for Location context

7.4 Context Database using SQLite

7.4.1 Initializing the database

The implementation for the Context Database uses SQLite version 3.7.11 as the backend

for storing the contextual information. This version of SQLite is pre-installed on all

Android v4.4.4 KitKat devices.3

The creation and initialization of the SQLite database was done through a separate

app. The app creates a database called Contexts.db and initializes the necessary tables

required for creating the Context Database. The Content Provider interface used to

interact with the SQLite backend is also initialized through this app. The Content

Provider is utilized by the Context Manager to interact with the Context Database

through a set of standard API’s.

7.4.2 Context entries and tables

Every context type has its own distinct table in the SQLite database. Each field in

the Context Definition schema is stored as a separate column in the table. The id

field defined in the abstract Context acts as the primary key in all context tables.

This ensures that all context entries stored in a table are unique with respect to the

contextual information they represent. The table schema for the Location context is

shown in Listing 7.7.

Where a context extends another context, only the fields declared in the extended

context are stored in extended context’s table. The fields inherited from the parent

context are stored in the parent context’s table. For example, Listing 7.8 shows the

table schema for the Event context and Listing 7.9 shows the table schema for the

Movie context. The table for Movie contains a reference to an entry in the Event

context where the inherited fields are stored. Both entries share the same id belonging

to the Movie context added to the database. While inserting a Movie context, it is

ensured that there is no clash or overlap with an existing entry in the Event table.

3Some devices are shipped with a different SQLite version as manufacturers install an updated
version on the device. Version 3.7.11 is the version of SQLite binary shipped in the KitKat release
dated 01-Nov-2013.

72

7. IMPLEMENTATION

1 create table if not exists EVENT(

2 _id INTEGER PRIMARY KEY AUTOINCREMENT,

3 title TEXT NOT NULL,

4 date INTEGER NOT NULL,

5 uri TEXT NOT NULL);

6);

Listing 7.8: Table schema for Event context

1 create table if not exists MOVIE(

2 _id INTEGER PRIMARY KEY AUTOINCREMENT,

3 ticketID TEXT NOT NULL,

4 seats TEXT NOT NULL,

5 FOREIGN KEY(_id) REFERENCES EVENT(_id)

6);

Listing 7.9: Table schema for Movie context

The separation of fields into different tables allows separate access to contextual

information. When an app requests contextual information related to Events, only the

fields in the Event table are returned. Since the table for Event also contains entries

from all contexts that have been extended from the Event context, all the contextual

information related to events is accessed from a single table. Whenever an app requests

information about Movie contexts, the entries from the Movie table are matched with

their corresponding entries from the Event table before being returned. This allows

efficient use of joins and multiple queries as a join is performed only when returning

extended contexts, whose entries in the table are always less than those for the parent

context.4

Whenever a context embeds another context, this relation is stored in a separate

table unique to the relation between the two contexts. For example, the relation be-

tween an Event entry and a Location entry is stored in a separate table whose schema

is shown in Listing 7.10. Each entry in this table depicts a relation between an Event

entry and a Location entry.

7.4.3 Handling Duplicates in Database

Contextual information should not be duplicated in the Context Database. Since con-

text entries represent contextual information, it is necessary to ensure that there is

only one instance of a context in the Context Database. Two context entries are said

4Since every entry in the extended context’s table has a corresponding entry in the parent context’s
table, the parent context’s table will always contain at least the same number of entries as the extended
context. Therefore, the number of entries in the parent context will always be greater than or equal to
the number of entries in any extended context’s table.

73

7. IMPLEMENTATION

1 create table if not exists EventxLocation(

2 e_id INTEGER, l_id INTEGER,

3 FOREIGN KEY(e_id) REFERENCES EVENT(_id),

4 FOREIGN KEY(l_id) REFERENCES LOCATION(_id)

5);

Listing 7.10: Table schema for EventxLocation that stores the reference of Location
objects within Events

to be duplicates if the contextual information they convey is the same.5 The criteria

for deciding whether two contexts are duplicates depends on the fields in the context,

and is different for every context type. For example, when considering two Event con-

texts, if both entries have some fields that are the same, they may not necessarily be

duplicates. But if a combination of multiple fields such as title, date/time and location

are the same, the context can be considered to represent duplicate information.

Every time a context entry is to be inserted, it is first checked if it is a duplicate of an

existing context in the Context Database. If no duplicates are found, the context entry

is successfully inserted and given a unique id. If a duplicate is found, the Contextual

Data Sharing Model can work with the following two options -

1. Refuse the insert : The Context Database refuses the insert operation and the

context entry is not added to the database. A duplicate context entry error

message is sent to the corresponding Context Manager along with the id of the

original context entry in the Context Database. This option forces the Context

Manager to explicitly query the Context Database for the original context and

substitute the duplicate context with the original context’s id. In effect, it discards

the duplicate context, and returns the original context.

2. Accept the insert and return the original id : The Context Database accepts the

insert operation but does not add the duplicate entry to the database. It returns

the id field of the original context stored in the database as the id of the inserted

entry. The Context Manager receives an insert successful message and sets the

id of the inserted context object with the id of the original context object in

database. In this option, the Context Manager is not aware that the insert option

was related to a duplicate in the database, and considers the context entry to be

successfully inserted in the database.

In both cases, there can be loss of contextual information in the fields not being

used to check for duplicates between two context entries. If these fields are ignored or

5Similar contextual information does not necessarily correspond to actual matching of the informa-
tion fields. For example, two events are taking place at two locations with the same co-ordinates, but
different place-names. In this case, the two location contexts can be considered as overlapping each
other even though the place-names are different.

74

7. IMPLEMENTATION

overwritten, it results in an unwanted change in contextual information. For example,

an Event entry being added to the database identified as being a duplicate of an existing

entry. This means that the title, date/time and location field match an existing entry

in the database. The other information in the context entry such as the URI field may

not be checked at all. In this case, if the id of the context entry in the database is

returned, it will create a discrepancy in the representation of contextual information

in context objects with the same id. Some instances of this context will have the URI

field from the Context Database, and others may have a different URI field. This is

undesirable when dealing with contextual information. If this context is again saved

to the Context Database, the URI field will be overwritten with the new information.

This can lead to an accidental loss of contextual information.

To prevent such accidental loss of information and overwriting, duplicate context

entries with other differing fields should be handled through an update operation. The

Context Manager is made aware that a duplicate exists in the database with some

differing fields and has the option of discarding the differences and updating the infor-

mation in the database or accepting the differences and changing the information in

the context being added to the database. This can still lead to loss of information and

overwriting, but the Context Manager and the app will be aware of the exact contextual

information being added to the database. This approach also prevents discrepancies in

context objects with the same id since all information contained within such objects

will match with the information stored in the Context Database.

7.4.4 Deletion Policy

The deletion policy dictates the deletion of contexts in order to keep the performance

of queries within acceptable limits. The size of database t for which the deletion policy

is triggered is highly dependent on the specific device configuration and usage of the

Context Database. The impact of a table’s size on the execution of queries is discussed

in the Metrics and Performance chapter.

For the deletion policy we considered using paging algorithms [85, p. 288] such as

First-in First-out (FIFO), Least frequently used (LFU) and Least recently used (LRU)

to decide which contexts are to be deleted. Using LFU and LRU requires storing a

timestamp every time a context entry is accessed in order to determine its frequency

of use. This requires a write to the database every time a context entry is read, which

is unfeasible when using SQLite as it severely affects the speed of read operations.6

Therefore, the implementation uses FIFO to select contexts for deletion since using it

6SQLite does not support storing read timestamps like other RDBMS such as MySQL. In order to
implement this functionality in SQLite, an explicit write operation to the table is necessary with every
read operation. This locks the table during the write operation, and prevents concurrent read access,
thereby affecting the performance of the query.

75

7. IMPLEMENTATION

does not require storing timestamps on read operations.

FIFO orders entries based on the time when they were added to the database.

This can be implemented by storing a timestamp with every entry inserted to the

database. The timestamp is updated whenever the entry is updated to denote the

change in information. In FIFO, the first n entries are selected for deletion based on

their timestamps. The value of n is selected so as to satisfy the condition (0 < n < t).

When the value of n is small, the value of (t−n) is comparable to the value of t. This

causes the database size to grow to the threshold size sooner and causes degradation of

performance as the deletion policy is triggered more often. If the value of n is large, the

value of (t− n) is comparably smaller than t, and the database size reaches threshold

size more slowly. The deletion policy is triggered after significant time intervals, and

prevents the degradation of performance over time. However, this also deletes more

contexts in a single operation and may delete contextual information that could have

been useful.

The value of n is calculated based on a combination of conditions such as device

configuration, frequency of queries and operational costs involved.7 In this implemen-

tation, the value of n is within the range (1000 < n < 5000) depending on the context

table under consideration.8

Along with FIFO, context entries for some context types can also be selected based

on the relevance of their contextual information. For example, some context types such

as Event are based on a specific date/time, which is more relevant than the insertion

timestamp used in FIFO. Such context types are deleted based on relevance using the

ordering of information present in the context table.

If a context entry being deleted is an embedded entry, then it is only deleted when

all of its parent context entries are also marked for deletion. If a context entry being

deleted is an extended entry, or contains a relation to an extended entry, then it is

ensured that all related fields in different tables are also deleted. This ensures that

useful data is not deleted in the case of embedded entries, and that all related data is

removed together in the case of extended entries.

