
A Solution of the P versus NP Problem

Frank Vega1[0000−0001−8210−4126]

Joysonic,
Uzun Mirkova 5,

Belgrade, 11000, Serbia
vega.frank@gmail.com

Abstract. P versus NP is considered as one of the most important
open problems in computer science. This consists in knowing the answer
of the following question: Is P equal to NP? A precise statement of the
P versus NP problem was introduced independently by Stephen Cook
and Leonid Levin. Since that date, all efforts to find a proof for this
problem have failed. A major complexity classes are L and ⊕L. A loga-
rithmic Turing machine has a read-only input tape, a write-only output
tape, and some read/write work tapes. The work tapes may contain at
most O(logn) symbols. L is the complexity class containing those deci-
sion problems that can be decided by a deterministic logarithmic Turing
machine. The complexity class ⊕L has the same relation to L as ⊕P
does to P . We demonstrate there is a complete problem for ⊕L that can
be logarithmic space reduced to a problem in L. Consequently, we show
L = ⊕L. To attack the P versus NP problem, the NP–completeness is
a useful result. We demonstrate the result L = ⊕L implies there is a
well-known NP–complete in P . In this way, we guarantee the complexity
class P is equal to NP .

Keywords: complexity classes · completeness · polynomial time · XOR-
3SAT · MONOTONE-1-IN-3-3SAT.

1 Introduction

The P versus NP problem is a major unsolved problem in computer science
[1]. This is considered by many to be the most important open problem in
the field [1]. It is one of the seven Millennium Prize Problems selected by the
Clay Mathematics Institute [1]. It was essentially mentioned in 1955 from a
letter written by John Nash to the United States National Security Agency [1].
However, the precise statement of the P = NP problem was introduced in 1971
by Stephen Cook in a seminal paper [1].

In 1936, Turing developed his theoretical computational model [4]. The de-
terministic and nondeterministic Turing machines have become in two of the
most important definitions related to this theoretical model for computation [4].
A deterministic Turing machine has only one next action for each step defined in
its program or transition function [4]. A nondeterministic Turing machine could

2 Frank Vega

contain more than one action defined for each step of its program, where this
one is no longer a function, but a relation [4].

Another relevant advance in the last century has been the definition of a
complexity class. A language over an alphabet is any set of strings made up of
symbols from that alphabet [5]. A complexity class is a set of problems, which
are represented as a language, grouped by measures such as the running time,
memory, etc [5].

In the computational complexity theory, the class P contains those languages
that can be decided in polynomial time by a deterministic Turing machine [8].
The class NP consists in those languages that can be decided in polynomial
time by a nondeterministic Turing machine [8]. The biggest open question in
theoretical computer science concerns the relationship between these classes: Is
P equal to NP? In 2012, a poll of 151 researchers showed that 126 (83%) believed
the answer to be no, 12 (9%) believed the answer is yes, 5 (3%) believed the
question may be independent of the currently accepted axioms and therefore
impossible to prove or disprove, 8 (5%) said either do not know or do not care
or don’t want the answer to be yes nor the problem to be resolved [7].

It is fully expected that P 6= NP [9]. For that reason, P = NP is considered
as a very unlikely event [9]. Certainly, P versus NP is one of the greatest open
problems in science and a correct solution for this incognita will have a great
impact not only for computer science, but for many other fields as well [1].
Whether P = NP is still a controversial possible solution to this problem [1].
However, we prove the complexity class P is equal to NP . Hence, we solve one
of the most important open problems in computer science with a solution which
was certainly unexpected and with stunning practical consequences [1].

2 Definitions

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of
finite strings over Σ [4]. A Turing machine M has an associated input alphabet
Σ [4]. For each string w in Σ∗ there is a computation associated with M on
input w [4]. We say that M accepts w if this computation terminates in the
accepting state, that is M(w) = “yes” [4]. Note that M fails to accept w either
if this computation ends in the rejecting state, that is M(w) = “no”, or if the
computation fails to terminate [4].

The language accepted by a Turing machine M , denoted L(M), has an as-
sociated alphabet Σ and is defined by

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

We denote by tM (w) the number of steps in the computation of M on input w
[4]. For n ∈ N we denote by TM (n) the worst case run time of M ; that is

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [4]. We say that M runs in
polynomial time if there is a constant k such that for all n, TM (n) ≤ nk + k [4].

