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Experimental Study
261,120 and 509,952 data samples have been provided in the time and 
frequency domain respectively. The frequency domain volumes were first 
processed to obtain the Auto-Power Spectral Densities (APSD) and 
Cross-Power Spectral Densities (CPSD) between the detectors. Next, the 
complex signals were decomposed to their amplitude and phase, the 
resulting signal is input as a 2x32x32x34 volume. 

The time signals were augmented via sliding window sampling, with 
window of 100 timesteps and stride 25. Furthermore, the signals have 
been corrupted to study the effect of noise on proposed model. 

The results of the proposed architectures can  be seen in Table 1.

Table 1. Time and frequency domain experimental results. For classification higher Accuracy and F1, for 
Regression of Coordinates a lower MAE and MSE indicate better results.

Figure 3. Predicted coordinates value against actual coordinate values (48 detectors).

Background
With Europe's ageing fleet of nuclear reactors running closer to their 
safety limits, the monitoring of such reactors through complex models has 
become of great interest to maintain a high level of availability and safety. 
Advanced modelling software has been employed to simulate different 
scenarios inside Pressurised Water Reactors (PWR) outputting detector 
readings of the induced neutron noise. These simulations have been 
designed and ran by collaboratory partners each utilising bespoke 
simulation software to provide data in both the time and frequency 
domain, each through the use of Simulate-3K [1] and CORE-SIM+ [2] 
respectively. From this, we propose an end-to-end deep learning 
architecture for the classification and localisation of reactor perturbations 
and their sources from the induced neutron noise signals. 

The proposed architecture is comprised of two models, each tackling 
either the time or frequency domain. A multi-task, densely connected, 
3D-Convolutional Neural Network (CNN) has been employed for the 
frequency domain. The convolutions provide spatial feature extraction 
from the volumetric frequency input, classifying and localising based on a 
feature vector representation of the input volume. In the time domain, 
Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNNs) 
have been employed to extract temporal features of the time-series 
samples for the classification of perturbation type.

These architectures extend the work conducted by the University of 
Lincoln, MLearn Group [3] for new and larger-scale datasets.

Figure 1. Examples of  the induced neutron noise on the 10th axial plane shown as its amplitude.

Recurrent Neural Networks
To learn the temporal features of the time-series signals, a stacked LSTM 
has been implemented. The LSTM is comprised of two layers, each with 
512 hidden units, outputting a 512 feature vector to 6 sigmoid layers for 
multi-label classification. As with the aforementioned CNN, the BCE 
negative log likelihood is minimised. 

RNNs learn temporal features from time-series sequences, formulating 
non-linear output A[t] from both input data 𝑥[t] and the activation of the 
previous timestep A[t-1], where 𝜙 is a non-linear activation function.

The LSTM units, a variation of the above RNN, have been incorporated 
for their ability to learn long term dependencies across long sequences, 
ideal for the data in question. 

Figure 3. The proposed LSTM, RNN model for the multi-label classification of time series signals 

Frequency Domain - CNN

Detectors Classification F1 Accuracy (%) Regression MAE Regression MSE

All 0.9961 99.95 0.2048 0.1444

48 In-Core 0.9231 99.85 0.2954 0.3171

Time Domain - RNN

Noise Classification F1 Accuracy (%)

No Noise 0.9363 96.41

Conclusion and Acknowledgements
This study presents an extension to large-scale simulated datasets for the 
classification and localisation of PWR core perturbation types and their 
sources. The results conclude the effectiveness of machine learning 
approaches for anomaly detection and localisation, achieving excellent 
results given the sparsity of detectors within the core volume. The 
research presented has received funding through the Core Monitoring 
Techniques and Experimental validation and Demonstration (CORTEX) 
from the Horizon 2020 project.
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Methodology
Convolutional Neural Network
A modified DenseNet [4] has been utilised, adapted to allow for the 
volumetric input. 3D-convolutions replace the 2D variant, with the network  
being adjusted in depth, shown in Figure 2. The dense connections allow 
a greater flow of information between layers, where a ℓth hidden layer 𝐻ℓ , 
receives as an input the feature-maps of all preceding layers as input

allowing for more appropriate information about the spatial relationships in 
the data to be transported through the network.

From the last convolutional layer, the network outputs a feature vector of 
the input which feeds to the output layers via Global Average Pooling 
(GAP). GAP directly outputs the spatial average over the feature maps, 
resulting in a vector  where m is the number of feature maps.

Additionally, the network was trained to minimize individual losses for 
each task, Binary Cross Entropy (BCE)/negative log likelihood for 
classification and Mean Squared Error (MSE) for regression, where ŷ is 
the prediction of the network and y is the true value.

Figure 2. Adapted CNN DenseNet for the classification and localisation of perturbation types and their 
sources 


