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Vorwort

Diese Arbeit behandelt die physikalischen und mathematischen Grundlagen eines Gebiets, das zum gegenwärti-
gen Zeitpunkt in Deutschland leider einen sehr schweren Stand hat. Man kann es im engeren Sinne als die
Astrophysik kosmischer Strahlung, im weiteren Sinne aber auch als hadronische Hochenergie-Astrophysik be-
zeichnen. Während diesem Gebiet, das in erster Linie im Grenzbereich von Hochenergie-Astrophysik, Ele-
mentarteilchenphysik und Kernphysik angesiedelt ist, fast überall in der Welt zunehmend Beachtung geschenkt
wird, insbesondere in den USA und Japan, fristet es hierzulande noch ein Schattendasein. Dies mag zwei Gründe
haben: Der erste ist vielleicht der wissenschaftliche Konservativismus in diesem Land, d.h. die generelle Vor-
sicht gegenüber allem, was neu und ungewohnt ist; der zweite ist mit ziemlicher Sicherheit die “Sättigung”, die
durch die scheinbar uneingeschränkte Förderung wissenschaftlicher Mammutprojekte besteht, sowohl in theo-
retischer als auch in experimenteller Hinsicht. Großprojekte wie HERA, LEP-II oder der geplante LHC geben
der Elementarteilchenphysik die Gewißheit, in den nächsten Jahrzehnten in der gewohnten Weise fortfahren und
noch viele neue Erkenntnisse gewinnen zu können, und in der Astrophysik sonnt man sich noch im Licht erfolg-
reicher Satellitenmissionen wie ROSAT oder Compton-GRO, die so viele neue Phänomene zu Tage förderten,
deren Interpretation auch die Theoretiker noch lange beschäftigen kann. In einem solch sonnigen Klima ist,
verständlicherweise, für andere Ansätze oder gar “revolutionäre” Ideen wenig Platz.

In den USA dagegen wurde spätestens auf dem APS Treffen in Snowmass 1994 klar, daß sich das Blatt
dort gewendet hat: Die geplatzten Träume elementarteilchenphysikalischer Gigantomie (kurz: die Streichung
des SSC durch den amerikanischen Kongreß), haben eine Aufbruchstimmung erzeugt, die sich nun in einem
verstärkten Interesse an beobachtbaren, teilchenphysikalischen Phänomenen im Universum äußert. Das Auger-
Projekt zur Beobachtung kosmischer Strahlung bei höchsten Energien, das zur Zeit immer mehr an Struktur
gewinnt, und bezeichnenderweise gerade von dem renommierten “Beschleuniger-Institut” Fermilab in Chicago
propagiert wird, ist sicher nur eine der Konsequenzen dieser Tatsache.

Diese Arbeit wurde, sowohl in ihrer Anfertigung als auch in ihrer Konsequenz, stark von diesen unterschied-
lichen Einschätzungen des behandelten Gebietes geprägt. Da eine Förderung des eigentlichen Themas dieser
Dissertation in Deutschland nicht möglich war, konnte ich sie nur unter Inkaufnahme einer zeitaufwändigen
(wenn auch nicht uninteressanten) Nebentätigkeit in einem “anerkannten” Gebiet der Astronomie und Astro-
physik, sowie im Rahmen eines achtmonatigen Auslandsstipendiums in den USA anfertigen; nicht überraschend
führt sie mich nun in auch wieder die USA zurück. Es ist daher nur konsequent, daß sie durchgehend in eng-
lischer Sprache abgefaßt ist; ich sehe diese Arbeit als ein, hoffentlich nützliches, Hilfsmittel für die zukünftige
hadronische Hochenergie-Astrophysik an, und es sollte daher für diejenigen gefertigt sein, die es mitunter auch
benutzen wollen. Nicht zuletzt sind damit auch meine Betreuer in den USA, Prof. Todor Stanev und Prof. Tom
Gaisser gemeint, die hier gleichberechtigt neben den eigentlichen Referenten dieser Dissertation genannt werden
sollen.

Jörg Rachen, Bonn, August 1996
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Introduction

Cosmic ray physics and astrophysics

When VICTOR HESS discovered the Höhenstrahlung
�

in 1911, he was not looking for cosmic phenomena
— he was investigating the ionization of the atmosphere, and realized that the degree of ionization increases
with altitude. Quickly it became clear that Hess’ discovery must be connected to a radiation of cosmic origin,
and the term cosmic rays was introduced. Nevertheless, the following investigation of this radiation was mainly
motivated by the properties of the radiation itself — cosmic ray physics marked the starting point of experimental
elementary particle physics, which made use of cosmic rays as a natural laboratory to investigate the structure of
matter. Later, when particle accelerators had been built, and thus a technical source of high energy particles was
available, the interest in cosmic rays moved to continually increasing energies, which were not yet accessible by
accelerators. Since the cosmic ray flux decreases strongly with energy, a direct detection of the radiation was no
longer possible, and the physicists started to investigate particle air showers induced by primary cosmic rays.
Again, understanding the physics of these air showers was the main task, and a very interesting subject by itself.
Today, air shower experiments cover detector areas of up to

���������
	
, and use extraordinary detection techniques

like atmospheric scintillation to observe cosmic rays in the atmosphere up to a few hundred ���� [Sok89] —
the highest energy event ever detected had an energy of 51 Joule, comparable to a full bottle of water smashing
on the ground. The interaction energies involved in the primary collision of such a particle with an atmospheric
nucleus is far beyond the limits of experimental particle physics, and so the investigation of the highest energy
cosmic rays can still bring new insights in the structure of matter. Recently, physicists started to plan a giant
air shower array, called the Pierre Auger Project, which proposes to observe many more events of this kind.
But, all in all, we may state that the main interest of most physicists investigating cosmic rays is directed to the
atmospheric phenomenon of cosmic ray interactions, giving a late justification to Hess’ term “Höhenstrahlung”,
which is still officially used in the German linguistic area.

Clearly, there has always been the question on the origin of cosmic rays; the research for cosmic ray sources
may be called cosmic ray astrophysics, and is certainly one of the most speculative branches of astrophysics.
The reason can be found in the property of cosmic rays to consist of charged particles, which do not contain any
information about their origin since they are deflected in ambient magnetic fields. Thus, there is no possibility for
a cosmic ray astronomy, which opens the field of cosmic ray astrophysics to all kind of speculations: whenever
other branches of astronomy discovered new, enigmatic objects with extraordinary features — whether it were
quasars, pulsars or, most recently, gamma-ray bursts, or whenever theoreticians invented new speculative objects
which may inhabit the universe — magnetic monopoles, cosmic strings, anti-matter worlds or wormholes; there
have always been models quickly by hand which connect them to the origin of cosmic rays, in particular of the
cosmic rays at the highest (and thus most enigmatic) energies. The theoreticians proposing such models are on
the safe side — it is not so easy for an experimentalist to prove their predictions wrong, because cosmic rays
�
“High-altitude radiation”

3



4 INTRODUCTION

contain so little information about their origin. While some theoreticians may consider this as a strength of their
theories, it is in fact an awful weakness: To speak in POPPER’S terms about scientific testability [Pop94], we
may even come to the radical conclusion that the whole field of cosmic ray astrophysics should be subsumed
under the subject of metaphysics rather than physics, because the predictions derived from it can hardly be
falsified by experiment; they have no empirical predictability.

Clearly, the situation is not quite as radical; there have been theories developed to explain the origin of
cosmic rays which have got a strong impact on other physical and astrophysical branches. FERMI’S theory of
stochastic acceleration and its application in the theory of diffusive shock acceleration may be considered as
benchmarks here. They are meanwhile successfully used to explain not only the origin of cosmic rays, but also
many heliospheric phenomena as well as the radio spectra of supernovae and extragalactic jets. It is funny to
note that these theories, if they are applied to cosmic rays, predict that the highest energy particles are more
likely to be produced in the largest, and thus probably least spectacular objects, in contrast to the common
connection to compact energetic objects. Of course, shock acceleration and powerful compact objects do not
exclude, but rather complement each other; we just have to keep in mind that the most compact objects are in
this picture less likely to be the sources of the highest energy cosmic rays. The theory of shock acceleration
has established the connection of cosmic ray physics to observational astronomy, mainly to radio astronomy;
nevertheless, the cosmic rays themselves are still unobservable inside their putative sources, so the speculative
smell is not quite removed. This problem is probably responsible for the fact that cosmic ray astrophysics has
been kept a relatively small field compared to other branches of astrophysics, which are closer connected to
direct observational astronomy.

High energy astronomy and radiative processes

When the first X-ray imaging satellite, Uhuru, was launched in late 1970 and discovered a plenty of point sources
of energetic radiation in the sky, the new field of high energy astronomy was born. Only a few years later,
the COS-B satellite extended the energy range into the MeV gamma-ray regime. Energetic photons, formerly
connected to cosmic rays in the widest sense, have been drawn into their own life as carrier of astronomical
information, which allow for a direct observation of their sources. Exploring higher and higher photon energies
with imaging telescopes may be considered as the main task of contemporary astronomy: ROSAT shifted X-
ray astronomy onto a level of spatial and spectral resolution almost comparable to optical astronomy, and the
Compton-GRO observatory opened the field of high precision imaging astronomy to the GeV gamma-ray energy
range. The energetic front line of imaging astronomy is now constituted by atmospheric Cherenkov telescopes,
which are about to explore the TeV sky. The recent discovery of the quasar Mkn421 by HEGRA, at photon
energies above

��� ��� , may be considered as the preliminary summit of this development [PBK � 96].
When the first images of the high energy sky were taken, radiative processes of energetic particles did

already play a role in astrophysics, because of their elementary connection to radio astronomy; radio emission
was found to be mostly of non-thermal origin, and explained as synchrotron radiation from energetic electrons
in magnetic fields. It was therefore natural to try to explain the X-ray emission of astrophysical objects by
similar processes, namely the interaction of energetic electron and positron populations with ambient magnetic
fields and photons. The application of synchrotron-self-inverse-Compton models to the known sites of energetic
radiation has been quite successful, so there seemed to be no need to consider possible contributions of other
high energy processes. It was quickly realized, however, that the existence of cosmic rays in sources of energetic
radiation can have a strong impact on their electromagnetic spectrum, because they provide a unique process
producing gamma radiation: the production and subsequent decay of mesons in photonuclear or internuclear
collisions. The impact of such hadronic radiation processes has to be considered as increasing with gamma-ray
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energy; while they are generally neglected in most models of X-ray origin, and controversially discussed in GeV
gamma-ray astronomy, the observations of TeV gamma-ray sources might set a clear case that at least not all
energetic radiation observed in cosmic sources is of “conventional” leptonic origin; it may even be assumed that
most of it is not.

