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Persistent model biases – dramatic improvement unlikely soon
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FIGURE 1 | (a) Observed annual mean sea-surface temperature (SST) from the optimally interpolated (OI) SST data set.1 (b) Annual mean bias of
the CMIP52 ensemble relative to OISST. See Table 1 for a list of models. The gray boxes denote the regions discussed in this article and their
longitudinal and latitudinal extents correspond to the ranges plotted in Figures 2 and 3, respectively. The text labels refer to the naming used in
Figure 2.

GCMs produce in vicinity to the eastern boundaries
(Figure 1(b); see Table 1 for a list of the models used
to generate the ensemble mean).14–16 This is usually
accompanied by an underrepresentation of the stra-
tocumulus decks that leads to excessive shortwave
radiation reaching the ocean surface (Figure 2(a) and
(b)).17–19 The poor GCM performance in reproducing
SST and cloud cover is troubling because it under-
mines the credibility of climate change projections for
the region. The response of stratocumulus clouds in
these projections varies widely among models, with
some models projecting increasing cloud cover (nega-
tive feedback) and others predicting decreasing cloud
cover (positive feedback).20–23 This disagreement adds

substantially to the uncertainty of global temperature
projections under greenhouse gas forcing.24–26 More-
over, eastern boundary regions are also subject to
pronounced year-to-year variability in upwelling
strength and SST. This variability can have severe
impacts on fisheries and also affect weather over
the adjacent continents.27–30 GCMs form the basis
of many seasonal prediction systems and thus east-
ern ocean biases may hamper skillful predictions of
climate anomalies around coastal upwelling regions.

Given the importance of tropical eastern bound-
aries to the climate system, it is crucial to alleviate
the persistent GCM biases in the region. The present
article aims to contribute to this goal by summarizing
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• Bias	is	often	larger	than	the	signal	we	analyze	or	predict
• Observation	network	is	too	small	to	constrain	it	



Fig. 4. Annual mean 275-m heat content anomaly in the SPG box (in ◦C). Panel (a) shows
CORE-IA (thick solid black), the 20C 6-member ensemble mean (thin dashed black), and the
raw DP 10-member ensemble means (grey curves, alternating shades for clarity). Panel (b)
shows CORE-IA and the bias-corrected DP ensemble means (note change in scale). Large
circles indicate the first-year (τ = 1) average of each DP ensemble. The CORE-IA and 20C
anomalies are computed relative to climatologies over the reference periods 1961-2007 and
1961-2005, respectively; DP anomalies are computed relative to the CORE-IA climatology.
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How is bias handled currently
Anomaly assimilation

Model
climatology Forecast

Good:
• Less	assimilation	shock	(no	need	for	post	

processing)
Bad:

• Covariance	are	still	biased
• Mean	state	influence	the	solution

Obs - clim



Outlines

Data	assimilation	assumes	the	model	to	be	unbiased	
è analysis	retains	some	of	the	bias
èupdates	are	suboptimal

We	are	considering	3	approaches	to	reduce	model	bias:
• Parameter	estimation
• Supermodelling
• Flux	correction	method



Parameter estimation with data assimilation
Dual one step ahead smoother scheme (Gharamti et al. 2017) 
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Ensemble	data	assimilation	methods	
can		estimate	parameter	based	on	
their	correlation	with	the	misfits	
from	observation



Parameter estimation 
Dual one step ahead smoother scheme (Gharamti et al. 2017) 
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The	method	was	successfully	tested	
for	tuning	BGC	parameter	and		
improved	net	primary	production	
and	air-gas	exchange

Gharamti et	al.	(2017)

We	will	use	NorCPM to	tune	ocean	and	
BGC	parameter	in	NorESM and	reduce	
model	bias



A	super	model	add		connections	to	the	other	imperfect	models

Example:

In	training	phase	you	use	observations	to	estimate	the	nudging	coefficients	(and	constrain	the	state	during)		

Super modelling 
An example with L63

!" = $" %" − !" + (")* !) − !" + ("+* !+ − !"   
Nudging	to	other	supermodel

σ ρ β

Truth 10 28 8/3

Model 1 13.25 19 3.5

Model	2 7 18 3.7

Model	3 6.5 38 1.7

! = ! ! − !  

! = !(!-z)-y 

! = !"-!! 