A Solution of the P versus NP Problem 3

In other words, this means the language L(M) can be accepted by the Turing
machine M in polynomial time. Therefore, P is the complexity class of languages
that can be accepted in polynomial time by deterministic Turing machines [5].
A verifier for a language L1 is a deterministic Turing machine M , where

L1 = {w : M(w, c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial
time verifier runs in polynomial time in the length of w [4]. A verifier uses
additional information, represented by the symbol c, to verify that a string w is
a member of L1. This information is called certificate. NP is also the complexity
class of languages defined by polynomial time verifiers [9].

NL is the class of languages that are decidable by a nondeterministic log-
arithmic Turing machine [4]. We can give a certificate-based definition for NL
[4]. The certificate-based definition of NL assumes that a logarithmic Turing
machine has another separated read-only tape [4]. On each step of the machine
the machine’s head on that tape can either stay in place or move to the right
[4]. In particular, it cannot reread any bit to the left of where the head currently
is [4]. For that reason this kind of special tape is called “read once” [4].

A language L1 is in NL if there exists a deterministic logarithmic Turing
machine and with an additional special read-once input tape polynomial p :
N→ N such that for every x ∈ {0, 1}∗,

x ∈ L1 ⇔ ∃u ∈ {0, 1}p([x]) such that M accepts 〈x, u〉

where by M(x, u) we denote the computation of M where x is placed on its
input tape and u is placed on its special read-once tape, and M uses at most
O(log[x]) space on its read/write work tapes for every input x where [. . .] is the
bit-length function. We will call this Turing machine a logarithmic space verifier.

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some
deterministic Turing machine M , on every input w, halts in polynomial time with
just f(w) on its tape [4]. Let {0, 1}∗ be the infinite set of binary strings, we say
that a language L1 ⊆ {0, 1}∗ is polynomial time reducible to a language L2 ⊆
{0, 1}∗, written L1 ≤p L2, if there is a polynomial time computable function
f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [8]. A language L1 ⊆ {0, 1}∗ is
NP–complete if

– L1 ∈ NP , and
– L2 ≤p L1 for every L2 ∈ NP .

If L1 is a language such that L2 ≤p L1 for some L2 ∈ NP–complete, then L1 is
NP–hard [8]. Moreover, if L1 ∈ NP , then L1 ∈ NP–complete [8].

A logarithmic space transducer is a Turing machine with a read-only input
tape, a write-only output tape, and some read/write work tapes [4]. The work

4 Frank Vega

tapes must contain at most O(log n) symbols [4]. A logarithmic space transducer
M computes a function f : Σ∗ → Σ∗, where f(w) is the string remaining on the
output tape afterM halts when it is started with w on its input tape [4]. We call f
a logarithmic space computable function [4]. We say that a language L1 ⊆ {0, 1}∗
is logarithmic space reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤l L2, if
there exists a logarithmic space computable function f : {0, 1}∗ → {0, 1}∗ such
that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f(x) ∈ L2.

The logarithmic space reduction is used for the complexity class P and the
classes below.

A Boolean formula φ is composed of

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one

output, such as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only
if);

3. and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables
in φ. A satisfying truth assignment is a truth assignment that causes φ to be
evaluated as true. A formula with a satisfying truth assignment is a satisfiable
formula. We define a CNF Boolean formula using the following terms. A literal
in a Boolean formula is an occurrence of a variable or its negation [5]. A Boolean
formula is in conjunctive normal form, or CNF , if it is expressed as an AND of
clauses, each of which is the OR of one or more literals [5]. A Boolean formula is
in 3-conjunctive normal form or 3CNF , if each clause has exactly three distinct
literals [5]. For example, the Boolean formula

(x1∨⇁ x1∨⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨⇁ x3∨⇁ x4)

is in 3CNF . The first of its three clauses is (x1∨⇁ x1∨⇁ x2), which contains
the three literals x1, ⇁ x1, and ⇁ x2.

3 Results

Definition 1. XOR–3SAT
INSTANCE: A Boolean formula ψ that is the conjunctions of a set C of

clauses c1, . . . , cm, where each ci consists of the EXCLUSIVE OR (denoted ⊕)
of three literals.

QUESTION: Is it the case that ψ is satisfiable?
REMARKS: XOR–3SAT is complete for ⊕L [2].

Definition 2. MONOTONE–XOR–4SAT
INSTANCE: A Boolean formula F that is the conjunctions of a set C of

clauses c1, . . . , cm, where each ci consists of the EXCLUSIVE OR (denoted ⊕)
of four positive literals.