Hadronic radiation processes as a new task for cosmic ray physics

If cosmic rays are responsible for the energetic radiation from compact objects, our rather pessimistic view
on cosmic ray astrophysics changes drastically: We may now consider the observable cosmic rays only as
the small tip of a much bigger iceberg, whose underwater part is called hadronic radiation processes. If we
succeed to establish the connection of cosmic ray physics to GeV and TeV gamma-ray astronomy, also the
models for the directly observable cosmic rays lose their “metaphysical” character — because we now have
methods to observe cosmic ray sources at least indirectly through the secondary radiation. When we emphasize
the connection to gamma-ray astronomy, we should not forget that there is another particle principally allowing
for imaging astronomy — the neutrino, which can only be produced in hadronic interaction processes. The
only astronomical sources of neutrinos discovered so far are the sun and the supernova 1987a — but there is
no prophet needed to predict that imaging neutrino astronomy might be one of the frontiers of physics and
astrophysics in the next century; the first experiments are already under construction.

However, entering the field of “exact” astrophysics and precise astronomical data also means some changes
for the methodology of cosmic ray astrophysics. In the more or less qualitative discussion of cosmic ray obser-
vations and their possible astrophysical explanation, it is often sufficient to argue on a very rough level — the
motto to discuss physical processes of cosmic rays may be stated as: “One process, one threshold, one cross
section”. This is good for order of magnitude estimates, and this is what cosmic ray physicists mostly did so far.
But considering the competition to the theoretically highly developed “conventional” methods in high energy
astrophysics, we feel that it is not good enough for the new tasks we are confronted with. Clearly, the basic
physics of cosmic ray interactions is well known; most interactions happen at energies which are already well
explored by accelerator experiments. This is in particular true when we consider that in most astrophysical en-
vironments cosmic rays interact dominantly with low energy photons, which are the most abundant “particles”
in the universe. The task is rather, to bring this physics into a useful form for the astrophysical application,
which is exact enough to produce quantitatively reliable results, and simple enough to be used in analytical or
semi-analytical

	
calculations; it may be considered as one of the main drawbacks of hadronic astrophysics so

far, that almost all quantitatively serious calculations are performed on a highly numerical basis, which makes
them difficult to communicate and give only a small scope to apply results known for one special case to other,
similar cases.

But not only the physical foundations, also the mathematical methods to describe the evolution of spectra
have to be reconsidered; cosmic rays which are subject to interactions develop essentially discontinuously in
their energy, which does not allow the conventional diffusion or continuous energy loss approximations, as fre-
quently used in astrophysical transport theory. The transport of cosmic rays can only be described by considering
the full Ginzburg-Syrovatskii-equation [GS64, HS85], which is the appropriate form of the Boltzmann equation
for cosmic ray physics. To bring this integro-differential equation into a form which allows a treatment by semi-
analytical methods may be considered as one of the main mathematical tasks in cosmic ray physics. So far,
detailed transport calculations of cosmic rays have been performed only numerical, mostly using Monte-Carlo
methods.

�

With semi-analytical we mean the reduction to ordinary differential equations, which can be solved by standard numerical methods.



6 INTRODUCTION

A basic toolkit for photonuclear and photohadronic astrophysics

In this work, we propose to take a step towards a more detailed treatment of cosmic ray induced processes and
cosmic ray transport. We will restrict ourselves to the discussion of cosmic ray transport in photon backgrounds.
This restriction is justified because internuclear reactions are (

�
) less important in most astrophysical situations

(
���

) much better investigated because of their connection to the cosmic ray physics in the atmosphere (see, e.g.
[Hay69]). The work is divided into two main parts:

1. A thorough discussion of the basic physics of photonuclear interactions, and the development of para-
metrized representations for the astrophysical application.

2. A mathematical discussion of cosmic ray transport, based on the theory of Markov point processes.

These two parts seem to be fairly independent; but in fact they are closely connected. The detailed treatment of
particle physics in Sect. 1.2 is not only done for the application to hadronic radiation processes, but also in front
of a more detailed treatment of cosmic ray transport. One of the largest parts of this work is dedicated to the
discussions of the interactions of complex cosmic ray nuclei with photon backgrounds; there has been only one
relevant astrophysical paper on this subject presenting numerical results so far [PSB76], and an improvement of
the situation is highly desirable. The extensive introduction into basic statistics in Sect. 2.1 should be considered
not only with respect to the following discussion of point processes and transport theory, but also as a guide to a
somewhat more precise use of statistics in cosmic ray astrophysics generally — which we found to be necessary
in particular in view of the discussion about the highest energy events.

It is the main line of this work to connect the astrophysical tools we develop here to their physical and math-
ematical foundations; therefore we give a brief discussion of all the relevant methods of particle physics, nuclear
physics and statistics we have made use of. The suffering part of this physical and mathematical completeness
is clearly the astrophysics itself: the reader may miss some direct applications, some answers on the “hot” ques-
tions of contemporary astrophysics. But noting that the extent of this work already exceeds that of a usual PhD
thesis, and that there are currently so many hot questions in this field, we have decided to restrict the scope of
this work to the development of the tools: their application has to follow in subsequent work. To prevent that the
astrophysical connection gets lost completely, we have “spiced” the work with some numerical examples which
are — not accidentally — always somehow connected to a direct astrophysical application. A more thorough
treatment is generally necessary, but also straightforward using the toolkit developed here.



Chapter 1

Photonuclear interactions

Photons are the most abundant “particles” in the universe, even though their energy content in the present universe is
negligible; this means that most dense astrophysical photon fields contain low energy photons, strongly decreasing in
density to higher photon energies. Therefore, high energy photonuclear reactions find an application in astrophysics mostly
when considering inverse reactions, where an energetic nucleus interacts with low energy photon fields. Moreover, when
comparing different photonuclear processes, the low energy processes are generally more important than the high energy
processes, because they happen more often. Thus, the emphasis set by astrophysicists considering photonuclear reactions is
somewhat different from that set by most nuclear and particle physicists, who are more interested in high energy reactions
to investigate the structure of matter.

Photonuclear reactions can essentially be divided into two parts: ( � ) coherent electromagnetic interactions and ( ��� )
incoherent interactions of photons with the nuclear structure. In the first kind of processes, the nucleus just acts as a
classical charge, and the results are merely charge and mass scalings of the corresponding physics for electrons. In the
second, the substructure of the nucleus is essential, and the typical and distinct features of hadronic and nuclear astrophysics
show up. For complex nuclei, the lowest energy incoherent interaction is the removal of single nucleons out of the nuclear
unit, which is called photodisintegration. The nucleons itself can interact incoherently with photons of energies comparable
to the mesonic mass scale, leading to photomeson production. The latter process is more important in astrophysics because
of the high abundance of hydrogen nuclei, i.e. protons, in the universe. However, in specific contexts complex nuclei can
play an important role, so that a detailed treatment of photodisintegration is required.

In this chapter, we will give an outline of photonuclear interactions, in view of their astrophysical application. Sect. 1.1
presents the basic astrophysical approaches to particle transport, including the coherent reactions which can be treated
without reference to the nuclear structure. Sect. 1.2 describes the physics of photomeson production in great detail, with
the aim to give a useful parametrization of all relevant processes. Sect. 1.3 gives a description of the photodisintegration
of complex nuclei in terms of a parametric approach, allowing to treat the subsequent photodisintegration of nuclei as the
evolution of one particle with variable mass number � .

7
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1.1 Photonuclear reactions in astrophysics

In this section, the basic astrophysical concepts of particle transport are presented. We classify photonuclear interactions
and describe the most basic reaction types, which do not refer to the nuclear structure. We subsume the general reaction
of charges with electromagnetic fields under the topic of photonuclear interactions, by means of the virtual photon concept
(Sect. 1.1.1 and Sect. 1.1.2). In Sect. 1.1.3 we give a brief outline of the basics of incoherent reactions and present a
concept for the treatment of nuclear transport phenomena, which allows to describe the relevant physical quantities by
parametrization functions developed from simple models and experimental data in nuclear and particle physics. We call
this the phenomenological approach to cosmic ray transport.

Throughout this section, references are only given when we refer to special models or ideas; the general concepts
presented here can be found in the books of JACKSON [Jac75], and RYBICKY & LIGHTMAN [RL79]. For details on QED
processes we refer to JAUCH & ROHRLICH [JR76].

Notation: In this and the following sections, we distinguish between quantities given in the laboratory frame (LF:
unmarked symbols), the nuclear rest frame (NRF: dashed symbols) and the center of momentum frame (CMF: symbols
marked with an asterisk) of an interaction. We use the symbols “

�� ” and “
�� ” to mark equations referring explicitly to the

NRF or the CMF, respectively. General symbols introduced here and used subsequently in this meaning are: cosmic ray
Lorentz factor in the LF, ����� ; nucleon mass, �	 ; nuclear charge, 
 , and mass number, � . In vector equations, we write
the scalar product as ���� and the vector product as ����� ; the symbol � is also used as a simple multiplication sign when
writing numbers in scientific notation; this should not cause any confusion. The same applies to the symbol � , which is
used as a symbolic index variable for “reaction channel”, and in formulae of course in its common meaning of the velocity
of light. Units, or numbers with units, are generally enclosed in square brackets when occurring in displayed equations, to
avoid confusion with physical symbols.