7.5 Context Manager as a Static Java Class

The Context Manager is instantiated as a static Java class in the user app’s process,

and is responsible for all interactions between the app and the Context Database.

It interacts with the Content Provider interface to request queries from the Context

7Creating such policies requires further extensive testing and is not within the scope of this research.
8Different context tables can have different values of n, as each context table stores different con-

textual information based on relevance and frequency of use. For example, location entries will be used
differently than contacts, and therefore can have a different value of n.

76

7. IMPLEMENTATION

Database and interprets the response in a format understood by apps. It also performs

operations such as error-checks and marshaling on context objects. All operations

performed by the Context Manager are executed in the user app’s process.

Listing 7.11 shows the implementation of the Context Manager using a static

Java class called ContextManager that refers to the Content Provider of the Context

Database using the URI content://msc.prototype.contextprovider.cp/ that refers to

the Content Provider used to access the Context Database. The application’s Content

Resolver is used to resolve the URI to the Content Provider and to receive responses

within the the app. When inserting or updating a context object, the Context Man-

ager checks if the object has its id field set, which indicates that the object exists in

the Context Database. It also performs checks for errors and field-completeness and

proceeds only if no errors are found. When an app requests context objects from the

Context Database, the Context Manager forms the appropriate query and sends the

request to the Content Provider. Upon receiving results, it creates the corresponding

context objects before returning them to the app.

The objects created by the Context Manager are tied to the app that holds the

instance of the Context Manager. The objects are instantiated in the apps’ data space

and their lifetime is tied to the apps’ lifetime.9 Whenever the system performs garbage

collection, the context objects are automatically cleaned without requiring any form

of memory management. Due to the restrictions placed by sandboxing, each app can

access only its own data, and therefore only those context objects that are created in

its data space.

7.6 Usage by Apps

7.6.1 Providing Context Classes in an Android Library

Apps use the Contextual Data Sharing Model by including a library situated in a file

called ContextManager.aar, an Android Archive module10 which should be copied to an

app’s library (lib) directory along with adding a reference to the app’s Gradle build.11

Listing 7.12 shows the gradle build for an app using the Contextual Data Sharing Model

by including the library file as an external library. The library contains the context

9In Android, objects instantiated by an app are created in the heap, a dynamic storage memory
provided to the app.

10An Android Archive (extension .AAR) module is compiled from a Library project and is meant to
be shared as a module between projects. It is a Zip archive containing a combination of compile code
such as JAR and/or native .so files along with resources such as manifest, assets and other ancillary
files.

11Gradle is a project automation tool that provides dependency management features sim-
ilar to Apache Ant and Apache Maven. Gradle is the default build system in An-
droid studio, the official IDE for Android application development. More info at
https://developer.android.com/tools/studio/index.html

77

7. IMPLEMENTATION

1 package msc.prototype.context;

2
3 public class ContextManager {

4 static final String uri_Event = "Event";

5 static final String uri_authority =

6 "content://msc.prototype.contextprovider.cp/";

7
8 public static int insert(ContentResolver resolver, EventData event) {

9 Uri uri = Uri.parse(uri_authority + uri_Event);

10 ContentValues values = new ContentValues();

11 // insert all event fields into ContentValues

12 values.put("eventtitle", event.getEventname());

13 . . .

14 // check if event already has an id

15 // check if event’s subcontexts have an id

16 . . .

17 // perform error-checks on event

18 . . .

19 // insert event to Context Database

20 Uri response = resolver.insert(uri, values);

21 // parse the response and set event’s id

22 . . .

23 return 0;

24 }

25
26 public static ArrayList<EventData> getEvents(ContentResolver resolver) ←↩

{

27 Uri uri = Uri.parse(uri_authority + uri_Event);

28 Cursor result = resolver.query(uri, null, null, null, null);

29 ArrayList<EventData> events = new ArrayList<>(result.getCount());

30 result.moveToFirst();

31 // initialize event objects from result and add to events

32 . . .

33 events.add(event);

34 result.close();

35 return events;

36 }

37 }

Listing 7.11: Implementation of Context Manager as a Static Java Class

78

7. IMPLEMENTATION

classes, the Context Manager class and implementation of other APIs required for using

the model. The context classes and the Context Manager class are packaged and used

as a external library since these classes cannot be installed at a system level on the

Android device.12 The context classes cannot be installed on an unmodified Android

distribution due to the security model of the platform. In order to demonstrate the

Contextual Data Sharing Model, the apps gain access to the context classes through

the integrated library which contains a copy of these classes.

1 dependencies {

2 compile(name:’ContextProvider’, ext:’aar’)

3 }

Listing 7.12: Adding the library as a module in Gradle

7.6.2 The Change vs. New Policy

Apps that insert context objects in the Context Database must be aware of instances

where an existing context is accidentally updated instead of adding a new context to

the Context Database. The Change vs. New policy informs developers of the correct

use cases for insert and update operations in order to prevent unwanted changes to the

contextual information present in the Context Database.

The following example demonstrates the basis and need for this policy: an app

updates the co-ordinates within a Location context associated with an existing Event

to reflect a change in the Event’s location. Other contexts that are associated with

or use this particular Location as a sub-context or through a reference will now point

to the updated co-ordinates. As a consequqnce, any other Event contexts that share

this textitLocation context will have their venue (location) changed. This results in a

change in the contextual information and introduces incorrect information and affects

the integrity of information utilized.

To prevent this, it is necessary for developers to be aware of the Change vs. New

policy which dictates that if a context is being updated, refined or corrected in some

form, only then may the information within the context be changed or updated. In all

other cases where information is being modified to change the intended meaning of the

context, a new context object should be created and added to the database. Applying this

policy to the example described above tells the developer to create a new Location object

since the intended meaning of the context is being changed.13 Following this policy is

12System classes are those classes that are available to all apps and processes and do not need to be
included with the apps’ code. The app only needs to use the provided APIs to use the classes and their
associated methods in its code.

13The meaning of a context is its intended contextual information. A Location context is used to
store location information about a place. By changing its co-ordinates, the location and therefore the
meaning of the context is being changed.

79

7. IMPLEMENTATION

left to the discretion of the developers since it is impossible to check programmatically

whether a change made to any context is incorrect or violates the principle behind the

Change vs. New policy.

7.7 Demonstration of Apps using the Contextual Data

Sharing Model

Here we demonstrate the use of the Contextual Data Sharing Model in the movie ticket

booking use case. Fig. 7.2 shows a screenshot of the app that allows users to book

movie tickets. Users select the movie they wish to watch along with the preferred

date/time, theater and number of seats. The app then generates a ticket with the

selected details and a ticket ID and seat information. It stores this information in a

Movie context object along with a link to the movie’s IMDb page. The app then inserts

the information in the Context Database by calling the insert method of its Context

Manager. A sample of the code used for performing the above steps in a movie ticket

booking app is provided in Listing 7.13.

1 // create context object with movie information

2 MovieData movie = new MovieData(

3 moviename,date,loc,contactData,uri,ticket,seats);

4 // insert context object in Context Database through Context Manager

5 if(ContextManager.insert(getContentResolver(), movie) != 0) {

6 Toast.makeText(getApplicationContext(),

7 "ERROR INSERTING MOVIE CONTEXT",Toast.LENGTH_LONG).show();

8 }

Listing 7.13: Movie ticket booking app

The apps used in the demonstration were created with distinct packages and devel-

oper signatures so as to prevent any implicit data sharing between them. This ensured

that each app was unaware of the identities and existence of the other apps and acted in

isolation. All apps interacted with the Context Database through the Context Manager

bundled within the app.

A calendar app that retrieves Event contexts from the Context Database will also

receive the saved movie information along with the other events. The app will inter-

pret the movie information as an Event context and would have access to all of the

fields within the Movie context which are inherited from Event. This allows the app

to change contextual information such as date/time and contacts associated with the

movie context through user input. The calendar will provide features such as notifi-

cations and reminders for the movie similar to other event contexts. This will save

the user the effort of entering the information and setting up reminders, as the app

80

7. IMPLEMENTATION

retrieves the needed information from the Context Database.

The messaging app shown in Fig. 7.3 allows users to insert contextual information

in the message body. It provides users the option to select a context entry, which is

retrieved from the Context Database. The app then allows users to select fields from

the context which are then inserted in the message body. The app also provides the

options of using the Contacts from a context object to populate the recipients field of

the message. Using a messaging app that allows users to select contextual information

saves users the trouble of finding and entering the information. It also helps them

complete common tasks such as sending movie details to all attending contacts with a

few clicks within the app.

The maps app shown in Fig. 7.4 displays a list of upcoming events retrieved from the

Context Database upon opening the app. Users select an entry by clicking on it, which

tells the app to use the location field of the selected Event context as the destination

for providing navigational features. Alternatively, users can enter the address in the

input bar provided at the top to set the destination themselves. The maps app provides

smarter navigational features by offering the user a list of destinations they are most

likely to use. In the movie ticket booking use case, the app shows an entry for the

movie in the list of events. This list is shown right after the user opens the app, which

saves the effort of entering the address or selecting a location in the app in order to

navigate to the theater.

The reminder app provides notifications based on the context entries stored in the

Context Database. It retrieves the Movie context and sets a reminder triggered by

the theater’s location. Once at the theater, the app shows this notification as seen in

Fig. 7.5 that displays the ticket and seat information to the user. The user does not

have to open any app or search through notes and messages to access the ticket and

seat information since it is easily accessible as a notification. To create such contextual

reminders, the user does not have to explicitly enter the information required to create

reminders since the app retrieves it from the Context Database.