A Solution of the P versus NP Problem 5

QUESTION: Is it the case that F is satisfiable?
REMARKS: MONOTONE–XOR–4SAT ∈ ⊕L because XOR–SAT ∈ ⊕L [2].

Theorem 1. MONOTONE–XOR–4SAT is complete for ⊕L.

Proof. We assume that each variable in the Boolean formula ψ of n variables in
XOR–3SAT is a unique positive integer between 1 and n. We denote as X the
set of variables in ψ from XOR–3SAT. The negative literals are represented as
the negative value of each variable value, such that the negative literal of the
variable a is −a. Since we need to create the positive literals in the language
MONOTONE–XOR–4SAT, then we use the function h such that

h(x) = if (x > 0) return (2× x) else return (−2× x+ 1).

The polynomial time reduction is described in the pseudo code Algorithm 1.

Algorithm 1 Logarithmic space reduction from XOR–3SAT to
MONOTONE–XOR–4SAT

1: /*A set of clauses C and the set of variables X of an instance in XOR–3SAT*/
2: procedure REDUCTION(C,X)
3: output (x⊕ y ⊕ y ⊕ y)
4: output (z ⊕ y ⊕ y ⊕ y)
5: /*Iterate for each variable in X*/
6: for all a ∈ X do
7: output (z ⊕ x⊕ h(a)⊕ h(−a))
8: end for
9: /*Iterate from the clauses of C*/

10: for all (a⊕ b⊕ c) ∈ C do
11: output (z ⊕ h(a)⊕ h(b)⊕ h(c))
12: end for
13: end procedure

Note, in this reduction we guarantee that every literal is positive through the
function h. In addition, we add new three positive literals x, y and z represented
by the positive integers (2×n+2), (2×n+3) and (2×n+4) respectively, where
n is the cardinality in the set of variables X. If every clause (a ⊕ b ⊕ c) ∈ C
can be converted to (h(a)⊕ h(b)⊕ h(c)), then we obtain a new Boolean formula
where every literal is positive. However, this does not guarantee that for every
variable a, the literals h(a) and h(−a) have oppositive values. This is guaranteed
with the new variables x and y, such that we consider the clauses (x⊕y⊕y⊕y),
(y ⊕ y ⊕ y) and (x ⊕ h(a) ⊕ h(−a)). The reason is because the value x = 0 is
obligated with the clauses (x ⊕ y ⊕ y ⊕ y) and (y ⊕ y ⊕ y) and the evaluated
clauses (0 ⊕ h(a) ⊕ h(−a)) guarantee the oppositive values of the literals h(a)
and h(−a). Finally, we add the new variable z for every modified clause which
has three positive literals. In this way, if we have a satisfying truth assignment
of the new Boolean formula in MONOTONE–XOR–4SAT where z = 0, then

6 Frank Vega

ψ will be satisfiable under the same truth assignment just excluding the liter-
als x, y and z and replacing the value of the positive literal h(a) by the value
of a that can be a positive or negative literal. In addition, if the new Boolean
formula in MONOTONE–XOR–4SAT has a satisfying truth assignment where
z = 1, then we can create a new satisfying truth assignment where z = 0 just
replacing each evaluation of h(a) = 1 by h(a) = 0 and h(b) = 0 by h(b) = 1
and including the same procedure for the variables x and y where a and b are
literals of ψ. In general, the whole algorithm uses logarithmic space in the work
tapes since the new Boolean formula is created in the output tape into a write-
only way. Consequently, we obtain XOR–3SAT ≤l MONOTONE–XOR–4SAT.
Since the language XOR–3SAT can be reduced to MONOTONE–XOR–4SAT
in logarithmic space, then MONOTONE–XOR–4SAT is hard for ⊕L. Further-
more, MONOTONE–XOR–4SAT is in ⊕L. To sum up, we obtain the language
MONOTONE–XOR–4SAT is complete for ⊕L.

Definition 3. HITTING–SET–2
INSTANCE: A “universe” set U and a family of n sets Si ⊆ U with the

property that |Si| ≤ 2 for 1 ≤ i ≤ n where | . . . | is the cardinality function.
QUESTION: Is it the case that there is a subset H of U such that |Si∩H| =

1?
REMARKS: HITTING–SET–2 ∈ L [3], [10].

Theorem 2. MONOTONE–XOR–4SAT ∈ L.