1.1.1 Classification and basic concepts

1.1.1.1 Coherent and incoherent interactions

Nuclear structure and energy scales : Seen from a distance, the atomic nucleus is just a massive point charge,
and the photon is just the quantized representation of an electromagnetic wave, which can be treated in the
classical way of electrodynamics — quantum-effects may occur as correction in the formulae. Going closer,
the essential quantum-electrodynamical (QED) structure of the photon shows up; it is no longer just a electro-
magnetic wave, but a cloud of virtual particles, which can themselves interact with the nucleus, resulting in the
production of real electron-positron pairs. On the same scale, the nucleus reveals its inner structure of nucleons,
which are themselves charged particles; the nucleus no longer behaves like a point charge, but like a system
of point charges, which can absorb the photon while transforming to an excited state. On smaller scales, the
single nucleons themselves can be excited, and baryonic resonances occur. Proceeding to still smaller scales, the
electromagnetic picture breaks down altogether: the photon reveals a virtual hadronic core, and can therefore
undergo strong interactions with the quark-gluon structure of the nucleons. On this quantum-chromodynamical
(QCD) scale, the photon behaves like a superposition of mesons carrying the same quantum numbers as the
photon, which are called vector mesons; one speaks about the hadronic photon [BSYP78].

To quantify those different scales of photonuclear interactions, it is more convenient to use a scale of energy
rather than size. In the rest system of the nucleus, the QED structure of the photon becomes important for a
photon energy ����������� 	�� �

MeV. The structure of the nucleus becomes important for energies larger that the
average nucleon binding energy, � ��! MeV. The QCD structure of the nucleons shows up for photon energies
in the mesonic mass scale, � �� ��"��

MeV, while the hadronic structure of the photon starts to dominate above
� � �$# ��� . For larger energies, photonuclear interactions become very similar to other hadronic interactions,
and we may therefore apply results derived from interactions between nuclei as well. For energies below all
these thresholds, �% �

MeV, we can treat the nucleus as an ordinary electric point charge.
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With respect to the behavior of the nucleus, we may distinguish two groups of interactions: The first are
coherent interactions, in which the nucleus interacts as a whole, the second are incoherent interactions, where
the photon interacts with parts of the nuclear structure. This classification is independent of the appearance of
the photon; elastic photon scattering is of course a coherent interaction, but the QED process of Bethe-Heitler
pair production is as well. Even the so-called diffractive production of vector mesons, clearly a QCD process, is
coherent with respect to the interaction nucleon, and at high energies even with respect to the whole nucleus. On
the other hand, the incoherent giant dipole resonance excitation of heavy nuclei is a classical electrodynamical
process, and baryon resonance excitation can be understood without referring to the QED or QCD structure
of the photon. Generally, we will find that the momentum transfer in the interaction is the relevant quantity
to to distinguish coherent and incoherent interactions; coherent interactions correspond to momentum transfers
smaller than the energy scale on which the system can be excited.

Inverse photonuclear scattering : In most experimental setups, an energetic photon collides with a nucleus at
rest, therefore most data are parameterized with the photon energy ��� nuclear rest frame (NRF). The total energy
of the system in the center of momentum frame (CMF) is generally expressed in the quantity����� 	� �
	 � � � � 	 �

��
����� 	 � ��� (1.1.1)

where � � �
	 can be called the total mass of the interaction. The energy amount available for secondary reaction
products, or the total kinetic interaction energy, is thus����
� � ��� �
� � � 	 ��� ��� ��� 	���� � � ����� � � ��� � � 	 � (1.1.2)

with � � � �! ��� 	 , giving
� ��
� � � � � for � �#" ��� 	 . We can therefore take the NRF photon energy � � as the

relevant energy scale for the interaction. In cosmic ray astrophysics we have the situation that an energetic
nucleus interacts with low energy photons or electromagnetic fields. So, in the astrophysical laboratory frame
(LF) we have a nucleus with Lorentz factor $�%'&)( �

colliding with a photon of energy � . Because of the
Lorentz boost the photon energy seen in the NRF is � � � $*%'& � ; low energy photons therefore appear as high
energy gamma rays for the cosmic ray nucleus, and may therefore induce high energy interactions.

In nuclear and particle physics, photonuclear interactions are investigated to gain knowledge about the struc-
ture of matter. Therefore, emphasis is given to the detailed description of the exclusive differential cross sections
of specific interaction channels. In cosmic ray astrophysics, the point of interest is the energy emitted from the
nucleus in the LF in form of particles or radiation. In classical electrodynamics, this is given by the power +-,/.�0
emitted in form of radiation from the particle. With a more general understanding of “radiation”, this term may
also be used if heavy particles are emitted. From the point of view of two-particle interaction physics, the only
relevant quantities determining +1,/.�0 are the total cross section 2 and the average CMF scattering angle 354 �76 .
We will discuss the classical and the interaction approach in more detail in the next section.

To compare radiation loss processes among themselves and with other processes determining an astrophys-
ical system, the radiation time scale 8

,/.�0 � �
+9,/.�0 (1.1.3)

is introduced;

8
,/.�0 is the time over which the particle suffers a considerable energy loss, and it may be compared

to other time scales, e.g. the lifetime of a system under consideration. For intergalactic particle transport over
cosmological scales, the comparison of

8
,/.�0 with the Hubble time

8 : � �  �;�< can give a first idea whether a
process is relevant or can be neglected. In systems where particles are accelerated, the acceleration time

8
.�=>=

can be defined similarly to Eq. (1.1.3), and the comparison of

8
.�=>= and

8
,/.�0 generally gives a first idea about the

limiting energy of an acceleration process.
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1.1.1.2 Interaction of charged particles with electromagnetic fields

Relativistic dipole radiation : In classical electrodynamics, any accelerated charge emits radiation, mainly elec-
tric dipole radiation. In an electromagnetic field,

��� ��� � , the total power emitted by dipole radiation of a particle
with charge � and mass � , moving with a relativistic velocity � %'& ���  � is given by

+9,/.�0 � ��� � $ 	%'&	 � 	 ��

� �� � � %'&�� � � 	 � � � %'&�� � � 	����

(1.1.4a)

If we split the
�

and � vectors in components parallel and perpendicular to � %'& , and introduce the partial energy
densities ��� � � 	   �� and ��� � ��� 	 � � � 	 � �   �� , we can rewrite this equation as

+9,/.�0 � ��� � � �	 � 	 � 

� ��� � $ 	%'&���� 	 ��� � � � � � � � %'&�� � � �� � � (1.1.4b)

which shows more clearly the influence of the particles motion: The electrostatic acceleration or deceleration
power +"! 	 . 	 � ��# � � ��$ causes a radiation loss +1,/.�0 independent of � %'& , which is however, unimportant compared
to the +"! 	 . 	 for all realistic field strengths and particle velocities. For highly relativistic particles ( $ %'&�( �

),
the second component dominates the radiation loss with + ,/.�0&% $ 	%'& ; for arbitrary field configurations, there
is no simple connection of +1,/.�0 to the energy density of the perpendicular field component �'� because of the
orientation term

� � � � � %'&(� � � � ; for � %'&(� � � � � � � and
�*) � �

we even have +9,/.�0 � �
, i.e. the particle

moves without energy loss. This configuration corresponds to the situation where an ultrarelativistic particle
( � � �

) moves with an electromagnetic wave in the same direction.

Thomson scattering : Another manifestation of dipole radiation is the scattering of a classical electromagnetic
wave a charged particle. The particle, oscillating with the frequency + < of the wave, emits in its rest system
dipole radiation into a solid angle element ,.- � �0/�13254 , 4 ,.6-� with

, +"!,.- � � � 	<
 �� , 287,.- � � � � 	<

 �� � 	 ��
 /�132 	94 � (1.1.5)

where
� < is the amplitude of the wave. Integrating over solid angle yields

287 �  ��	 � �
� 	 � � � (1.1.5a)

which is called the Thomson cross section of the particle; for an electron 2:7�;�< � � ����=
barn and for a proton287�>'< � � ��?�@�A"B8C�D 2

.
�

For a nucleus of charge EF� and mass � �HG�I� we obviously have

287 � G � E�� �JI287 E �G 	 � (1.1.5b)

where I287 � � � � A"B8C�D 2 is the Thomson cross section per proton in the nucleus; it differs slightly from 2:7�>
due to the mass defect of bound nucleons. Obviously, 2K7 is independent of the frequency + < of the incoming
wave. Since the charge oscillates in resonance with the wave, the frequency of the scattered wave is + � + < ;
this is called Thomson scattering. Changing to the quantized picture of photon scattering, Thomson scattering
�
In the literature the Thomson cross section is generally defined for an electron, LNMPOQL�MSR . However, since we will mostly discuss

protons and nuclei, it is helpful to overcome this constraint and define LNM without reference to a specific particle; for electrons and
protons we will therefore write LTMSR and L�M�U , respectively.
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obviously corresponds to the case of elastic scattering at a rigid scattering center, which means that the energy
transfer from the photon to the particle can be neglected. Thus we have ��� � � � , but we note that there is still
a non vanishing momentum transfer due to the directional change of the photon. The condition of the rigid
scattering center can be written as

� �< " ��� 	 (1.1.6)

and is called the Thomson limit. For � �< �� ��� 	 , elastic photon-charge scattering cannot be treated as simple
Thomson scattering and is generally called Compton scattering; for composite particles like protons and nuclei,
however, the appearance of incoherent processes in this energy regime is more important than the corrections to
the elastic scattering.

In the astrophysical scenario, we will mostly consider charged particles which move with relativistic ve-
locities, � < �

, and interact with photons of much lower energy � � " � $*%'& � 	 . Now, the component of the
momentum transfer parallel to the direction of motion of the nucleus, � ) � � � �  �7� � � ����� /94 � , transforms into an
energy loss in the LF. For the relation between LF and NRF energies of incoming and scattered photons we find

� ��
� � � ���

� �� � $*%'& C 2	� � �� � � �� � (1.1.7)

In the Thomson limit, � �� � � �� , one can easily find the expression for the radiated power of the particle, which
means here the amount of particle energy per unit time converted into photon energy, as

+9,/.�0 � �7287�$ 	%'& 
 ��� ,.-� ,8���,.-�� � � 	 � � � ��� / 	 4 � � � � ��� /94.� � (1.1.8)

where ,8���  ,.- is the differential photon energy density per unit solid angle in the LF. We will discuss the
astrophysical consequences of Eq. (1.1.8) in Sect. 1.1.2.1.