The flow of information and the user interactions can be seen in Fig. 7.6, which

depicts how the apps use the Contextual Data Sharing Model to create contextually

aware services for the user.

7.8 Permissions and Security

Android is a privilege-separated operating system [86], in which each application runs

with a distinct system identity based on the concepts of Linux user ID and group ID.

Parts of the system are separated into distinct identities, which isolates applications

from each other and from the system. This forms the basis of the sandboxing model.

81

7. IMPLEMENTATION

Figure 7.2: Movie Booking app Figure 7.3: Messaging app

Figure 7.4: Maps app Figure 7.5: Reminders app82

7. IMPLEMENTATION

Figure 7.6: Information flow in apps using the Contextual Data Sharing Model

83

7. IMPLEMENTATION

Additional finer-grained security features are provided through a ‘permission’ mecha-

nism that enforces restrictions on the specific operations that a particular process (app)

can perform, and per-URI permissions for granting ad-hoc access to specific pieces of

data.

Android’s native implementation of permissions can be utilized to control access to

contextual information in the Context Database. This requires creating new permis-

sions that specify the context types the app wishes to use and the operations to be

performed on it. The permissions required by the app to use contexts can be declared

in the apps’s manifest in a manner similar to existing permissions in Android.

Listing 7.14 shows an example of how permissions can be used to declare the use

of contexts by an app through its manifest. Apps must declare Read/Write permis-

sions for the context types they wish to use. If a context contains sub-contexts in its

definition, then the system can automatically grant the related permissions for using

the sub-contexts, or force the developer to explicitly specify those permissions in the

manifest. The choice is based on the implementation of permissions enabling the devel-

oper to select either of the two courses. It is recommended to specify all the required

permissions explicitly in the manifest since this is the approach followed by the existing

implementation of permissions on Android.

1 <?xml version="1.0" encoding="utf-8"?>

2 <manifest xmlns:android="http://schemas.android.com/apk/res/android"

3 package="com.example.android.demo"

4 android:versionCode="1"

5 android:versionName="1.0" >

6

7 <uses-permission android:name="msc.prototype.context.EVENT.READ"/>

8 <uses-permission android:name="msc.prototype.context.EVENT.WRITE"/>

9

10 <!-- related permissions

11 msc.prototype.context.LOCATION.READ

12 msc.prototype.context.LOCATION.WRITE

13 msc.prototype.context.CONTACT.READ

14 msc.prototype.context.CONTACT.WRITE -->

15 </manifest>

Listing 7.14: Context permissions in the app manifest

The use of permissions allows identification of what contexts an app is using. This

can be used to analyze the amount of contextual information being used by the apps,

which is helpful to recognize apps that steal information. The permissions are also

necessary to prevent malicious access by apps, which can corrupt information in the

Context Database. The permissions denote the use of information requested by the app.

84

7. IMPLEMENTATION

This information can be shown while installing the app to get an informed consent from

the users.

7.9 Summary

The examples and the demonstrations of the use cases show how contextual sharing

of information is achieved by sharing information through the Context Database. The

apps used the contextual information stored in the Context Database to provide contex-

tual services, which allow the user to enter significantly less information in various apps

as the necessary information was retrieved from the Context Database. This resulted in

the users getting easier access to required features and allowed them to complete their

tasks faster. The use of Context Database prevents the duplication of effort and infor-

mation by storing data in a common and accessible way. The demonstration validates

the usefulness of the Contextual Data Sharing Model.

85

8

Performance Evaluation

“Beware of bugs in the code; I have only proved it correct, not tried it.”

– Donald Knuth

8.1 Motivation

The Contextual Data Sharing Model allows apps to retrieve, store and share contextual

information by using the Context Manager to interact with the Context Database.

Apps can use the contextual information to fill the UI elements shown to the user for

interacting with the app, which creates a relation between the Contextual Data Sharing

Model and the app’s user experience.1 Therefore, the performance of the Contextual

Data Sharing Model and its individual components have an impact on the performance

of apps using the model, and by extension on the user experience when using such apps.

This chapter provides comparisons, performance tests and experiments that are used

as a proof-of-concept demonstration to gauge the feasibility of the Contextual Data

Sharing Model and decide operating parameters that affect the performance and user

experience of apps.

8.2 Testing Parameters

To test the efficiency of the model, the prior movie ticket booking use case was com-

pared in terms of duplication of information and user effort. The performance of the

Contextual Data Sharing Model consists of the performance of individual components

1Compared to tasks carried out in the background such as downloading a file, UI elements and the
information they contain affect the user experience in a larger capacity since the user directly sees and
interacts with them.

86

8. PERFORMANCE EVALUATION

such as the Context Database and Context Manager. Some operations in the perfor-

mance tests such as IPC and marshaling that lie outside the Contextual Data Sharing

Model are handled by the Android system.

Performance is primarily based on the time taken to execute the various operations,

where the time for each operation is broken down to reflect individual times for the

different components. The time taken by the Context Database consists of the time

required to receive and parse a query, the time required to execute the query and the

time required to create appropriate responses. The time taken by the Context Manager

consists of the time required to create the appropriate query, the time required to send

it to Context Database for resolution and the time required to interpret the received

response and convert it into context objects. Supplementing these operations is the

IPC mechanism handled by the Android system which manages the sharing of data

between the Context Database and the Context Manager.

All tests were performed on the Event table that was populated with random entries

at the time of database initialization.2 The corresponding sub-contexts Location and

Contacts were also randomly populated.

Since the tests are based on the execution of queries and the interpretation of results,

the number of entries (records) in the Context Database have a significant impact on the

time required to complete each operation. Each tests was run multiple times (n=100)

and for different number of records (100, 500, 1000, 5000, 10000, 50000, 100000) in

the Event table, with only those queries that successfully completed execution being

considered for evaluation.

The time taken to execute a query is depicted by t, with tmin depicting the mini-

mum value, tmax depicting the maximum value, tavg depicting the average, and tstdev

depicting the standard deviation.

8.3 Operating Environment

The experiments were carried out on a Nexus 7 running Android v4.4.4 Kit-Kat.3 No

other software or apps were installed and the stock ROM was not modified, rooted or

supplemented in any way. The device battery was kept at near full charge, and the

connectivity options (Wi-Fi, Bluetooth, NFC) were disconnected to prevent unwanted

interferences in the tests. The performance metric values were obtained through times-

tamps from logging at strategic points in the code. The logs and process stats were

2Using Java’s Random class (http://docs.oracle.com/javase/7/docs/api/java/util/Random.html)
that generates a stream of pseudo-random numbers using a 48-bit seed modified using a linear congru-
ential formula.

3Nexus 7 Wi-Fi only, model year 2013, Qualcomm Snapdragon S4Pro, CPU Quad-core 1.5 GHz
Krait, GPU Adreno 320, 2 GB RAM.

87

8. PERFORMANCE EVALUATION

gathered using adb and logcat4 interfaces.

8.4 User Experience Comparison

Table 8.1 shows the information sources utilized by the apps as they carry out the vari-

ous tasks related to the movie ticket booking context. The label APP denotes informa-

tion generated by the app, USER denotes information entered by the user for the first

time, and GET denotes information retrieved from the Context Database. Columns

contains Movie fields and rows contain apps. The apps retrieve the movie fields from

the Context Database which saves the user the effort of entering the information into

the app. Compared to the number of times the user had to enter information in apps in

Table 1.1, the user has to enter the information only the first time as the apps retrieve

the stored information from the Context Database.

Table 8.1: Information sources used by apps utilizing the Contextual Data Sharing
Model in the movie ticket booking use case

App used Movie
Title

Show
Date/Time

Attending
Contacts

Theater
Location

Ticket
Info

Booking USER USER NA USER APP

Calendar GET GET USER GET GET

Messages GET GET GET GET GET

Maps GET GET GET GET GET

Reminder GET GET GET GET GET

A comparison of the effort made by the user can be made using Table 1.1 and Ta-

ble 8.1 to count the number of steps taken by the user in each app with and without

the use of the Contextual Data Sharing Model. It can be clearly seen that when apps

use the Contextual Data Sharing Model, the user only needs to select the available

information instead of entering it in the app. The effort required to select information

already available can be considered to be less than the effort required to enter infor-

mation by typing it or copying it. The demonstration of the model also shows features

such as showing upcoming events to select the destination of routes in maps that were

not possible earlier.

4Android Debug Bridge (adb) is a versatile command line tool that allows debugging a connected
Android-powered device. Logcat provides a mechanism for collecting and viewing filtered logs from
various applications and portions of the system through adb. More info about adb and logcat can be
found at https://developer.android.com

88

8. PERFORMANCE EVALUATION

8.5 Performance of Context Database

8.5.1 Inserting an Event entry in Context Database

Table 8.2 shows the time required to insert one Event entry in the Context Database

where the total time includes the time required for unmarshaling values, inserting Con-

tact, Location, and Event entries in their respective tables, creating relational entries

in various tables, and checking for duplicates.