Proof. Given a collection of clauses C from an instance F of the language
MONOTONE–XOR–4SAT, then we create for each clause (a⊕b⊕c⊕d) ∈ C the
sets {(a, b), (c, d)}, {(a, c), (b, d)} and {(a, d), (b, c)} where every tuple (x, y) is a
pair of unordered literals which these literals might be equals. The “universe”
set U consists in all the tuples that we could create for each clause ci ∈ C. The
family of sets Si ⊆ U are those that we create for each clause ci ∈ C containing
two pairs of unordered literals. Is it the case that there is a subset H of U such
that |Si ∩ H| = 1 and F does not belong to MONOTONE–XOR–4SAT? The
answer is no. Think in the properties of a subset H of U such that |Si ∩H| = 1.
The key observation is the sets {(a, b), (c, d)}, {(a, c), (b, d)} and {(a, d), (b, c)}
of each clause (a⊕ b⊕ c⊕ d) ∈ C satisfies that exactly one of the clauses

1. (a⊕ b) or (c⊕ d) in the set {(a, b), (c, d)} should be true and the other false
and,

2. (a⊕ c) or (b⊕ d) in the set {(a, c), (b, d)} should be true and the other false
and,

3. (a⊕ d) or (b⊕ c) in the set {(a, d), (b, c)} should be true and the other false

if and only if the clause (a⊕ b⊕ c⊕ d) is satisfiable for some truth assignment.
Hence, if there is a subset H of U such that |Si∩H| = 1, then F is satisfiable, and
this property is necessary to prove that the Boolean formula F can be satisfiable.
Indeed, when there no is a subset H of U such that |Si∩H| = 1, then this would
mean we cannot separate each pair of every set {tuple1, tuple2} by exactly one

A Solution of the P versus NP Problem 7

evaluated as true and the other as false which is equivalent to assume that F
is unsatisfiable. Is this a logarithmic space reduction? Yes, since we can iterate
for each clause c1 ∈ C and write to the output tape the respective three sets
Si ⊆ U that require each clause. In this reduction, there could be repeated sets
Si ⊆ U in the output, but these duplications can be ignored from an instance
of HITTING–SET–2. Therefore, this algorithm is a logarithmic space reduction
from MONOTONE–XOR–4SAT to HITTING–SET–2 such that

F ∈ MONOTONE–XOR–4SAT if and only if {S1, S2, . . .} ∈ HITTING–SET–2

and thus, MONOTONE–XOR–4SAT ≤l HITTING–SET–2. In conclusion, we
obtain MONOTONE–XOR–4SAT ∈ L, because every problem that could be
logarithmic space reduced to a problem in L is in L as well [9].

Theorem 3. L = ⊕L.

Proof. The single existence of a complete problem in ⊕L in L is sufficient to
show L = ⊕L. Hence, this is a consequence of Theorems 1 and 2.

Definition 4. MONOTONE–1–IN–3–3SAT
INSTANCE: A Boolean formula φ in 3CNF such that there is no clause

which contains a negated literal.
QUESTION: Is there a truth assignment for φ such that each clause in φ has

exactly one true literal?
REMARKS: MONOTONE–1–IN–3–3SAT is in NP–complete [6].

Definition 5. MONOTONE–2SAT
INSTANCE: A Boolean formula ϕ that is the conjunctions of a set C of

clauses c1, . . . , cm, where each ci consists of the OR (denoted ∨) of two negated
literals.

QUESTION: Is it the case that ϕ is satisfiable?

Theorem 4. MONOTONE–1–IN–3–3SAT ∈ P .

Proof. Consider a Boolean formula φ in 3CNF with m clauses such that there
is no clause which contains a negated literal. Suppose there is a positive literal
x which appears k times. We replace the first occurrence of x by x1, the second
by x2, and so on, where x1, x2, . . . , xk are k new variables. Later, we add

(⇁ x1 ∨ x2) ∧ (⇁ x2 ∨ x3) ∧ . . . ∧ (⇁ xk ∨ x1)

to a new Boolean formula φ′ in CNF which contains the modified clauses of φ
plus these above clauses of fewer than 3 literals. We create the Boolean formula
φ′ as result of making this procedure for each positive literal x in φ. Note, this
is logically equivalent to

x1 ⇒ x2 ⇒ . . .⇒ xk ⇒ x1

such that the resulting expression in φ′ satisfies the condition for a truth assign-
ment on x. In this new formula φ′ every variable appears at most 3 times. If

8 Frank Vega

k = 1, then the literal x1 appears once. If k > 1, for every integer i between 1
and k, we have that the literal xi appears twice and ⇁ xi appears once. Suppose
we have the following instance φ of MONOTONE–1–IN–3–3SAT

. . . (x ∨ w ∨ g) ∧ . . . ∧ (x ∨ y ∨ z) . . .

then the transformed expression over the variable x would be

. . . (x1 ∨ w ∨ g) ∧ . . . ∧ (x2 ∨ y ∨ z) . . . (⇁ x1 ∨ x2) ∧ (⇁ x2 ∨ x1)

where

– the variable x1 appears thrice and,
– the literal x1 appears twice and,
– the literal ⇁ x1 appears once.