The virtual photon concept : A close view on Eqs. (1.1.4b) and (1.1.8) reveals some interesting similarities
between the interaction of a relativistic charge with a static electromagnetic field and a photon background. We
consider a monochromatic photon beam, i.e. all photons have the same energy � < and direction

4 < relative to the
charged particle velocity in the LF, and evaluate Eq. (1.1.8) for the cases

4 < � ��� � ?���� and
�  ��� . Furthermore,

we assume $*%'& ( �
, so that the ��� term can be neglected in Eq. (1.1.4b). We immediately find the following

correspondence with respect to the emerged radiation power between the orientation of a classical
��� ��� � field

and an oriented photon beam4 < � � � ��� � � � � � � � � � C 2	��� � � ����� � � � (1.1.9a)4 < � ?�� � ��� � � � � � � � D � � � � � �
(1.1.9b)4 < � �  � � ��� � � � � � � � � � C 2	��� � ����� � � � � (1.1.9c)

if we identify � � with ��� . Clearly, this correspondence does not really surprise us, because the special
��� ��� �

configurations we have chosen correspond to a classical electromagnetic wave scattering moving in the direction4 < . However, also for any other field configuration it will be possible to find a photon distribution ,8���  � ,.-&, ���
corresponding to it in the relativistic limit. We also note that, if

� ) � �
, Eq. (1.1.4b) would exactly correspond to

Eq. (1.1.8) if we would have defined +1,/.�0 as the total radiated energy per time including the energy taken from
the incoming photons (and not just as the energy of the moving charge converted into radiation).

We can therefore split Eq. (1.1.4b) into a nonrelativistic contribution of a static
�

-field and a term expressing
the scattering of a photon beam with energy density �'� , which dominates in the ultrarelativistic limit. The
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picture behind it is the QED interpretation of electromagnetic interactions by the exchange of virtual photons.
The analogy shown here expresses the fact that for the interaction of a relativistic particle with an electromagnetic
field, those exchange quanta behave exactly like real photons, which are scattered at the charged particle; note
that for a pure � -field this is true for all particle velocities, because � � vanishes in Eq. (1.1.4b). We therefore can
conclude that the Thomson limit and the threshold energies for incoherent reactions apply in the classical case
as well. To give an order of magnitude estimate of the virtual photon energy, we may use the inverse Compton
scaling relation Eq. (1.1.7): If a certain electromagnetic radiation process leads to the emission of photons of a
characteristic frequency +�� , we can estimate the energy of the scattered virtual photon to be ��� � , 	 ���� +��  $*%'& .
So, the Thomson limit for this process reads

�� +�� " � $*%'& � 	 — which also expresses the physical limit for the
energy of the scattered photon, visualizing that in the LF this is taken almost entirely from the moving charge.
For relativistic nuclei, we have already argued that incoherent processes can set in at even lower energies

� 	
	 ,
so photodisintegration or pion production in electromagnetic field is possible if ��� � , 	 �� � 	
	 .
1.1.1.3 Large scale magnetic scattering

Radiation-free scattering by magnetic clouds : We consider a region of an enhanced magnetic field with limited
size, called a magnetic cloud, which we may think of as being surrounded by a field-free environment. A charge
moving into this cloud will remain there for a certain time, � , and then be emitted in a different direction; the
charge is scattered at the cloud. A kind of opposite case to Thomson scattering of photons on charged particles
is given if the scattering of the charge at the cloud happens radiation-free, i.e. the scattering happens on time
scale much shorter than the energy loss by radiation. This can be written as � "

8
,/.�0 , or

+9,/.�0� " � $*%'& � 	 �
(1.1.10)

The scattering time � depends, of course, on the details of the geometry of the magnetic field in the cloud and
the initial conditions of the scattering system. However, we may ask for the minimum scattering time

8 !/=>. 	 for
a given � -field, in order to find a limit for the particle Lorentz factor still allowing radiation-free scattering,
finding 8 !/=>. 	 � �����

�
� � � $*%'& � ������� (1.1.11)

for the case of a particle moving through the cloud in a gyration half-circle of radius ��� before being emitted
in the opposite direction, where ����� � � is the effective magnetic field strength used for scattering, i.e. the
average strength of the component perpendicular to the particle motion. Inserting Eqs. (1.1.4) and � � 8 !/=>. 	 in
Eq. (1.1.10), we get

$*%'& "
� � ���287�� (1.1.12)

assuming that this limit occurs in the ultrarelativistic regime ( � � �
). For a nucleus of charge EF� and mass G�I�

this leads to

$*%'& "�� � � @ � ��� � ��� G
E5
 � 	"! �# # $ #%$

�
� �

(1.1.12a)

It is important to note that the maximum Lorentz factor allowing radiation free scattering depends inversely
on the magnetic field; elastic magnetic scattering for very high energies works best in weak magnetic fields,
requiring very large structures because of the increasing gyration radius. This has a strong impact on particle
acceleration models, as we will see in the next paragraph.
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The Fermi mechanism : We now consider radiation-free scattering from magnetic clouds in motion. This
means, that in the rest frame of the cloud the particle energy remains unchanged in the scattering event. We
call � =�� the relativistic velocity of the cloud and $*=�� its Lorentz factor, and assume $ =�� � �

, i.e. the motion of
the cloud is not highly relativistic. From simple kinematical considerations (see [Gai90]) we obtain the relative
energy change of the particle in a scattering event as� �� � $ 	=�� � 	=�� � � � ��� / 4 � ��� / 4 �	 � ��� / 4 �	 � ��� / 4 �� =�� � � (1.1.13)

where
4 � is the angle between the velocity vectors of the incoming particle and the cloud in the LF and

4 �	 the
angle between cloud and outgoing particle velocity in the rest frame of the cloud. The distribution of ��� / 4 �
and ��� / 4 �	 are dependent on the details of the physical system; however, there are two special configurations
commonly assumed:

a) A system of clouds moving all with the same velocity � =�� , but randomly in all directions with equal
probability. The internal magnetic configuration of the clouds is assumed to give a uniform distribution of
emission angles

4 �	 , which, of course, requires

�#=����-=�� ( ��� 	� $*%'& � (1.1.14)

i.e. we assume that the particle gyration radius is considerably smaller than the size of the cloud. We then have
the probability of hitting a cloud with angle

4 � of
�
	 � � � � =�� ��� / 4 � � , leading to

3 ��� /94 � 6 � � �	 � =�� (1.1.15a)� ��� /94 �		� � �
(1.1.15b)

and thus 
 � ���� � " 	 $ 	=�� � 	=�� �
(1.1.15c)

Therefore, the particle receives a net acceleration over time, which is in the nonrelativistic limit proportional to
the square of the cloud velocity. This acceleration mechanism was originally proposed by Fermi [Fer49] and is
called second order Fermi or stochastic acceleration.

b) A system of magnetic clouds moving all in the same direction with the same velocity, � =�� , which falls
instantaneously to zero at a parallel shock front, i.e. a plane discontinuitywith its normal pointing in the direction
of the cloud velocity. This is a basic representation of a shocked plasma flow with a tangled turbulent magnetic
field frozen in it, seen from the downstream rest frame. We consider as a scattering event one back-and-forth
crossing of the shock front, and the one-dimensional geometry of the system implies

3 ��� / 4 � 6 � � �	 (1.1.16a)� ��� /94 �		� � � 	 �
(1.1.16b)

Note that we do not assume that a single cloud is able to scatter the particle by an arbitrary angle, therefore,
Eq. (1.1.14) does not necessarily apply. The average net energy gain per scattering event is here
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 � ���� � $ 	=�� � =�� ! " 	 � ��	? � =�� # �
(1.1.16c)

We note that Eq. (1.1.16c) depends on � =�� to the first power, while the dependence in Eq. (1.1.15c) is only to
the second power; for � =�� " �

, first order Fermi acceleration is much more efficient than second order Fermi
acceleration.

Diffusive shock acceleration : Basing on the principle of first order Fermi acceleration, a theory of particle
acceleration at strong shock fronts in astrophysical plasmas has been developed, which is meanwhile one of
the most important theories for cosmic ray acceleration; it is called diffusive shock acceleration. We will not
present this theory here in detail, but just quote the most important results because of their relevance to cosmic
ray physics (for an introductory review of diffusive shock acceleration theory see [Dru83]).

A shock front in a linear plasma flow can be described approximately by an instantaneous jump in the flow
velocity of � 0 � ��� , where ��� and � 0 are called the upstream and downstream velocity, respectively. For a gas
with a specific heat index

�$ the compression ratio � � ���  � 0 at the shock is given by

� = � �$ � ��$ � � � � � $ 	� � (1.1.17)

where � � is the Mach number of the shock, thus � � "
(with � = % "

) for
�$ ���
 (i.e. a nonrelativistic,

monoatomic ideal gas) in the limit of strong shocks ( � � ���
). In this plasma, a tenuous component of

energetic particles shall be embedded, which can diffuse across the shock front in any direction, where the
upstream and downstream diffusion coefficients are denoted as 	
� and 	*0 , respectively. The time scale for
energy gain of an energetic particle crossing back-and-forth the shock due to first order Fermi acceleration can
then be found as 8

.�=>= � 	 � =� = � � �� 	� � 	�� � � =�	*0� �
(1.1.18)

The diffusion coefficients are generally functions of the particle energy; in the most simple case, we may as-
sume a magnetic field which is completely turbulent on all scales, which implies that 	 0 � 	�� � 	
 , where	
 � ��� � �  	 is the Bohm diffusion coefficient, which gives

8
.�=>=F% �

. A more realistic assumption in plasma
physics, however, is that the magnetic field is governed by an ordered component, and that the particle diffusion
proceeds over scattering at plasma waves, changing the pitch angle of the particle gyrating over the main field.
Here, the geometry of the system in terms of the orientation of the shock normal to the main field direction is
important, and the diffusion coefficients in Eq. (1.1.18) have to be replaced by their parallel components; a the-
ory of diffusion in oriented fields with arbitrary orientation angle, which considers the possibility of the particle
to be accelerated just by gyrating back-and-forth the shock in highly oblique geometries, has been developed by
JOKIPII [Jok87]: he finds 8