Table 8.2: Time required to insert one Event entry into Context Database

Entries tmin(ms) tmax(ms) tavg(ms) tstdev(ms)

100 1 5 1.65 0.81

500 1 5 1.72 1.02

1000 1 5 2.03 1.14

5000 2 9 4.21 1.60

10000 4 19 6.00 2.28

50000 9 49 12.19 6.51

100000 20 119 42.55 12.08

8.5.2 Retrieving Events from Context Database

Table 8.3 shows the time required to retrieve all Event entries from the Context

Database where the query executed the required operations to performs joins over

Event, Contact, Location and their relational tables to retrieve all associated informa-

tion in a single row of the result.

Table 8.3: Time required to retrieve Event entries from Context Database

Entries tmin(ms) tmax(ms) tavg(ms) tstdev(ms)

100 1 5 1.87 0.87

500 1 5 2.11 0.94

1000 1 5 2.34 1.13

5000 3 10 5.42 1.95

10000 9 39 12.05 4.29

50000 10 49 15.83 6.98

100000 20 137 31.51 15.73

89

8. PERFORMANCE EVALUATION

8.6 Performance of Context Manager

8.6.1 Inserting an Event entry through Context Manager

Table 8.4 shows the time required to insert one Event context through the Context

Manager where the total time includes the time required to perform error and validation

checks, the IPC between user app and the Content Provider,5 checking for duplicates,

and inserting the entry in the Context Database.

Table 8.4: Time required to insert one Event context through Context Manager

Entries tmin(ms) tmax(ms) tavg(ms) tstdev(ms)

100 1 25 1.70 3.10

500 2 47 2.90 5.01

1000 5 58 6.77 7.41

5000 25 243 35.80 34.02

10000 51 491 62.34 48.86

50000 74 783 89.02 89.18

100000 100 1176 130.20 137.60

8.6.2 Retrieving Events through Context Manager

Table 8.5 shows the time required by the Context Manager to retrieve all Event entries

from the Context Database where the total time includes the time required to execute

the database query, perform the IPC between Content Provider and user app, and

instantiate Event objects in the user app’s data space.6

Table 8.5: Time required to retrieve Event contexts through Context Manager

Entries tmin(ms) tmax(ms) tavg(ms) tstdev(ms)

100 10 39 16.72 4.60

500 100 198 120.61 10.05

1000 200 388 240.95 16.28

5000 500 1781 663.56 115.86

10000 2000 4896 2265.74 364.46

50000 5000 10192 6681.94 712.68

100000 10024 18094 11459.12 1429.04

5The IPC and marshaling is performed by the Android system. Its time in included as part of the
Context Manager’s operations since it is part of the operation. The total time is useful to identify the
performance of the Contextual Data Sharing Model from the user’s point of view.

6The time taken by the Context Manager is inclusive of the time required to create the Event objects
since the user app will receive the database results as Event objects from the Context Manager.

90

8. PERFORMANCE EVALUATION

8.7 Comparison of Insert and Retrieval times

A comparison of the time taken by the insert and retrieve operations of the Context

Manager is given in Fig. 8.1. The graph is plotted by comparing the range of values

containing the minimum (tmin), maximum (tmax) and average time (tavg) required for

an operation with the number of records in Context Database.

Observations

Observing the graph and the associated tables leads to the following points:

1. The time required for inserting contexts is comparably less than the time required

for retrieving contexts;

2. There is substantial deviation between the minimum and maximum values;

3. The standard deviation is closer to the minimum values, which signifies better

average performance;

4. The increase in time is almost linear compared to the increase in number of

records;

5. There is a sudden increase in the values at around n=500 ;7

6. For most of the time, the average is closer to the minimum values;

7. The average retrieval time reaches t=120msataboutn=100.

Conclusions

The observations lead to the following conclusions:

1. The minimum and average insertion values at large database sizes are within an

acceptable range for responsiveness in UI (0-100ms [87]);

2. The maximum values show the extent of fluctuations possible during operation;

3. The number of entries returned in results should be restricted to around n=100

to keep the time within an acceptable range.

7The sudden increase in the time values can be attributed to the allotment of heap space by the
Android system. If the results of a query do not fit in the app’s available heap space, the system
attempts to allot more heap space. This stalls the app process until the heap space is made available.
Creating a large number of Event objects also fills up the heap space, and has a similar effect.

91

8. PERFORMANCE EVALUATION

Figure 8.1: Comparison of insert/retrieval operation times

8.8 CPU load during retrieval operations

The impact of the Contextual Data Sharing Model and its operations on CPU perfor-

mance can be seen in Fig. 8.2. It shows the CPU load for retrieving Event contexts

through the Context Manager. The total number of Event entries retrieved from the

Context Database was n=10000. The total time required for the operation is 12.5s,

and includes the time for UI interactions within the app used to run the test. In the

figure, the horizontal axis depicts the run-time given in seconds, and the vertical axis

depicts the CPU usage as a percentage. The retrieved Event contexts are displayed on

screen using a List View.8

The various operations that take place at different time instances are:

• t= 0s to 3.2s: No activity. Some spikes in the CPU load can be attributed to the

management of UI elements and memory by the system;

• t= 3.2s: UI interaction which sends a request to the Context Manager for all

Event contexts. The Context Manager constructs the appropriate query and

forwards it to the Context Database;

8A ListView is a view group that displays a list of scrollable items that are automatically inserted
using an Adapter object that pulls content from a source such as an array or database query. More
info about ListViews can be found at https://developer.android.com

92

8. PERFORMANCE EVALUATION

Figure 8.2: CPU load during retrieval operation

• t= 3.3s to 3.6s: The Context Database receives the request, parses it, and ex-

ecutes the query on the SQLite database to retrieve all Event entries. It then

sends these back to the Context Manager;

• t= 3.6s to 3.9s: The time taken by the IPC mechanism to send the data from

Context Database to Context Manager;9

• t= 3.9s to 5.5s: The Context Manager receives the entries and instantiates Event

objects;

• t= 5.5s to 10.7s: The app receives the references to the Event objects and adds

them to a ListView which is drawn on the screen;

• t= 10.7s onwards: UI interactions within the app such as closing the ListView

and exiting the app.

The total duration of the operations from sending the request until displaying the

results on screen is about t=7.5s, which is well outside the acceptable range for UI

interactions. Most of this time is spent instantiating the objects and drawing them on

screen. If the number of entries retrieved from the database is restricted to n = 100

9In Android, the IPC mechanism only copies the references to the data in memory between processes
rather than the entire data. This saves the costs involved in copying all of the data and works within
the sandboxing model.

93

8. PERFORMANCE EVALUATION

using the analysis of Fig. 8.1, it would reduce the CPU time and memory required

for the operation. This will allow the app to display the results in less time which

allows for fluid user interactions. The average CPU load at all times is well below

50%, which can be considered as not being under stress. This allows the CPU to run

other apps and operations in the background. If an app wishes to perform operations

that may take significant time to execute and stall UI operations, Android provides

various mechanism to execute operations on another thread to prevent freezing the UI.

In this case, the retrieval operation takes a significant amount of time to complete, and

therefore must be executed on a non-UI thread.

8.9 Summary

The performance of the Contextual Data Sharing Model depends on a number of fac-

tors, amongst which the number of records in the database is the major factor that

affects the performance of the operations. The time required for executing insert oper-

ations is within an acceptable range for higher database sizes, while the time required

for retrieving entries from the database crosses the range for responsiveness in UI at

about n=100. Limiting the number of entries returned from a query to 100 will allow

operations to complete in an acceptable time and provide better responsiveness in UI.

Further testing and experimentation of the various operations need to be performed

over different use cases as apps use operations in different ways. The performance of

multiple queries executed concurrently also needs to be tested. The number of apps

using the Context Database and the Contextual Data Sharing Model can also affect

the performance of operations. Devices differing in specifications and environments will

also have an impact on the performance of the model. All these factors indicate the

need for extensive future testing of the model in a range of use cases and devices.

94

Part V

This Research and its Future

Potential

95

9

Conclusion

“The most important property of a program is whether it accomplishes the

intention of its user.”

– C.A.R. Hoare

The Contextual Data Sharing Model allows smartphone applications to utilize and

share contextual information. The Context Definitions provide a uniform structure

to the contextual information, which can be stored and shared through the Context

Database. Apps query the Context Database to retrieve contextual information which

saves the user the effort of entering or finding related information in multiple apps used

within the same context.

An implementation of the model on Android is used to demonstrate the Contextual

Data Sharing Model. It uses Java classes to represent Context Definitions, which are

then instantiated as Java objects and provide a uniform representation of contextual

information across apps and devices. The Context Database uses Android’s Content

Provider interface with SQLite as the storage backend for context entries. The Con-

text Manager acts as a middleware between the apps and the Context Database, and

is implemented as a static Java class instantiated in the app’s process. The Context

Definitions and the Context Manager classes are bundled together into a library which

the developers can include in their project to use contexts and interact with the Con-

text Database. Concerns and considerations related to the security permissions and

performance of the model are discussed for an Android implementation.

The time required to complete various database operations and its relation to the

size of the database is analyzed to identify its impact on performance and usability in

the implementation. Conclusions regarding optimization of performance of the queries

are also discussed. The impact of running operations on the device was analyzed and

found to present no hindrance to the running of other apps on the device.

96

9. CONCLUSION

The demonstration of the movie ticket booking use case shows how apps utilize

the Contextual Data Sharing Model to access information which otherwise would have

been entered by the user. The resulting user experience reduces user effort and provides

relevant information and services through recommendations and suggestions in the app.