In	verification	phase	the	coefficient	are	frozen	and	the	system	can	be	use	as	a	new	dynamical	system	



Verification
Super	ensemble
Mean	of	unconnected	models

- Multimodel mean
- Truth - Multimodel mean

- Truth

Supermodel	



Super modelling 
A first attempt with GCM

Observed	

Climatological	Precipitation	in	Tropical	Pacific
Super	model Standard	ensemble	mean

Atmos 1

Ocean

Atmos 2 Atmos 1

Ocean

Atmos 2

Ocean

(Shen et al. 2016, 2017)



CESM					

CAM5 CAM4

pop

No	synchronisation of	atm for	now

• We	generate	synthetic	observations	(Here	mean	of	models	SST,	every	
month)	that	are	assimilated	into	each	individual	models	(with	the	EnOI)

• The	three	models	are	then	propagated	
• Possible	to	assimilate	real	data	in	addition

We	use	DA	to	synchronise the	system	and	ensure	dynamical	
consistency	and	multivariate	updates	

Can	the	centralized	scheme	works	?_
• Does	the	models	synchronized	?
• Is	internal	variability	damped	?

Super modelling 
for an earth system model

We	now	start	by	setting	the	weight	to	(1/3,1/3,1/3)
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Is variability synchronised ?
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The	bias	of	each	model	is	reduced

Is bias improved ? 



Spread	SuperM SST

Spread	obs SST

• Variability	is	even	more	reduced	than	taking	the	mean	of	
unsynchronized	model

• Is	assimilation	of	a	weighted	mean	causing	an	artificial	
damping	of	variability ?	

Is variability damped ?



Is variability damped ?

Spread	obs SST

If	we	scale	the	amplitude,	there	seems	to	be	a	
better	spatial	coherency	with	the	obs

Spread	Free	SST Spread	SuperM SST



A methodology to correct mean state biases:
Anomaly coupled model

Correction	added	to
quantities	exchanged

between	
atmosphere	and	ocean

Courtesy:	Thomas	Toniazzo

Standard	flux	correction	techniques	were	abandoned	because	they	alter	(damp)	variability	

Here	:
• correction	estimated	with	
the	coupled	system

• Estimation	is	iterative	
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Figure 4.
Annual-mean climatological biases for (top) sea surface temperature (SST) and (bottom) sea surface salinity (SSS) in each experiment.

A methodology to correct mean state biases:
Anomaly coupled model
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An	alternative	method	referred	to	as	anomaly	coupling	has	been	implemented	and	tested	
with	NorESM (Toniazzo and	Koseki,	2018)

The	anomaly	coupling	approach	reduces	strongly	the	bias	in	the	tropics



Reduced biases enhances 
comparison of reanalysis with objective analysis

NorCPM reanalysis NorCPM anomaly coupled reanalysis 

Higher match with assimilated observation in the Tropical Atlantic



Reduced biases enhances seasonal 
prediction skill for the Atlantic Niño

2 4 6 8 10 12
-0.2

0

0.2

0.4

0.6

0.8

1

V1
ACPL
Persistence

Standard	Model
Anomaly	coupled	model
Persistence

Co
rr
el
at
io
n

Lead	month

Skill	is	improved:
• but	mechanism	of	predictability	were	still	

misrepresented	in	some	season
• Tendency	to	dampen	the	variability	of	the	signal		



Standard	deviation	of	SST	along	the	equator,	January	- December

Reduced	bias	->	better	equatorial	variability

Observations

Courtesy:	Shunya Koseki

Standard Anomaly	coupled



Conclusions

Different	techniques	are	tested	to	reduce	model	bias	and	enhance	prediction	skill
1. Parameter	estimation	using	advance	data	assimilation	have	been	developed	in	

NorCPM
2. Anomaly	coupling	reduces	bias	and	improved	skill	but	fails	to	improve	

mechanism	of	predictability	in	all	seasons	and	tends	to	damp	variability
3. Supermodel	allow	a	reduction	of	bias	using	models	as	black	box

• It	worked	well	with	idealized	model
• Show	promising	result	for	a	GCM	with	two	atmospheres
• Use	DA	to	synchronised 3	ESMs:

• ESMs	are	synchronised and	bias	reduced	but	variability	totally	damped	
è Need	to	identify	why	the	implementation	induce	and	artificial	damping