.�=>= � � =� = � �
��� ��� � �� 	� ��� 4�� � = � ��� � (1.1.18a)

with ��� 4�� � = � ��� � � � ��� / 	 4 � � /�132 	 4 �� � � 	��� � � = ��� / 	 4 � � � 
= /�132 	 4 �  � � � � 	� �� ��� / 	 4 � � � 	= /�132 	 4 ��� 
 � 	 �
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Figure 1.1: Acceleration timescales for Jokipii diffusion, Eq. (1.1.18a), for ��� �������	�����	��� , as a function of
shock obliquity angle 
�� , calculated for protons with energy 	� ����������� , and shock parameters �� ��� and� � ���	������������� �	!#" (taken from [KRB96]).

where 	*0 � 	 ) ��� / 	 4 � � 	9� /�132 	 4 � , 	 ) � �
 ��� ��� � � � � � � � 	� ��	9� , and
4 � is the upstream angle between shock

normal and main magnetic field direction. The factor ��� may depend on energy; a famous case is � � % � $ 	 ��
 ,corresponding to a Kolmogorov spectrum of plasma waves (see [BS87] for an astrophysical application). The
dependence of

8
.�=>= on ��� and

4 � is shown in Fig. 1.1; we see that acceleration at parallel shocks is generally
slower for ��� � �

than in the Bohm diffusion case, but it can be much faster in highly oblique shocks. The
limiting case, � � ( �

and
4 � � ?�� �

can be considered as acceleration by ideal mirrors, i.e. the particle is
reflected just by doing half a gyration circle on each side on the shock. In this case, Eq. (1.1.12a) immediately
applies to determine the energy limit of the particle due to synchrotron losses; this limit is generally much
lower for Bohm or parallel pitch-angle diffusion. In most astrophysical applications, however, other processes
determine the energy limit of shock acceleration; most important are limitations due to the size $ of the system
( ��� %%$ ), the time scale of evolution � of the system (

8
.�=>= % � ), or interaction losses with ambient photon

fields (

8
.�=>=%

8
,/.�0 ).

The most important feature of diffusive shock acceleration is the prediction of a unique particle spectrum,
which is determined by the shock properties. For a planar shock front, one obtains a power law in momentum,& �(' ��% ' $ ) , with

* � 	 � =� = � � � (1.1.19)

which gives *,+ "
for � =�- "

, and * � "
for the limiting case of a strong, nonrelativistic shock wave.
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For ultrarelativistic particles and an isotropic momentum distribution this is equivalent to an energy spectrum� �5� � � � $ 	 . This result is independent of shock obliquity, but may be modified if relativistic effects or
influences of second order Fermi acceleration (due to the moving plasma waves) are considered [Krü92]. For
nonplanar shocks, in particular spherical shocks, other spectral indices are obtained [Dru83, Bie93]. We will,
however, not go deeper here.

1.1.2 Coherent electromagnetic processes

1.1.2.1 Inverse Compton scattering

Differential cross section : Compton scattering is the general term for the scattering of real photons on charged
particles. In the particles rest frame, the energy of a photon coming in with energy � �� after scattering is

� �� � � ��  � � � ��
��� 	

� � � ��� / 4 � � $
� �

(1.1.20)

The differential cross section found from evaluating the Born contribution terms of the process, corresponding
to the classical plane-wave approximation, is

, 2�%,.- � 	 287��� �
�
� ��
� ���� 	 �

� ��
� ��
� � ��
� �� � /�132 	 4 � � (1.1.21)

known as the Klein-Nishina formula. In the nonrelativistic limit Compton scattering reduces to Thomson scat-
tering, while in the extreme relativistic limit � �� ( ��� 	 the total cross section is reduced with energy by

2�% � 	 287 ��� 	
 � �� !�� 2 ��� ��

��� 	
� �

� # �
(1.1.22)

This decrease of the cross section is, however, only relevant if there are no incoherent processes due to the
photon or particle structure on energy scales below the rest mass of the particle. The process with lowest
threshold energy is pair production in the Coulomb field of the charge, which sets in at � �� � ������� 	 , thus much
below the Thomson limit for nuclei. We note that both photodisintegration and pion production are also below
this limit. Therefore, for the inverse Compton interaction of cosmic ray nuclei with photon backgrounds we can
assume to be in the Thomson limit for all relevant cases.

Inverse Compton loss time scale : According to Eq. (1.1.8), a relativistic nucleus of mass G�I� , charge EF� and
Lorentz factor $ %'& , moving through an isotropic photon background satisfying $�%'&�3 � 6 " ��� 	 , loses energy
due to inverse Compton scattering on a time scale8��

% � 	 I���" I287 ��� G 
E � $*%'&$ 	%'& � � � � � � ��� � ��� 	��9/ � � � G 
E � ! $*%'&8���# ��� � � $ 
 $ #%$ � � (1.1.23)

This equation is mostly used for estimating inverse Compton losses in any photon background, but it has to be
noted that

8��
% can be much larger if the photons are anisotropically distributed and irradiate the particles mainly

from the back.
In the isotropic case, the photon background energy density must be of order

� ��� � � $ 
 or more, to make8��
% shorter than the Hubble time scale even for the highest known particle energies. The dependence on nuclear

mass is weak, since G 
  E � � � � � � � for all nuclei. For typical astrophysical photon background densities, the
energy loss by inverse Compton scattering can therefore be neglected; in dense photon regions around compact
objects, it is mostly dominated by incoherent reactions.
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1.1.2.2 Synchrotron Radiation

Radiation time scale : Radiation emitted by a relativistic particle moving through a pure magnetic field is
called synchrotron radiation. In an oriented field, the radiation power is given by Eq. (1.1.4) by setting

� � �
and ��� � ��� /�132�� , where

�
is the angle between particle velocity and filed direction, called the pitch angle

of the particle. Averaging over pitch angle, as for instance appropriate in a turbulent magnetic field, gives an
energy loss time scale exactly as given by Eq. (1.1.23), just by replacing � � by ��� , which may be expressed by
the relation ��� 8 !�� � = � ��� 8�� % �

(1.1.24)

This relation is useful because whenever ������ �
we also have ���	�� �

, because of the synchrotron radiation.
Radiation produced by inverse Compton scattering of particles at synchrotron photons produced by themselves
(i.e. particles from the same population) is called Synchrotron-Self-Inverse-Compton (SSIC) radiation; it is very
important for electrons, but less for cosmic ray nuclei. For the latter, a rather indirect synchrotron-self scattering
variation, i.e. the scattering of synchrotron photons radiated by relativistic electrons moving along with the
nuclei through the � field, may play a role. However, not inverse Compton but incoherent photon scattering
interactions will dominate here.

Energy limits on the classical approach : The strong similarity between synchrotron radiation and inverse
Compton scattering has already been mentioned in the discussion of the virtual photon concept. To apply this
concept here, we need the characteristic frequency of the emitted synchrotron radiation. From the classical
theory we have

+�� � 	 �� $ 	%'& /�132
�
����� � (1.1.25)

which marks the center of gravity of the frequency distribution by order of magnitude. Averaging over pitch
angle and dividing by $ %'& following Eq. (1.1.7), we find the typical energy of virtual photons as

��� � , 	 � �� $*%'&8��
���

� � � � 	�= � ��� $ � 	 ��� � E#$*%'&G �# # $ �
(1.1.26)

Since E  G is of order one, we notice that the factor $�%'& � expresses basically the energy range of the virtual
scattering, and therefore also the classical limit of synchrotron radiation. Thus we find $ %'& � �� � G  E�� ��� ��� #
for the threshold of pair production, for $ %'& � one order larger photodisintegration of nuclei is possible and for$*%'& � �� 	 � ��� � � # pionic synchrotron radiation will dominate. Above the Thomson limit for nuclei,

$*%'& � �� � ��� 	 < # � G 	E � (1.1.27)

the whole approach breaks down and has to be replaced by an exact quantum mechanical treatment [LAQ89]. It
is important to point out that, if Eq. (1.1.27) applies, processes starting at lower threshold energies cannot work
either; rather, the particle will damp all its motion perpendicular to the magnetic field on quantum mechani-
cal time scales and move along the field lines. The only surviving radiation process in this case is curvature
radiation, which will not be treated here. Eq. (1.1.27) may apply for UHE cosmic rays in neutron star magneto-
spheres, and maybe to Gamma Ray Bursters (GRBs); for most astrophysical applications synchrotron radiation
of nuclei can be treated classically, and may be even neglected for large scale background magnetic fields of low
energy density.
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1.1.2.3 Inverse pair production

Bethe-Heitler scattering : In the framework of QED electromagnetic interactions are completely reduced to
the interactions of photons and charges. Interactions between charges are represented by the exchange of virtual
photons. On the other hand, photons can interact with each other by the exchange of virtual charges, which
allows processes like photon-photon scattering. Clearly, charged particles in QED, i.e. electrons and positrons,
can only be produced in pairs because of charge conservation; the most elementary interaction process between
photons is therefore the process $ $ � ��� ��� , as shown in the Feynman diagram Fig. 1.2. This process gives
important limitations to the mean free path of UHE gamma rays in the universe; it gains importance for the
transport of nuclei if the second scattering photon is thought as a virtual photon from the Coulomb field around
a nucleus. In this case, the process is called Bethe-Heitler scattering of a photon at a nucleus,

� $ � � � � � � .
� � ��� �

�

� � �		 


��

�

�

� !

��

����� �� � � �� � � �
��

� ��
� ������� ��� ������

�

��
� !

�

Figure 1.2: Diagrams for pair production in interactions of real photons, and of a photon in a nuclear Coulomb
field (Bethe-Heitler process).