This allows the user to complete their tasks faster and access relevant information

without performing additional steps. The availability of contextual information to

apps offers an opportunity to design new features and services that were not previously

possible.

The main goal of this research is to enable apps to use the information generated

and stored on a device and create contextual services using this information. Apps can

present users with services they are most likely require, which saves the efforts related

to entering information multiple times across several apps. This leads to better features

and an improved user experience due to the availability of contextual information across

apps.

97

10

Future Work

“There’s always more information out there.”

– Google’s 9 Principles of Innovation

The Contextual Data Sharing Model adapts existing approaches and techniques to

create an innovative framework which allows apps to create contextual services based

on the availability of information. The design and implementation discussed in this

thesis is an unique attempt in research of this kind to provide apps with an usable

framework utilizing the information already present within apps to create contextual

services. The implementation is a proof-of-concept demonstration used to show the

impact and viability of the Contextual Data Sharing Model. This research can be

further expanded into several areas discussed in the sections below.

Extending to the Cloud

The Context Database used in the implementation uses a SQLite database located

on the device. By implementing or extending the Context Database with a database

situated in the cloud, it is possible to offload operations which are not possible or

feasible on the device. Additional features can be provided on the device by analyzing

and mediating contexts between services in the cloud. This allows the contextual

information to exist independently from a device, and can be used to share contexts

across devices.

Having the Contextual Data Sharing Model extended into the cloud provides ac-

cess to contextual information from more sources, which can be used to develop more

powerful and useful services. This information can be provided to the users in the form

of services relevant to their contexts but not present on any particular device. This

creates an abstraction between devices and services as the information stored in the

98

10. FUTURE WORK

cloud can be utilized to provide the same or similar services on any device connected

to the ecosystem.

The local datastore such as the one used in this implementation would be a part

of the cloud model, and would act as a cache for the Context Database based in the

cloud. This helps the performance and QoS of the model on a device as the operations

are executed faster with a copy or cache of the datastore located on the device. This

also allows apps to work with a limited set of information when access to the cloud is

restricted.

Using different Database Software

The SQLite database used in the implementation was chosen due to its lightweight

design, stability and availability on a large number of platforms. SQLite lacks several

features and capabilities when compared to other database softwares like MySQL [88]

and PostgreSQL [89]. This affects the design of the Contextual Data Sharing Model

as all operations are based on the nature of queries executed in the Context Database.

Different database implementations provide features such as ordering query results and

filter results based on parameters, that can be used to return only those results that

are contextually relevant. By utilizing other database implementations which provide

additional features and services, the features of Contextual Data Sharing Model can

also be extended.

One possible and interesting approach would be to use a NoSQL graph database

as the storage medium for the Context Database. The graph database can be used

to store the various relations and interactions between contexts, which can lead to

several new and innovative features. Such an implementation would enable apps to

leverage the relational information in the Context Database to design a new generation

of contextual services. This approach is similar to data mining where data is analyzed

for relations which can be used to provide contextual services.

Adding more Context types

The four context types (Location, Contact, Event and Movie) discussed in this imple-

mentation were developed to provide a proof-of-concept demonstration of the design

and working of Context Definitions. Using the Contextual Data Sharing Model on de-

vices requires implementing more use cases as Context Definitions in order to identify

and use a significant amount of contextual information. For example, the Event con-

text type can be extended to commonly used types such as Meeting, Movie, Concert,

and Lunch. New context types such as Restaurant Booking, Article, Task, Project,

Conversation, Quote, and Work that reflect the activities performed by the users using

99

10. FUTURE WORK

the various apps will allow more relevant contextual information to be identified and

utilized.

Storing related services within Context Definitions

The design of Context Definitions and its implementation on Android entails storing the

contextual information and its associated methods within a single object. The design

can be modified to store services related to that context within the Context Definition

itself. The model can be extended to tie in apps with the execution of these services in

an abstract way. For example, by including weather and traffic services within an Event

context, apps that display or use the events can also present this information without

querying for weather or traffic data themselves. The system resolves the service request

and queries the appropriate app installed on the system to get the required information.

This approach allows apps to share services present on the device that can be used to

provide related information in more useful ways.

Potential for Wearable devices

The Contextual Data Sharing Model described in this research is designed for smart-

phone applications. The year 2014 saw the introduction of wearable devices such as

smartwatches and fitness trackers, some of which run the same platforms as smart-

phones. This creates a potential to adapt the Contextual Data Sharing Model for

wearable devices.

Wearable devices have comparably lesser capabilities than a smartphone in terms of

available memory, processor and screen space. The devices are designed to provide high

accessibility to information by being present on the body of the user. Most of these

devices require the use of a smartphone which acts as the hub of information which

is then sent to the wearable device. The most common use of wearables is to display

notifications which the user can interact with. This allows contextual information and

services to be displayed to the user when required without requiring them to access a

smartphone.

Although information can be displayed and interacted with on a wearable device,

the capabilities of this interaction are much less as compared to a smartphone. Actions

such as navigation and UI are restricted on a wearable device. This creates a need

to show useful and related information so that the user does not have to navigate for

the information or access it on the smartphone. This is a situation comparable to

the capabilities of a smartphone and a computing device such as a laptop. The lesser

capabilities of the smartphone creates a need for contextual services in apps which

formed the motivation for developing the Contextual Data Sharing Model. The same

100

10. FUTURE WORK

motivation can be applied to develop or extend the Contextual Data Sharing Model

for wearables.

Connecting with the Internet of Things (IoT)

The Internet of Things (IoT) is the interconnection of uniquely identifiable embedded

computing devices within the existing Internet infrastructure. IoT has the potential

to offer advanced connectivity of devices, systems, and services that covers a variety

of protocols, domains, and applications [90]. The interconnection of these embedded

devices, also known as smart objects, is expected to usher in automation in nearly

all fields, while also enabling advanced applications like a Smart Grid [91]. According

to Gartner, there will be nearly 26 billion devices on the Internet of Things by 2020

[92]. IoT is expected to generate large amounts of data from diverse locations that can

be aggregated to create new application areas such as automation and smart homes

[93, 94]. This data can be utilized to provide a range of contextual services that allow

the user to control and access their IoT devices as resources. Android and iOS have

started to integrate IoT functionality by way of APIs that allow users to discover and

interact with devices installed in their homes.1 This creates the potential for integrating

the Contextual Data Sharing Model with the IoT devices to provide services that offer

users contextual control of their homes. For example, the lights and other IoT devices

can be turned off whenever users leave their homes on a trip where they can monitor

and control the appliances remotely. The users can also set a preference to turn up the

heating in the house based on their expected arrival time.

An iOS implementation

The Contextual Data Sharing Model is designed to be platform agnostic with a bias to-

wards being used on Android or iOS. Even though the implementation is demonstrated

using Android, it is possible to implement the model and its components on iOS. The

Context Database can utilize the same SQLite version along with the table schema for

the backend, while the Context Definitions can be defined using classes in Objective-C

or Swift. The challenge in realizing the iOS implementation is the communication be-

tween different apps and the Context Database, which cannot be performed using the

existing data sharing methods available on the system. The components need to be

executed as part of the system to make the API available to all apps on a global level

1HomeKit (developed by Apple) is a framework in iOS 8 for communicating and controlling con-
nected accessories in a users home and is integrated with Siri. The Nest Learning Thermostat (de-
veloped by Nest Labs, acquired by Google in 2014) is an electronic, programmable, and self-learning
Wi-Fi-enabled thermostat available for Android and iOS, which can be controlled using the Google
Now application.

101

10. FUTURE WORK

and allow exchange of information outside the restrictions of the data sharing methods

available to user apps.

Creating a Contextual Ecosystem of Apps, Services and

Devices

The Contextual Data Sharing Model can be expanded into several areas connected or

associated with a user’s context. These include interacting with web services, applica-

tions on computing devices such as laptops, smartphones and wearable devices along

with interactions with devices not owned by the user such as point of sale devices.

Providing interactions and communications between all services the user interacts with

allows the possibility of providing context-aware information and features on all these

devices. This requires creating and adapting the Contextual Data Sharing Model for

each device and platform, and consolidating the information gathered to make it avail-

able to services across devices. Such a contextual ecosystem of apps, services and

devices will enable the user to interact with tasks on any device and service which

creates a continuous user experience based on the user’s context.

102

Bibliography

[1] “Gartner Says Worldwide Traditional PC, Tablet, Ultramobile and Mobile Phone

Shipments Are On Pace to Grow 6.9 Percent in 2014.” http://www.gartner.com/

document/2685317, June 2014.

[2] “MobiLens - Understand Mobile Trends and Consumer Behavior.” http://www.

comscore.com/Products/Audience-Analytics/MobiLens, Dec. 2014.

[3] S. Keach, “Microsoft says Windows Phone now touts 300,000 apps.” http://www.

t3.com/news/microsoft-says-windows-phone-now-touts-300000-apps, Aug.

2014.

[4] S. Perez, “iTunes App Store Now Has 1.2 Million Apps, Has Seen 75 Billion Down-

loads To Date.” http://techcrunch.com/2014/06/02/itunes-app-store-now-

has-1-2-million-apps-has-seen-75-billion-downloads-to-date/, June

2014.

[5] Phonearena.com, “Android’s Google Play beats App Store with over 1

million apps, now officially largest.” http://www.phonearena.com/news/

Androids-Google-Play-beats-App-Store-with-over-1-million-apps-now-

officially-largest_id45680, Sept. 2014.