Now, from the expression φ′ in CNF , we enumerate the variables which appear
in the clauses of three literals from 1 to 3 ×m such that for the first clause we
assign the enumeration from 1 to 3 to the variables, for the second clause we
assign the enumeration from 4 to 6 and so on until we reach the last clause of
three literals where we assign the enumeration from 3×m−2 to 3×m. This can
be simplified in this way: For the ith clause ci = (ap∨ bq ∨ cr) of three literals we
just transform it in ci = (a3×i−2 ∨ b3×i−1 ∨ c3×i). We replace the same variables
in the clauses of two literals according to the new enumeration. Suppose we have
the following expression φ′ in CNF

. . . (x1 ∨ w1 ∨ g1) ∧ (x2 ∨ y1 ∨ z1) ∧ . . . (⇁ x1 ∨ x2) ∧ (⇁ x2 ∨ x1) . . .

then the transformed expression after the new enumeration would be

. . . (x1 ∨ w2 ∨ g3) ∧ (x4 ∨ y5 ∨ z6) ∧ . . . (⇁ x1 ∨ x4) ∧ (⇁ x4 ∨ x1) . . .

where we replace the new enumerated variable in a clause of three literals over
the two clauses of two literals such that one contains the positive literal and the
other the negative literal. After that, we replace in the modified expression φ′

in CNF the operator OR (denoted ∨) by the EXCLUSIVE OR (denoted ⊕). In
this way, we create a new Boolean formula ψ that is an instance of XOR–SAT.

Next, from the clauses of three literals in the new Boolean formula ψ, we
create a Boolean formula ϕ that would be an instance of MONOTONE–2SAT.
This new formula will be constructed from the clauses of three literals in ψ which
have already the enumeration in ascending order such that if we go through each
integer i from 1 to m, then we take the ith clause ci = (a3×i−2 ⊕ b3×i−1 ⊕ c3×i)
of three literals and we add at the end of ϕ the formula

Pi = (⇁ a3×i−2∨⇁ b3×i−1) ∧ (⇁ b3×i−1∨⇁ c3×i) ∧ (⇁ a3×i−2∨⇁ c3×i).

Since ci is evaluated as true if and only if exactly 1 or 3 members of the set
{a3×i−2, b3×i−1, c3×i} are true and Pi is evaluated as true if and only if exactly
1 or 0 members of the set {a3×i−2, b3×i−1, c3×i} are true, then we obtain the

A Solution of the P versus NP Problem 9

original clause di = (a ∨ b ∨ c) in MONOTONE–1–IN–3–3SAT has exactly one
true literal if and only if both formulas ci and Pi have the same satisfying truth
assignment. Finally, we construct the Boolean formula ϕ as the conjunction of Pi

for every clause ci in ψ of three literals, that is, ϕ = P1∧. . .∧Pm. In addition, the
clauses of two literals in ψ guarantee the appropriated truth assignment of every
positive variable in φ: There is a truth assignment for φ such that each clause in
φ has exactly one true literal if and only if ψ has the same property. Moreover,
there is a truth assignment for ψ such that each clause in ψ has exactly one true
literal if and only if this is also a satisfying truth assignment for both formulas
ϕ and ψ at the same time. Note the clauses in ϕ appear from left to right in the
same ascending enumerated order that we provide in the enumeration step.

In this way, we can create a logarithmic space verifier M that receives as
input the Boolean formula ϕ and as certificate a truth assignment such that the
variables are sorted by the enumerated order that we provide in the above step.
This would mean in a truth assignment the appearance from left to right in
the order of the evaluation of the variables is firstly the one which obtained the
assigned enumeration 1, secondly the one which obtained the assigned enumer-
ation 2 and so forth... Since we know the first three variables in the certificate
string corresponds to the first three clauses from left to right in ϕ, and the next
forward three variables corresponds to the contiguous next three clauses in ϕ and
so on, then we can store only three current variables each time in order to know
whether the truth assignment satisfies the Boolean formula. M is a logarithmic
space verifier since we do not have to look backward over the certificate for the
evaluation of the clauses and we can store only three variables each time, so the
work tapes have at most logarithmic space.