To first order, the Bethe-Heitler process may be considered as elastic scattering, which may be written as

$ � � $ � �� � (1.1.28)

with � � � � �! ����� 	 is the photon energy in units of electron masses, and $ �! the Lorentz factor of the electron
and the positron, respectively, all given in the NRF. With this condition, the momentum transfer in the NRF is
given by � " � 	 �� � " ) � 	 � � " � � 	

�� � 	� � 	
� � � ) � � � ) � � 	 � � 	� � � � 	� � � ��� !� ��� /$#*� � (1.1.29)

where we introduced the notations � )&% �� $ % � � � � % ��� / 4 % � , � � % � $ % � % /�132 4 % , and ' !)( ' � ' � for any
pair-related quantity ' ; 4 � % and

# � are the scattering angle of the electron and the positron to the direction of
the photon, and their relative azimuth angle, respectively. Introducing � 	 � � " � 	  � 	� � 	 , the cross section for
unpolarized photons can be written as

, 2
+*,�$F,�4 ! , # �� � 	 E 	+, �
287�;� " � � 	 � !�� 
 � � �
- � 	� �� 	) � � " $ 	� � � 	 � � � 	� �� 	) � � " $ 	� � � 	 � (1.1.30)

� � � 	� !) � � 	� � � � 	� � � � ��� !�� !) � " $ ! � � 	 � � � 	 � ��� /�#/. �
The dependence 2
+*�% � $ � indicates that Bethe-Heitler scattering is strongly forward peaked, i.e. the differen-
tial cross section is maximal for small scattering angles. The total cross section cannot be expressed in closed
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form, but approximations can be given near threshold and in the ultrarelativistic case,

2
+* �� , ��287�;	 � E 	� ��� ��� 
 � � D ��� � " �
(1.1.31a)

2
+* �� @ , ��287�;� � E 	 ! � 2 � ��� ����?
" � # � � D � ( � � (1.1.31b)

An important point for the comparison with Compton scattering is, that the mass of the nucleus does not enter
into 2
+* ; in fact, the particle properties of the nucleus play no role at all, it is just a source for virtual photons in
this process. Compared to Compton scattering at an electron, Bethe-Heitler scattering is suppressed by a factor
of the fine-structure constant

, ��< �  ��	�@ , due to the additional vertex for the virtual pair splitting in Fig. 1.2. For
protons and nuclei, however, the suppression of Thomson scattering due to the mass factor

� � �  G�I� � 	 is much
bigger, thus 2
+* (�287 � E � G � . Looking at the � -dependence of 2 +* , we see that 2
+* � E 	+, ��287�; for � ( � , but2
+* % 287�> at threshold. Therefore, Bethe-Heitler scattering is the dominant elastic photon scattering process
for high energy photons with � ��( ������� 	 , while of minor importance in its threshold region.

Inverse Bethe-Heitler scattering : For the moving nucleus, Bethe-Heitler scattering looks very much like
Thomson scattering; the process is coherent with respect to the nucleus, and elastic with respect to the pho-
ton energy in the NRF. The effective energy loss per interaction in the LF is of order � �  ��� 	 , as for inverse
Compton scattering in the Thomson limit; differences occur only in the magnitude of the cross section and the
dependence on photon energy and scattering angels. Considering that the energy change of the nucleus in the
LF transforms in the NRF to the momentum transfer component parallel to the nucleus velocity, it is easy to see
that the loss time scale in the NRF may be written as8 +* �� � G I���

���

� 
��
	 , ��� � � � 
�� $ �� ,�$ � , 2
+*,�$ �

� � ) �	��
� %�� ��� � $ � � (1.1.32)

using the assumption that all photons hit the nucleus head-on in the NRF, which is justified by the Lorentz
beaming for ultrarelativistic nuclei with $�%'& ( �

. The loss time scale in the LF is then given by

8 +* �$*%'&
8
�+* . � � � � � is the photon number distribution with energy as seen in the NRF, and 3 � ) � 6 
� % � ��� is the parallel

momentum transfer averaged over angles. The impact of Bethe-Heitler scattering on the transport of UHE
cosmic rays has been pointed out first by Blumenthal, who expressed Eq. (1.1.32) in terms of the LF photon
distribution � � ��� and gave an analytic expression for 3�� ) � 6 
� %�� ��� [Blu70].

	
We will give a brief discussion of

the integral Eq. (1.1.32) within a more general context in Sect. 1.1.3.3.
We realize immediately that Eq. (1.1.32) does not lead to a simple connection of loss time scale and photon

energy density. Rather, the inner integral in Eq. (1.1.32) determines which region of photon energy � contributes
most to the process, leading to the definition of the efficiency function� +* � � � �� ���G I�


�� $ �� ,�$ � , 2
+*,�$ �
� � ) �	��
� %�� ��� �

(1.1.33)

At threshold, the efficiency is obviously given by � +* � ��� � � �����  G�I� ��2
+* � ��� . Comparing the efficiency
function, � +* � � � , with the total cross section scaled with the threshold efficiency,

� ��� �  G�I� ��2
+* � � � , we see
that the cross section grows steadily for � � � �

, while the efficiency has a broad maximum around � � � � �
�

The relation to Blumenthals function ������������� is given by �! �#" ; L�MSR$�&%&'!()�+*�,.- ��/�0 1!2�3 4#5 .
�

The formula for the total cross section is taken from [JLS50] (after correcting some typos), the formula given in [JR76] seems to
contain a mistake.
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Figure 1.3: Cross section (dashed line) and efficiency function (solid line) for the Bethe-Heitler process. The
cross section is scaled with the threshold efficiency, which is

��� 	���� � �	 ��� �	� !	� � !#" for nuclei. 


(Fig. 1.3). Thus, both the threshold region and the extremely high energy region contribute little to the energy
loss in inverse Bethe-Heitler scattering. Transforming to LF photon energies, we see that photons with � �� ���  $*%'&�� MeV contribute most to the Bethe-Heitler process.

Dependence on nuclear charge : A general assumption which has been presupposed in all the discussion so
far is that electrons and positrons can be treated as quantum-mechanical plane waves and do not interact with
the nuclear Coulomb field after production. In the framework of perturbation theory, this corresponds to the
consideration of only the first term of the Born series, represented by the Feynman diagrams shown in Fig. 1.2.
This is known as the Born approximation, which is, of course, not strictly correct since the � ! pair carries
charge and therefore must interact with the Coulomb field in which it was produced. The higher order terms
correspond to diagrams containing additional vertices due to the exchange of virtual photons between the pair
and the nucleus. Numerically, these terms enter to an order of

� E , �  � ! ��� , when � is the number of interactions
with the field. Thus, since

, � " �
, the Born approximation can be considered as good for E � �

and � ! � �
.

Near threshold ( � ! " �
) or for very heavy nuclei ( E ( �

), however, we can expect that the Bethe-Heitler
formula Eq. (1.1.30) will no longer give an appropriate description of the cross section, and that the symmetry
between electron and positron breaks down.

An exact treatment of pair production in a Coulomb field is very difficult; however, for the nonrelativistic
limit, and for large E in the extreme relativistic limit, approximate solutions have been found. The nonrelativistic
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adaptation is performed by multiplying the Bethe-Heitler cross section Eq. (1.1.30) with the Sommerfeld factor

&�� ��� � � % � � � � � �# ����� � � � � � � $ # � � ����� � � � � � $	� 1�
� � % � � � E , �� % �
(1.1.34)

From our discussion of the efficiency function we know that the threshold region contributes little to the Bethe-
Heitler loss time scale of nuclei. Therefore, we can neglect the factor

&�� ��� in the integral Eq. (1.1.32). �
A theory of pair production in the Coulomb field in the extreme relativistic limit has been developed by

BETHE & MAXIMON [BM53, DBM53]. In this limit, the scattering angles 4 � % can be assumed to be small, and
the differential Bethe-Heitler cross section simplifies to

, 2
+*,�$ � �� 	 E 	 , �
287�;
� � � 
 ! $ 	� � $ 	� � � 	 $ ! # � � 2 � $ !� � �

� � �
(1.1.35a)

The result of the calculation performed in [DBM53] in the extreme relativistic limit reads

, 2
+*,�$ � �� 	 E 	 , 	� 287�;
� � � 
 ! $ 	� � $ 	� � � 	 $ ! # � � 2 � $ !� � �

�
� &  � � E , �
� � (1.1.35b)

with

&  � � ��� ( ��
��� �

� � � � ��� � � � � � ��� 	 � � (1.1.35c)

where � � ��� is the Riemann Zeta-function. For the total cross section this leads to an asymptotically energy
independent reduction of the cross section

2 %+* � � � � 2
+* � � � � @ , ��287�;� � E 	 &  � � E , ��� � � D � ( � � (1.1.36)

Comparison with data for lead confirm this theoretical result in the ultrarelativistic limit; however, for the tran-
srelativistic regime, which is most important for

8 +* due to its large efficiency, the data suggest that there is a
constant relative correction of the cross section,

2 %+* � � � � 6-% � E , ����2
+* � � � � � D � �� � � (1.1.37)

rather than an absolute correction as suggested by Eq. (1.1.36). Since the Coulomb correction has no influence
on the energy distribution of the pair, as suggested by Eq. (1.1.35b) (see also discussion in [DBM53]), we can
assume that the same correction factor applies to

8 +* after performing the integral Eq. (1.1.32), i.e.8 %+* � 8 +*6-% � E , ��� �
From comparison of Eq. (1.1.37) and Eq. (1.1.36) we define

6-% � ��� ( � � &  � � ���� 2 � � < � �
	

�
�
BLUMENTHAL [Blu70] has proposed to apply a symmetrized Sommerfeld factor to L��� in Eq. (1.1.32) to adopt it to the Coulomb

corrections at threshold and for large  . This method has to be rejected, since ������� is only valid in the nonrelativistic limit, while
the largest part of the integral in Eq. (1.1.32) is carried out over the extreme relativistic regime. Numerically, Blumenthals correction
is negligible for protons (therefore his published results are still correct), but leads to a reduction of the pair production rate for heavy
nuclei which is much too large compared to experiment.
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and note from [DBM53, Fig.3] that the data are well represented for � < � =����
. Setting � < ( =���� , we get the

numerical result 6-% � ��� � � � � � � ? � 	 � � � � = � � � � � � = ��� � (1.1.38)

and defining I8 +* as the Bethe-Heitler loss scale of a proton, we can write the explicit E dependence of the loss
time scale for nuclei as 8 %+* � E � $*%'&�� � G

E 	 6-% � E , ��� I
8 +* � $*%'& � � (1.1.39)

which we will use subsequently. We stress that the factor 6% arises from a crude phenomenological approxima-
tion, and that the magnitude of correction caused by it,

� � 6% , cannot be regarded as more accurate than about	����
. Therefore, for nuclei up to Fe ( E � � � ) we may disregard this factor, or use the expansion Eq. (1.1.38)

only to order � 	 .
1.1.3 Incoherent reactions

1.1.3.1 Resonances

The classical oscillator in electrodynamics : Thomson scattering is the classical scattering of an electromag-
netic wave on a free particle, i.e. which is free to oscillate with an incoming wave of any frequency. A charged
particle which is bound to a potential well can, for small excitations, be described as a classical oscillator with a
characteristic frequency + < . An oscillating charge will, of course, radiate; the fractional energy radiated during
one oscillation cycle can be written as