[6] D. Pogue, “A Place to Put Your Apps.” http://www.nytimes.com/2009/11/05/

technology/personaltech/05pogue.html?pagewanted=all&_r=0, Sept. 2014.

[7] Americandialect.org, “”App” voted 2010 word of the year by the

American Dialect Society (UPDATED) American Dialect Society.”

http://www.americandialect.org/app-voted-2010-word-of-the-year-

by-the-american-dialect-society-updated, Nov. 2014.

[8] S. Perez, “comScore: In U.S. Mobile Market, Samsung, Android Top The

Charts; Apps Overtake Web Browsing..” http://techcrunch.com/2012/07/02/

comscore-in-u-s-mobile-market-samsung-android-top-the-charts-apps-

overtake-web-browsing/, Sept. 2014.

103

http://www.gartner.com/document/2685317
http://www.gartner.com/document/2685317
http://www.comscore.com/Products/Audience-Analytics/MobiLens
http://www.comscore.com/Products/Audience-Analytics/MobiLens
http://www.t3.com/news/microsoft-says-windows-phone-now-touts-300000-apps
http://www.t3.com/news/microsoft-says-windows-phone-now-touts-300000-apps
http://techcrunch.com/2014/06/02/itunes-app-store-now-has-1-2-million-apps-has-seen-75-billion-downloads-to-date/
http://techcrunch.com/2014/06/02/itunes-app-store-now-has-1-2-million-apps-has-seen-75-billion-downloads-to-date/
http://www.phonearena.com/news/Androids-Google-Play-beats-App-Store-with-over-1-million-apps-now-officially-largest_id45680
http://www.phonearena.com/news/Androids-Google-Play-beats-App-Store-with-over-1-million-apps-now-officially-largest_id45680
http://www.phonearena.com/news/Androids-Google-Play-beats-App-Store-with-over-1-million-apps-now-officially-largest_id45680
http://www.nytimes.com/2009/11/05/technology/personaltech/05pogue.html?pagewanted=all&_r=0
http://www.nytimes.com/2009/11/05/technology/personaltech/05pogue.html?pagewanted=all&_r=0
http://www.americandialect.org/app-voted-2010-word-of-the-year-by-the-american-dialect-society-updated
http://www.americandialect.org/app-voted-2010-word-of-the-year-by-the-american-dialect-society-updated
http://techcrunch.com/2012/07/02/comscore-in-u-s-mobile-market-samsung-android-top-the-charts-apps-overtake-web-browsing/
http://techcrunch.com/2012/07/02/comscore-in-u-s-mobile-market-samsung-android-top-the-charts-apps-overtake-web-browsing/
http://techcrunch.com/2012/07/02/comscore-in-u-s-mobile-market-samsung-android-top-the-charts-apps-overtake-web-browsing/

BIBLIOGRAPHY

[9] M. Böhmer, B. Hecht, J. Schöning, A. Krüger, and G. Bauer, “Falling Asleep with

Angry Birds, Facebook and Kindle: A Large Scale Study on Mobile Application

Usage,” in Proceedings of the 13th International Conference on Human Computer

Interaction with Mobile Devices and Services, MobileHCI ’11, (New York, NY,

USA), pp. 47–56, ACM, 2011.

[10] K. W. Y. Au, Y. F. Zhou, Z. Huang, P. Gill, and D. Lie, “Short Paper: A Look

at Smartphone Permission Models,” in Proceedings of the 1st ACM Workshop on

Security and Privacy in Smartphones and Mobile Devices, SPSM ’11, (New York,

NY, USA), pp. 63–68, ACM, 2011.

[11] B. Chihani, E. Bertin, and N. Crespi, “A comprehensive framework for context-

aware communication services,” in Intelligence in Next Generation Networks

(ICIN), 2011 15th International Conference on, pp. 52–57, Oct 2011.

[12] M. Elgan, “Smart apps think (so you dont have to).” http://www.

computerworld.com/article/2496110/mobile-apps/smart-apps-think--

so-you-don-t-have-to-.html, Mar. 2013.

[13] “Google Now.” https://www.google.com/landing/now/, Sept. 2014.

[14] “About Gmail cards.” https://support.google.com/websearch/answer/

2839480?hl=en, Dec. 2014.

[15] A. Lella, “Top 25 Mobile Apps Dominated By The Largest Digi-

tal Media Brands.” http://www.comscore.com/Insights/Data-Mine/Top-25-

Mobile-Apps-Dominated-By-The-Largest-Digital-Media-Brands, Sept. 2014.

[16] “Sunrise Calendar.” https://calendar.sunrise.am/, Sept. 2014.

[17] “x-Callback-Url - iOS Interapp Communication.” http://x-callback-url.com/,

Sept. 2014.

[18] “Fantastical.” https://flexibits.com/fantastical-iphone, Sept. 2014.

[19] B. Schilit, N. Adams, and R. Want, “Context-Aware Computing Applications,”

in Proceedings of the 1994 First Workshop on Mobile Computing Systems and

Applications, WMCSA ’94, (Washington, DC, USA), pp. 85–90, IEEE Computer

Society, 1994.

[20] B. N. Schilit and M. M. Theimer, “Disseminating Active Map Information to

Mobile Hosts,” Netwrk. Mag. of Global Internetwkg., vol. 8, pp. 22–32, Sept. 1994.

[21] C. Bolchini, C. A. Curino, E. Quintarelli, F. A. Schreiber, and L. Tanca, “A Data-

oriented Survey of Context Models,” SIGMOD Rec., vol. 36, pp. 19–26, Dec. 2007.

104

http://www.computerworld.com/article/2496110/mobile-apps/smart-apps-think--so-you-don-t-have-to-.html
http://www.computerworld.com/article/2496110/mobile-apps/smart-apps-think--so-you-don-t-have-to-.html
http://www.computerworld.com/article/2496110/mobile-apps/smart-apps-think--so-you-don-t-have-to-.html
https://www.google.com/landing/now/
https://support.google.com/websearch/answer/2839480?hl=en
https://support.google.com/websearch/answer/2839480?hl=en
http://www.comscore.com/Insights/Data-Mine/Top-25-Mobile-Apps-Dominated-By-The-Largest-Digital-Media-Brands
http://www.comscore.com/Insights/Data-Mine/Top-25-Mobile-Apps-Dominated-By-The-Largest-Digital-Media-Brands
https://calendar.sunrise.am/
http://x-callback-url.com/
https://flexibits.com/fantastical-iphone

BIBLIOGRAPHY

[22] A. K. Dey, “Understanding and Using Context,” Personal Ubiquitous Comput.,

vol. 5, pp. 4–7, Jan. 2001.

[23] A. Zimmermann, A. Lorenz, and R. Oppermann, “An Operational Definition of

Context,” in Proceedings of the 6th International and Interdisciplinary Conference

on Modeling and Using Context, CONTEXT’07, (Berlin, Heidelberg), pp. 558–571,

Springer-Verlag, 2007.

[24] J. L. Crowley, J. Coutaz, G. Rey, and P. Reignier, “Perceptual Components for

Context Aware Computing,” in Proceedings of the 4th International Conference on

Ubiquitous Computing, UbiComp ’02, (London, UK, UK), pp. 117–134, Springer-

Verlag, 2002.

[25] A. Kofod-petersen and J. Cassens, “Using activity theory to model context aware-

ness,” in Modeling and Retrieval of Context: Second International Workshop, MRC

2005, Revised Selected Papers. Volume 3946 of Lecture Notes in Computer Science,

pp. 1–17, Springer Verlag, 2006.

[26] K. Henricksen and J. Indulska, “Developing Context-aware Pervasive Computing

Applications: Models and Approach,” Pervasive Mob. Comput., vol. 2, pp. 37–64,

Feb. 2006.

[27] A. K. Dey, G. D. Abowd, and D. Salber, “A Conceptual Framework and a Toolkit

for Supporting the Rapid Prototyping of Context-aware Applications,” Hum.-

Comput. Interact., vol. 16, pp. 97–166, Dec. 2001.

[28] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles, “To-

wards a Better Understanding of Context and Context-Awareness,” in Proceedings

of the 1st International Symposium on Handheld and Ubiquitous Computing, HUC

’99, (London, UK, UK), pp. 304–307, Springer-Verlag, 1999.

[29] H. Chen, “An Intelligent Broker for Context-Aware Systems,” in In Adjunct Pro-

ceedings of Ubicomp, pp. 183–184, 2003.

[30] A. Battestini, C. Del Rosso, A. Flanagan, and M. Miettinen, “Creating next gener-

ation applications and services for mobile devices: Challenges and opportunities,”

in Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007. IEEE

18th International Symposium on, pp. 1–4, Sept 2007.

[31] A. Battestini and J. A. Flanagan, “Analysis and Cluster Based Modelling and

Recognition of Context in a Mobile Environment.”

[32] N. Malik and U. Mahmud, “Future challenges in context-aware computing,” in

Proceedings of the IADIS, pp. 306–310, 2007.

105

BIBLIOGRAPHY

[33] T. Strang and C. Linnhoff-Popien, “A Context Modeling Survey,” in In: Work-

shop on Advanced Context Modelling, Reasoning and Management, UbiComp 2004

- The Sixth International Conference on Ubiquitous Computing, Nottingham/Eng-

land, 2004.