However, XOR–SAT is in NL because we prove that L = ⊕L. Consequently,
there is a nondeterministic logarithmic Turing machine N which outputs every
possible satisfying truth assignment of ψ in a nondeterministic way. We can
assume the nondeterministic logarithmic Turing machine N outputs the satisfy-
ing truth assignment of ψ in the same enumerated variable order we provide in
the enumeration step. In this way, if the logarithmic space verifier M computes
M(ϕ,N(ψ)) = “yes”, then ϕ and ψ have the same satisfying truth assignment
which also means φ is in MONOTONE–1–IN–3–3SAT. M would not be any-
more a deterministic Turing machine, but a nondeterministic because in the
certificate string there will be the output of N(ψ). The special tape will still be
a read-once input tape polynomial in M , since we simulate N(ψ) at once: We
compute N(ψ) as much as we need to read a new symbol in the read-once input
tape in M . In addition, the possible output of N(ψ) will still be polynomial
in relation to ϕ. Since we have the result M(ϕ,N(ψ)) = “yes” for the input
(ϕ,ψ) if and only if φ is indeed in MONOTONE–1–IN–3–3SAT, then we affirm
that MONOTONE–1–IN–3–3SAT can be solved in polynomial time, because
NL ⊆ P [9]. The whole procedure can run in polynomial time:

– We can create the Boolean formula φ′ in time O(m2) just replacing the mod-
ified clauses of three literals and adding the clauses of two literals. Certainly,
we can go each time through every clause φ just adding the new clauses of

10 Frank Vega

two literals and modifying the other clauses of three literals which are at
most m− 1.

– After that, the enumeration in φ′ can be done in time O(m2), since we need
to replace each variable in a clause of three literals by a new variable and
substitute it in the clause of two literals when the old variable still exists as
a positive or negative literal.

– Next, we create the Boolean formula ψ and ϕ in time O(m) since the replace-
ment of the operator OR (denoted ∨) by the EXCLUSIVE OR (denoted ⊕)
can be done in linear time. Besides, the addition of the clauses in ϕ can be
done in linear time iterating each clause of three literals in ψ and positioning
it in the right place according to the enumeration from left to right in ϕ. We
can use an array to locate the position in this last step and thus, the final
Boolean formula will be sorted after the creation of each formula Pi.

Certainly, we can create the Boolean formulas ψ and ϕ just running the whole
computation in time O(m2). Furthermore, the creation of M and N can previ-
ously be done at once for all the instances of MONOTONE–1–IN–3–3SAT and
thus, this is a polynomial time algorithm and the proof is completed.

Theorem 5. P = NP .

Proof. From the Theorem 4, we obtain MONOTONE–1–IN–3–3SAT ∈ P . If any
NP–complete problem can be solved in polynomial time, then every language in
NP has a polynomial time algorithm [5]. In conclusion, we finally prove that
P = NP .

References

1. Aaronson, S.: P ? NP. Electronic Colloquium on Computational Complexity, Re-
port No. 4 (2017)

2. Allender, E., Bauland, M., Immerman, N., Schnoor, H., Vollmer, H.:
The Complexity of Satisfiability Problems: Refining Schaefer’s theo-
rem. Journal of Computer and System Sciences 75(4), 245–254 (2009).
https://doi.org/https://doi.org/10.1016/j.jcss.2008.11.001

3. Álvarez, C., Greenlaw, R.: A Compendium of Problems Complete for Sym-
metric Logarithmic Space. Computational Complexity 9(2), 123–145 (2000).
https://doi.org/10.1007/PL00001603

4. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press (2009)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, 3rd edn. (2009)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edn. (1979)

7. Gasarch, W.I.: Guest Column: The Second P ? NP Poll. SIGACT News 43(2),
53–77 (Jun 2012). https://doi.org/10.1145/2261417.2261434

8. Goldreich, O.: P, NP, and NP-Completeness: The basics of computational com-
plexity. Cambridge University Press (2010)

9. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
10. Reingold, O.: Undirected Connectivity in Log-space. J. ACM 55(4), 1–24 (Sep

2008). https://doi.org/10.1145/1391289.1391291