� �  � � + <' + � with

+ � � 	 ��� 

��� 	 (1.1.40)

for a particle of mass � and charge � . Therefore, the oscillator loses its energy over a typical time scale8
,/.�0 � + �  + 	< ; since for an electron + � �&< � � � � ��� 	 
 Hz, and + ��� < � � ?�	 � ��� 	 � Hz (corresponding to the

photon energy � ��� � �� + ��� < ��?�	 # ��� ), we can assume that + <�" + � for all oscillators under consideration,
thus

8
,/.�0�( + $ �< . We note that the oscillator picture is in general applicable only for limited energy transfers,

corresponding to amplitudes small or comparable to the size of the oscillating system.
If the oscillator is irradiated by an electromagnetic wave of frequency + , the wave acts as an excitation force,

while ��� � + 	  + � acts as a damping parameter in the equation of motion. The relation of the scattered to the
incoming electromagnetic flux, i.e. the scattering cross section, is found as

2���� � + � � � � �	 	 + 	 � 	� � + �� + 	 � + 	< � 	 � + 	 � 	� � + � � (1.1.41a)

where �	 � �  + is the wavelength of the incident wave. The scattering amplitude has a maximum at + � + < ,
where we find 2���� � + < � � � � �	 	< , and approaches asymptotically the free particle cross section 2 7 � � � �	 	� .
Therefore we have 2 ��� � + < ��( 287 for + < " + � , showing that the cross section of the bound oscillator greatly
exceeds that of the free particle for frequencies close to + < .
Resonant reactions : The situation described above is well resembled by an atomic nucleus, in which every
nucleon can act as an oscillator, bound by the joint potential well of all nucleons. With respect to the nucleus, the
resonant scattering is incoherent, although elastic with respect to the scattered wave (photon). The importance
of incoherent processes, however, arises rather from the fact that the oscillating system has in general some
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additional decay modes other than the re-emission of the photon. If the resonant absorption of the photon leads
to the emission of a particle (e.g. a nucleon), the process is called a reaction. The reaction cross section can be
found as (see, e.g. [Jac75])

2 � � + � � � � �	 	 + 	 ��� ��� � + �� + 	 � + 	< � 	 � + 	 � 	 � (1.1.41b)

where ��� is the decay parameter for the reaction channel � , and � � � � ��� � ��� � + � the total decay parameter
of the resonant state, considering all possible decay channels; � $ � is obviously the lifetime of the resonance.
In general, the reaction decay parameters are independent of the frequency of the incident wave, leading to a
vanishing cross section for + � �

. Replacing � � by � in the numerator of Eq. (1.1.41b), we get the expression
for the total absorption cross section 2 .�� � + � of the wave; clearly we have 2 .�� � + � � � � 2 � � + � � 2���� � + � . For
inelastic reactions we generally have a threshold energy

�� +�� � 	
	 , given by the minimum energy necessary to
remove the corresponding particle from the system, which gives a low energy limit to 2 � � + � .
Resonances in quantum theory : In the view of quantum mechanics, some changes have to be applied to the
classical picture: The incident wave is now represented by an incoming photon of energy � � �� + , scattering at
a system of charges ' with total mass � . The resonance, which has a total energy � � 	

�
� in the NRF, has

itself the properties of a quantum mechanical state and is described by a set of quantum numbers (like angular
momentum, parity, etc.); it can be treated as a particle in the same sense as ' and will be called ' � , an excited
state of ' . The rest frame of ' � is the center of momentum frame of the interaction, and the characteristic
frequency transforms to a mass � ,
�!�� �� + <' � 	 ; obviously, the CMF is the appropriate frame to describe the
scattering process and to apply the classical results, with + transformed to the total energy of the system in the
CMF,

� � � � � . The decay parameter � is transformed into units of energy by multiplication with
��

; now the
relation to the lifetime

8
of the resonance reads �

8 � ��
, expressing Heisenbergs uncertainty principle for energy

and time.
A significant change to the classical formula arises from the fact that every resonance of a specific mass� ,
�! carries a specific angular momentum, � �� , and a specific parity � . Thus, only photons with the right parity

and a suitable impact parameter � �	 -
	 % � � � � � �	 , corresponding to a quantized orbital angular momentum
� �� , can contribute to the interaction. The classical counterpart to the quantum mechanical photon state

� � � ��� is
the radiation multipole momentum; here, electromagnetic waves are analyzed into electric and magnetic ��� -pole
contributions, which are denoted by

� � and � � , respectively. The
� � pole carries a parity � � � � � � � , while

the � � pole has � � � � � ��� � � . In analogy to the classical situations, one speaks about
� � and � � photons

also in quantum theory to characterize their quantum numbers � and � . The possible polarizations of the photon
correspond to the angular orientation quantum number, which can take the values �� ��� � . From the rules
for the combination of angular momenta it follows that we have to rescale the amplitude

� � �	 	 in the classical
formula with a spin-multiplicity factor, i.e.

� � �	 	 � � " � �	 	���� � �
" � < � � (1.1.41c)

for the interaction of an
� � or � � photon with a particle with spin � < . As expected, the classical formula

expresses dipole photon scattering at spinless particles.
Also the meaning of �	 in Eq. (1.1.41b) changes due to kinematical considerations; in the classical case,

a rigid scattering center is assumed, allowing to set �	 equal to the wavelength of the photon. Here, it is the
de Broglie wavelength of the scattering particles in the CMF, which is for photonuclear reactions given by
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�	 � ��
���

� �
� � � (1.1.41d)

when � is the mass of the unexcited nucleon (or nucleus).

The dipole sum rule : An important constant in resonant electromagnetic interaction is the integrated total
absorption cross section, � , for the photon. Assuming that ��( ��� , i.e. that photon scattering is unimportant
compared to the reaction channels, one obtains for

� �
absorption by a single oscillator

I��� � ( 
��
< 2*.�� � + � ,�+ � � � 	 � 	

��� � (1.1.42)

where � is the mass of the oscillating particle; we see that
I��� � is independent of + < and � . This is called the

dipole sum rule of an oscillator. In a system of particles moving in a fixed potential, ��� � is obviously the sum
over all single oscillator cross sections; if the particles are bound in a potential formed by mutual interactions,
one can show that a term corresponding to the center of mass motion has to be subtracted, yielding

��� � � � � 	
�

�� ��� � 	
�
�
� �	� 	�


�
(1.1.43)

with � � � � �
� C 2	� � � � �

�
� �

This relation is particularly important for electromagnetic interactions of nuclei, but we note that it is restricted
to electric dipole absorption (see Sect. 1.3.1.2).

1.1.3.2 The substructure of the interaction system

Direct interactions with constituent particles : Resonance scattering usually occurs only in a limiting energy
range; the photon energy � � must be of the order of the binding energy of the system

� � , such that oscillations
can be excited. For lower energy, the scattering is coherent; for higher energy, the photon interacts only with the
constituent particles of the system, which behave almost like free particles. In atomic physics, this is known as
Compton scattering with shell electrons. We will generally call it direct interactions in the following.

A parallel case to atomic physics is given when high energy photons scatter on bound protons in a nucleus,
called direct photodisintegration. If the momentum transfer � from the photon to the proton is larger than the
binding energy, ��� �� � � , the nucleon is immediately kicked out of the nucleus. In this case, the momentum
transfer to the rest nucleus is of order � �5� �  I��� 	 � " � . Therefore, in nuclear physics, the momentum transfer to
the residual nucleus is negligible; for inverse scattering, this means that there is no energy loss in the lab frame
for the residual nucleons. Of course, the total energy of the nucleus is reduced due to the mass loss,

� �  � �� �  � , but the Lorentz factor is conserved. We will discuss direct interactions in photodisintegration in greater
detail in Sect. 1.3.2.

On smaller scales, i.e.
' $ interaction, we may still speak of direct interactions with constituents; the photon

is then thought to interact with the quark-structure of the proton. However, since the quark mass �� � 	�� � � in
this case, we can not make arguments so simple as in nuclear physics. Rather, the condition for being outside
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the resonance region, � � ( � � , is now equivalent to � � ( � � � 	 , which means that the transferred energy can
be transformed into mass by production of a statistical mixture of quark-antiquark pairs, i.e. mesons (mainly
pions). Therefore, the equivalent process to direct photodisintegration on the sub-hadronic scale is statistical
multipion production, which we will discuss in Sect. 1.2.

Direct particle production : Another kind of direct processes, which occur in the energy range � � � � � � 	 ,
is the direct scattering on virtual pions around a baryon. Similarly to Bethe-Heitler pair production, which is
the scattering of a virtual photon from the nuclear Coulomb field on a virtual � � ��� pair “in” the photon, a
photon can directly interact with charged pions from the virtual pion cloud around a nucleon. In the language
of quantum field theory, this is expressed by the exchange of a pion between photon and nucleus through the
spacelike t-channel (see Sect. 1.2.1.2). This means that the absolute square of the 4-momentum exchange is� � � � � 	� � 	 , while the total energy in the timelike � -channel is not constrained. Reactions of this type are called
t-channel-interactions, for the special case of

� � � � � 	� � 	 one-pion-exchange (OPE) interactions. We may also
call it direct pion production, because a virtual pion is materialized in the scattering event.