[34] S. Yau, F. Karim, Y. Wang, B. Wang, and S. K. S. Gupta, “Reconfigurable context-

sensitive middleware for pervasive computing,” Pervasive Computing, IEEE, vol. 1,

pp. 33–40, July 2002.

[35] A. Klein, C. Mannweiler, J. Schneider, and H. Schotten, “Access schemes for

mobile cloud computing,” in Mobile Data Management (MDM), 2010 Eleventh

International Conference on, pp. 387–392, May 2010.

[36] P. Korpipaa, J. Mantyjarvi, J. Kela, H. Keranen, and E.-J. Malm, “Managing Con-

text Information in Mobile Devices,” IEEE Pervasive Computing, vol. 2, pp. 42–51,

July 2003.

[37] A. Alidin and F. Crestani, “Context acquisition in just-in-time mobile informa-

tion retrieval,” in Information Retrieval Knowledge Management (CAMP), 2012

International Conference on, pp. 203–207, March 2012.

[38] D. B. Leake, R. Scherle, J. Budzik, and K. Hammond, “Selecting Task-Relevant

Sources for Just-in-Time Retrieval,” in In Proceedings of the AAAI-99 Workshop

on Intelligent Information Systems, Menlo Park, CA, AAAI Press, 1999.

[39] P. Falcarin, M. Valla, J. Yu, C. Licciardi, C. Fr, and L. Lamorte, “Context data

management: an architectural framework for context-aware services,” Service Ori-

ented Computing and Applications, vol. 7, no. 2, pp. 151–168, 2013.

[40] R. Lowe, P. Mandl, and M. Weber, “Context directory: A context-aware service for

mobile context-aware computing applications by the example of google android,”

in Pervasive Computing and Communications Workshops (PERCOM Workshops),

2012 IEEE International Conference on, pp. 76–81, March 2012.

[41] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud: Elastic

Execution Between Mobile Device and Cloud,” in Proceedings of the Sixth Con-

ference on Computer Systems, EuroSys ’11, (New York, NY, USA), pp. 301–314,

ACM, 2011.

[42] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra,

and P. Bahl, “MAUI: Making Smartphones Last Longer with Code Offload,” in

Proceedings of the 8th International Conference on Mobile Systems, Applications,

and Services, MobiSys ’10, (New York, NY, USA), pp. 49–62, ACM, 2010.

106

BIBLIOGRAPHY

[43] A. Fahim, A. Mtibaa, and K. A. Harras, “Making the Case for Computational

Offloading in Mobile Device Clouds,” in Proceedings of the 19th Annual Interna-

tional Conference on Mobile Computing & Networking, MobiCom ’13, (New

York, NY, USA), pp. 203–205, ACM, 2013.

[44] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A survey ,”

Future Generation Computer Systems, vol. 29, no. 1, pp. 84 – 106, 2013. Including

Special section: AIRCC-NetCoM 2009 and Special section: Clouds and Service-

Oriented Architectures.

[45] K. Kumar and Y.-H. Lu, “Cloud Computing for Mobile Users: Can Offloading

Computation Save Energy?,” Computer, vol. 43, pp. 51–56, Apr. 2010.

[46] J. Sankaranarayanan, H. Hacigumus, and J. Tatemura, “Cosmos: A platform for

seamless mobile services in the cloud,” in Mobile Data Management (MDM), 2011

12th IEEE International Conference on, vol. 1, pp. 303–312, June 2011.

[47] M. O’Sullivan and D. Grigoras, “The cloud personal assistant for providing services

to mobile clients,” in Service Oriented System Engineering (SOSE), 2013 IEEE

7th International Symposium on, pp. 478–485, March 2013.

[48] M. Baldauf and S. Dustdar, “A Survey on Context-aware systems,” INTERNA-

TIONAL JOURNAL OF AD HOC AND UBIQUITOUS COMPUTING, p. 2004,

2004.

[49] M. J. Pascoe, “Adding Generic Contextual Capabilities to Wearable Computers,”

in Proceedings of the 2Nd IEEE International Symposium on Wearable Computers,

ISWC ’98, (Washington, DC, USA), pp. 92–, IEEE Computer Society, 1998.

[50] W3C, “Resource Description Framework (RDF) Model and Syntax Specification.”

http://www.w3.org/TR/PR-rdf-syntax/, Jan. 1999.

[51] W3C, “OWL 2 Web Ontology Language Document Overview (Second Edition).”

http://www.w3.org/TR/owl2-overview/, Dec. 2012.

[52] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana, “Un-

raveling the Web Services Web: An Introduction to SOAP, WSDL, and UDDI,”

IEEE Internet Computing, vol. 6, pp. 86–93, Mar. 2002.

[53] “JSON - JavaScript Object Notation.” http://json.org/, Sept. 2014.

[54] “Siri.” https://www.apple.com/ios/siri/, Sept. 2014.

[55] “Cortana.” http://www.windowsphone.com/en-US/how-to/wp8/cortana/

meet-cortana, Sept. 2014.

107

http://www.w3.org/TR/PR-rdf-syntax/
http://www.w3.org/TR/owl2-overview/
http://json.org/
https://www.apple.com/ios/siri/
http://www.windowsphone.com/en-US/how-to/wp8/cortana/meet-cortana
http://www.windowsphone.com/en-US/how-to/wp8/cortana/meet-cortana

BIBLIOGRAPHY

[56] “data sharing. (n.d.) Computer Desktop Encyclopedia.” http://encyclopedia2.

thefreedictionary.com/data+sharing, Dec. 2014.

[57] “Intents and Intent Filters.” https://developer.android.com/guide/

components/intents-filters.html, Sept. 2014.

[58] “Data Management in iOS.” https://developer.apple.com/technologies/

ios/data-management.html, Sept. 2014.

[59] “RFC 2045 - Multipurpose Internet Mail Extensions (MIME) Part One: Format of

Internet Message Bodies.” https://tools.ietf.org/html/rfc2045, Nov. 1996.

[60] “App Manifest.” https://developer.android.com/guide/topics/manifest/

manifest-intro.html, Sept. 2014.

[61] “Apple URL Scheme Reference.” https://developer.apple.com/library/

ios/featuredarticles/iPhoneURLScheme_Reference/Introduction/

Introduction.html, Dec. 2014.

[62] “Common Intents.” https://developer.android.com/guide/components/

intents-common.html, Dec. 2014.

[63] “Introducing OneLink - One smart link to rule them ALL.” http://www.onelink.

me/, Dec. 2014.

[64] “URX, Relevant and Native Deep Link Mobile Advertising.” http://urx.com/,

Dec. 2014.

[65] “App Links Overview.” https://developers.facebook.com/docs/applinks/

overview, Dec. 2014.

[66] “AppURL connects native apps to the web with http URLs.” http://appurl.

org/, Dec. 2014.

[67] “App Indexing for Google Search - A better search experience for apps and users.”

https://developers.google.com/app-indexing/, Dec. 2014.

[68] “Calendar and Reminders Programming Guide.” https://developer.

apple.com/library/ios/documentation/DataManagement/Conceptual/

EventKitProgGuide/Introduction/Introduction.html, Dec. 2014.

[69] “Address Book Programming Guide for iOS.” https://developer.

apple.com/library/ios/documentation/ContactData/Conceptual/

AddressBookProgrammingGuideforiPhone/Introduction.html, Dec. 2014.

108

http://encyclopedia2.thefreedictionary.com/data+sharing
http://encyclopedia2.thefreedictionary.com/data+sharing
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/guide/components/intents-filters.html
https://developer.apple.com/technologies/ios/data-management.html
https://developer.apple.com/technologies/ios/data-management.html
https://tools.ietf.org/html/rfc2045
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.apple.com/library/ios/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/ios/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/ios/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.android.com/guide/components/intents-common.html
https://developer.android.com/guide/components/intents-common.html
http://www.onelink.me/
http://www.onelink.me/
http://urx.com/
https://developers.facebook.com/docs/applinks/overview
https://developers.facebook.com/docs/applinks/overview
http://appurl.org/
http://appurl.org/
https://developers.google.com/app-indexing/
https://developer.apple.com/library/ios/documentation/DataManagement/Conceptual/EventKitProgGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/DataManagement/Conceptual/EventKitProgGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/DataManagement/Conceptual/EventKitProgGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/ContactData/Conceptual/AddressBookProgrammingGuideforiPhone/Introduction.html
https://developer.apple.com/library/ios/documentation/ContactData/Conceptual/AddressBookProgrammingGuideforiPhone/Introduction.html
https://developer.apple.com/library/ios/documentation/ContactData/Conceptual/AddressBookProgrammingGuideforiPhone/Introduction.html

BIBLIOGRAPHY

[70] “Android - Content Provider.” https://developer.android.com/guide/

topics/providers/content-providers.html, Sept. 2014.

[71] “Storage Access Framework.” https://developer.android.com/guide/topics/

providers/document-provider.html, Dec. 2014.

[72] “Document Picker Programming Guide.” https://developer.apple.

com/library/ios/documentation/FileManagement/Conceptual/

DocumentPickerProgrammingGuide/Introduction/Introduction.html, Dec.

2014.

[73] “UIPasteboard Class Reference.” https://developer.apple.com/library/ios/

documentation/UIKit/Reference/UIPasteboard_Class/, Dec. 2014.

[74] “Inter-App Communication.” https://developer.apple.com/library/ios/

documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-

AppCommunication/Inter-AppCommunication.html#//apple_ref/doc/uid/

TP40007072-CH6-SW2, Dec. 2014.

[75] “Keychain Services Programming Guide.” https://developer.apple.com/

library/mac/documentation/Security/Conceptual/keychainServConcepts/

01introduction/introduction.html#//apple_ref/doc/uid/TP30000897-

CH203-TP1, Dec. 2014.

[76] “iCloud for Developers.” https://developer.apple.com/icloud/index.html,

Dec. 2014.

[77] “BroadcastReceiver.” https://developer.android.com/reference/android/

content/BroadcastReceiver.html, Dec. 2014.

[78] “Services.” https://developer.android.com/guide/components/services.

html, Dec. 2014.

[79] B. Venners, “Designing with interfaces : One programmer’s struggle to un-

derstand the interface.” http://www.javaworld.com/article/2076841/core-

java/designing-with-interfaces.html, Dec. 1998.

[80] T. Arvin, “Troels’ links: Relational database systems.” http://troels.arvin.

dk/db/rdbms/links/#hierarchical, Sept. 2014.

[81] M. Rouse, “NoSQL (Not Only SQL).” http://searchdatamanagement.

techtarget.com/definition/NoSQL-Not-Only-SQL, Oct. 2014.

[82] “SQLite.” https://www.sqlite.org/, Sept. 2014.

109

https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/document-provider.html
https://developer.android.com/guide/topics/providers/document-provider.html
https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/DocumentPickerProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/DocumentPickerProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/DocumentPickerProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIPasteboard_Class/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIPasteboard_Class/
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html#//apple_ref/doc/uid/TP40007072-CH6-SW2
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html#//apple_ref/doc/uid/TP40007072-CH6-SW2
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html#//apple_ref/doc/uid/TP40007072-CH6-SW2
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html#//apple_ref/doc/uid/TP40007072-CH6-SW2
https://developer.apple.com/library/mac/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html#//apple_ref/doc/uid/TP30000897-CH203-TP1
https://developer.apple.com/library/mac/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html#//apple_ref/doc/uid/TP30000897-CH203-TP1
https://developer.apple.com/library/mac/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html#//apple_ref/doc/uid/TP30000897-CH203-TP1
https://developer.apple.com/library/mac/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html#//apple_ref/doc/uid/TP30000897-CH203-TP1
https://developer.apple.com/icloud/index.html
https://developer.android.com/reference/android/content/BroadcastReceiver.html
https://developer.android.com/reference/android/content/BroadcastReceiver.html
https://developer.android.com/guide/components/services.html
https://developer.android.com/guide/components/services.html
http://www.javaworld.com/article/2076841/core-java/designing-with-interfaces.html
http://www.javaworld.com/article/2076841/core-java/designing-with-interfaces.html
http://troels.arvin.dk/db/rdbms/links/#hierarchical
http://troels.arvin.dk/db/rdbms/links/#hierarchical
http://searchdatamanagement.techtarget.com/definition/NoSQL-Not-Only-SQL
http://searchdatamanagement.techtarget.com/definition/NoSQL-Not-Only-SQL
https://www.sqlite.org/

BIBLIOGRAPHY

[83] “Android - Parcelable.” https://developer.android.com/reference/android/

os/Parcelable.html, Sept. 2014.

[84] Oracle.com, “Lesson 8: Object-Oriented Programming.” http://www.oracle.

com/technetwork/java/oo-140949.html, Sept. 2014.

[85] A. S. Tanenbaum, Modern Operating Systems. Upper Saddle River, NJ, USA:

Prentice Hall Press, 3rd ed., 2007.

[86] “System Permissions.” https://developer.android.com/guide/topics/

security/permissions.html, Dec. 2014.

[87] M. Jovic and M. Hauswirth, “Performance testing of gui applications,” in Software

Testing, Verification, and Validation Workshops (ICSTW), 2010 Third Interna-

tional Conference on, pp. 247–251, April 2010.

[88] “MySQL - The world’s most popular open source database.” https://www.mysql.

com/, Dec. 2014.

[89] “PostgreSQL - The world’s most advanced open source database.” http://www.

postgresql.org/, Dec. 2014.

[90] J. Holler, V. Tsiatsis, C. Mulligan, S. Karnouskos, S. Avesand, and D. Boyle,

From Machine-to-Machine to the Internet of Things: Introduction to a New Age

of Intelligence. Elsevier, 2014.

[91] O. Monnier, “A smarter grid with the Internet of Things, Texas Instruments.”

http://e2e.ti.com/blogs_/b/smartgrid/archive/2014/05/08/a-smarter-

grid-with-the-internet-of-things, Dec. 2014.

[92] Gartner, “Gartner Says the Internet of Things Installed Base Will Grow to 26

Billion Units By 2020.” https://www.gartner.com/newsroom/id/2636073, Dec.

2014.

[93] B. Violino, “The ’Internet of things’ will mean really, really big data, Inforworld.”

http://www.infoworld.com/article/2611319/computer-hardware/the--

internet-of-things--will-mean-really--really-big-data.html, Dec.

2014.

[94] M. Hogan, “The ’The Internet of Things Database’ Data Management Require-

ments, ScaleDB.” http://www.scaledb.com/internet-things-database.php,

July 2014.

110

https://developer.android.com/reference/android/os/Parcelable.html
https://developer.android.com/reference/android/os/Parcelable.html
http://www.oracle.com/technetwork/java/oo-140949.html
http://www.oracle.com/technetwork/java/oo-140949.html
https://developer.android.com/guide/topics/security/permissions.html
https://developer.android.com/guide/topics/security/permissions.html
https://www.mysql.com/
https://www.mysql.com/
http://www.postgresql.org/
http://www.postgresql.org/
http://e2e.ti.com/blogs_/b/smartgrid/archive/2014/05/08/a-smarter-grid-with-the-internet-of-things
http://e2e.ti.com/blogs_/b/smartgrid/archive/2014/05/08/a-smarter-grid-with-the-internet-of-things
https://www.gartner.com/newsroom/id/2636073
http://www.infoworld.com/article/2611319/computer-hardware/the--internet-of-things--will-mean-really--really-big-data.html
http://www.infoworld.com/article/2611319/computer-hardware/the--internet-of-things--will-mean-really--really-big-data.html
http://www.scaledb.com/internet-things-database.php

	Abstract
	Acknowledgments
	Declaration
	I Introduction
	Introduction
	Existing Problems and Limitations
	Apps and the Cloud
	Limitations in Data Sharing
	Example Use Case: Movie Ticket Booking

	Statement of the Problem
	Purpose of Research
	Significance of Research
	Primary Research Questions
	Hypothesis
	Research Design
	Assumptions, Limitations and Scope (Delimitations)
	Assumptions
	Limitations
	Scope

	Summary
	Thesis Outline

	II Literature Review and Technical Background
	Context-aware Computing
	Defining Context
	Context in Mobile Devices
	Context Frameworks utilizing the Cloud
	Classification of Context-aware Systems and Services
	Context Representations
	Resource Description Framework (RDF)
	Web Ontology Language (OWL)

	Smart Apps
	Intelligent Personal Assistants
	Siri
	Google Now
	Cortana
	Data Sources and Mode of Operation

	Data Sharing in Smartphone Applications
	Sharing Common Data Types
	Custom URL/URI schemes
	Telephony and Messaging data
	Comparison with Traditional Data Sharing Methods
	Document Pickers
	Methods exclusive to iOS
	Pasteboard
	Airdrop
	Shared Keychain
	iCloud - Shared Storage

	Methods exclusive to Android
	Intent and Intent Filters
	Broadcast Receivers
	Services
	Content Providers

	III The Contextual Data Sharing Model
	Context Definition
	Introduction
	Objectives
	Definition
	Representation
	Extending context
	Embedding context
	Example Use Case: Movie Ticket Booking
	Responsibility of owning Context Definitions
	Summary

	Context Database
	Introduction
	Overview
	Design and Structure
	Deleting Contexts
	Factors affecting efficiency
	Deletion Policy

	Performance Considerations
	Summary

	Contextual Data Sharing Model
	Introduction
	System Model
	System Components
	User App Components

	Context Manager
	Errors generated as part of the user apps' process
	Checking queries before execution

	Security Considerations
	Example: Apps using the Contextual Data Sharing Model
	Summary

	IV Contextual Data Sharing in Android
	Implementation
	Choice of Platform and Software
	Platform
	Context Definitions
	Context Database

	System Model for Implementation
	Context Definitions using Java Classes
	Context Java Class
	Abstract Context class
	Extending Contexts
	Generalization of Contexts
	Embedding Contexts

	Context Database using SQLite
	Initializing the database
	Context entries and tables
	Handling Duplicates in Database
	Deletion Policy

	Context Manager as a Static Java Class
	Usage by Apps
	Providing Context Classes in an Android Library
	The Change vs. New Policy

	Demonstration of Apps using the Contextual Data Sharing Model
	Permissions and Security
	Summary

	Performance Evaluation
	Motivation
	Testing Parameters
	Operating Environment
	User Experience Comparison
	Performance of Context Database
	Inserting an Event entry in Context Database
	Retrieving Events from Context Database

	Performance of Context Manager
	Inserting an Event entry through Context Manager
	Retrieving Events through Context Manager

	Comparison of Insert and Retrieval times
	CPU load during retrieval operations
	Summary

	V This Research and its Future Potential
	Conclusion
	Future Work
	Bibliography