Since the momentum transfer in direct pion production peaks around the mass of the exchange particle, one
may call this a t-channel resonance [Fey72]; to distinguish it from “real” ( � -channel) resonances, it is called a
pole. For a specific pole, the total momentum transfer remains always in the same order of magnitude, indepen-
dent of the photon momentum; thus, in the high energy limit, the exchanged momentum is small compared to
the total momentum, leading strongly forward peaked differential cross sections. A special situation is given if
the exchange particle is a photon, which has no massive poles; here, the scattering is forward peaked at all inter-
action energies. We have already discussed an interaction of this type, the Bethe-Heitler process; the hadronic
analogy to this QED process, i.e. quark pair production, is called Primakoff effect. A similar process is the
production of vector mesons, which carry the same quantum numbers of the photon. Here, one even can say that
the photon consists of a superposition of electromagnetic and hadronic constituents; this is known as the vector
meson dominance model, VDM. This model assumes a direct coupling between the photon and neutral vector
mesons � ����� � + � # � ���S� without referring to the QCD structure, assuming coupling constants,

,�� � ,
	 � ����� .
Neglecting the small contribution of the + , the $ � � � � � cross section is related to the elastic photon cross
section by , 2 �, � � " ,��, � , 2�%, � � (1.1.44)

From storage ring experiments one finds
,�� < � � �

, leading to 2 � � 	�	�� 2�% , which gives roughly the right
order of magnitude. However, we point out that Eq. (1.1.44) should not be taken too literally in connection to
Eq. (1.1.22), because there is no strong decrease of the � � photoproduction cross section observed in the limit to
high energies.

We want to point out the most important difference between direct and resonant interactions with respect to
cosmic ray transport: direct interactions have generally a very low momentum transfer, and lead therefore to a
small energy loss of the cosmic ray. Since the particle is not excited, one can call them coherent reactions on the
hadronic scale. We will see that this is not only true for interactions with protons, but even for complex nuclei,
which are mostly not disintegrated in such processes at high photon energies (see Sect. 1.3.2.2).

1.1.3.3 The phenomenological approach to high energy interactions

Phenomenological modeling : In Sect. 1.1.2.3 we have given an exercise of a method to treat transport phe-
nomena of high energy particles in astrophysical environments, which we want to generalize now. There, we
have taken the theory of Bethe-Heitler scattering, based on quantum electrodynamics, to obtain the efficiency
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function for pair production losses of protons. This treatment was exact in the first Born approximation, there-
fore a valid description of the real situation (i.e. confirmed to a high degree in experiments) in the limit of small
charges and high energies. To apply the results also to heavy nuclei, we again used a theory, which is, however,
only valid in the high energy limit which is less important for the astrophysical application. We then found, by
inspection of data, a simple heuristic modification of the theory, which allowed a simple modification of the as-
trophysically relevant quantities. The result is, of course, no longer a strict theoretical result; it is an empirically
motivated modification of a theoretical model.

There is a clear difference between this type of heuristical extensions and empirical data fits, as published in
many articles of experimental of observational physics. These fits are generally performed using mathematically
simple functions, which have no physical meaning at all. The drawback is, that these functions fit the data in
the physical regime where the data have been taken, and nowhere else. In general, they cannot be used for
extrapolation to regions which have not yet been investigated. On the other hand, a theoretical model always
contains the feature of predictability; however, in nuclear and particle physics, theoretical models have the
drawback to be often either complicated and of limited applicability, or of poor quantitative correspondence
with the data.

The approach we will follow, which is settled between quantitatively exact theoretical results and empirical
data fits, will be called the phenomenological approach to cosmic ray transport in the following. It is based
on more or less simple theoretical models, which are only required to resemble the qualitative behavior of the
data; � quantitative deviations are then corrected by applying empirical fudge factors, or by modifying the poorly
known parameters used in the derivation of the theory. We will see in Sect. 1.2 and Sect. 1.3 how this works out
in practice.

The general form of the loss function : The general form of the loss time scale of cosmic ray nuclei due to
photonuclear interaction processes,

8 � ��!0! , is quite close to that already introduced in Eqs. (1.1.32) and (1.1.33):
we can write 8

$ �� ��!0! � �

&�
������

, � �  , � � �, � � � � %'& � � � � � � (1.1.45)

where
� �� is the LF number density of photons with NRF energy less than � � , and � is the efficiency function of the

interaction process, expressing the energy loss per LF time caused by interactions with photons of NRF energy
� � ; The function

8
$ �� ��!0! is also called the loss function of cosmic rays. We note that we argue simultaneously in two

different reference systems; this is because the astrophysics is generally given in the LF, while the interaction
physics is described in the NRF. Clearly, we have to perform consistent transformations of the quantities to
develop Eq. (1.1.45) in a useful form. We will divide this task into two steps: (

�
) the astrophysical part, i.e.

determination of the function , � � �  , � � , and (
���

) the interaction physics part, i.e. determination of � � ��� � . The
general definition of the efficiency function can be written as� � ��� ( 


� ,.6 � ����� ,.6 �  , � 2 � � � �	� �,.6 � ����� ,.6 � � 
�� � �5�	� � � (1.1.46)

where � � � 6 � � ����� � 6 � � are variables determining the final state space, � , of the interaction, and

�� ��� �	� � is

the inelasticity of the interaction. The inelasticity is defined as the energy loss of the cosmic ray particle in the
LF in an interaction determined by the set of variables, ��� and � . Therefore, the task in our treatment of nuclear
and particle physics can be summarized as follows:

�
This is obviously equivalent to confine ourselves to models which are at least partially accepted by the community, because models

which do not explain the data at least qualitatively are generally rejected!
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1. Separate the total cross section into individual reaction channels � , whose final state can be described by
as few variables 6�� � � � ����� � 6�� � � as possible.

2. Find for each channel an expression for the inelasticity function

�� ��� �	� � � .

3. Determine the differential cross sections ,	� 2 �  � ,.6�� � � ����� ,.6�� � � � for all channels.

Now we can determine � � for every channel; since efficiency functions are obviously additive, we have� � � � � � � � � � � � � � �
(1.1.47)

We will now discuss the details of determining photon spectrum, differential cross section and inelasticity func-
tions.

The photon spectrum : In general we will have to deal with photon spectra which are given as functions of LF
photon energy, � , and LF interaction angle,

4
, with respect to the direction of the cosmic ray velocity. We will

introduce the notations � � ��� � , � �  , � for the energy spectrum of the photons in the LF (i.e. the number density
per unit energy interval), and the phase space density

& � � � -#� in the LF correlated to � � ��� by� � ���
� 	

� 

��� ,.- & � � � -#� �

Thus we have obviously � � ��� � " � � 	 & � ��� in the case of an isotropic photon distribution. We note that the phase
space density is Lorentz invariant, as is the differential

� � , � ,.-#� , and that the relation between � , 4 and � � is
given by

� � � $*%'& � � � � ��� /94 � � (1.1.48)

assuming that the cosmic ray nucleus is moving with a Lorentz factor $�%'& ( �
, i.e. � %'& � �

. Then we easily
find , � � �, � �

�
�
�
� � %'& � � � � �$ 	%'&


 	 � � � %'&
� � � 	 � %'& , � �& � � � � �  $*%'& � � (1.1.49)

where
�& � � � � �  $*%'&*� is the phase space density averaged over azimuth and with

4
expressed in terms of ��� and �

using relation (1.1.48). For $ %'& ( �
, the upper limit of the integral can be set to infinity, because in almost

all cases ��� � $*%'& ( ���-.�� , the maximum photon energy available in the LF. We give the analytical result of the
integral (1.1.49) for two special cases: ( * ) an isotropic blackbody spectrum with temperature � ,

� � ��� � " � � 	 & � ��� � � 	� 	 �� 
 � 
  ����� ! �� � # � � � $
� � (1.1.50a)

and ( 	 ) an anisotropic power-law spectrum

& � � � 4 � � � <" � � <
� * � � � � 	 � � �

�
� ! � <� # ) � 	 � � � ��� /94 � � � � D � � � < � (1.1.50b)

where we call *�+ � the energy index and 	 � � � the anisotropy index,
4

is defined as the LF angle of the
hitting photon with the particle velocity.

� < is total volume density of photons with � < % � % �
. Then we

obtain
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, � � �, � �
�
�
�
� � %'& � ��� �

� � 	 �� 
 ��

�

$ 	%'& � 2  � � ����� ! � � �
� $*%'& � � # � (1.1.51a)

and

, � � �, � �
�
�
�
� � %'& � � <$*%'& � <

� * � � � � 	 � � �
* � 	 � � ! � $*%'& � <� � # ) � � D � � � � $*%'& � < � (1.1.51b)

respectively; the low energy limit in Eq. (1.1.51b) is obviously irrelevant for Eq. (1.1.45) if � �	
	 � � $*%'& � < .
Eq. (1.1.51a) is well known from many papers on extragalactic UHECR transport, because it determines the
losses in the universal microwave background if we set � � � � @�	�� . Eq. (1.1.51b) may describe the situation
near particle accelerators, where the background radiation is dominated by synchrotron photons emitted from
a power-law spectrum of electrons. We note that the range � � % 	 % �

describes an anisotropic spectrum
irradiating the cosmic rays mainly from the back, while 	�� �

describes irradiation mainly from the front (see
Fig. 1.4). The mean value of ��� / 4 is connected to the power law index by

	 � � �#3 ��� / 4 6� � 3 ��� / 4 6 �
(1.1.52)

we may consider Eqs. (1.1.50b) and (1.1.51b) as an analytical sample spectrum for any given 3 ��� /94 6 if 	 is
determined following Eq. (1.1.52). We see that 	 � � � leads to , � � �  , � � � �

, because photons from the back
have zero energy in the NRF, while 	 � �

, corresponding to irradiation completely from the front, enhances, � � �  , � � by a factor
� * � � � compared to the isotropic case. However, the anisotropy of the photon background

plays only a role if also the cosmic ray distribution is anisotropic, otherwise we may average over cosmic ray
direction and set 	 � �

.

Kinematics and inelasticity : The inelasticity is a function which explicitly refers to the LF, no matter in which
Lorentz system the independent variables are given, because it expresses the non-invariant energy loss of the
particle in this frame. The energy loss may be most generally expressed in the form

� � � � � � %'&�$*%'& � ; there-
fore, the inelasticity expresses a combination of mass and Lorentz factor changes of the particles. For cosmic
ray protons, this can be reduced to a pure Lorentz factor change, if we define an “interaction” as everything what
happens between the collision with the photon, and the recovery of the proton of a, possibly multistep, baryon
decay chain. For complex nuclei, we have to consider both mass and Lorentz factor changes, but as we will see
in Sect. 1.3.4.1 the possible reactions are separable between both cases, i.e. they cause either mass or Lorentz
factor changes, but not both.

If pure mass change has to be considered, the inelasticity can generally be expressed in a discrete quantity� G  G , which is obviously independent of the reference frame. To treat Lorentz factor changes, we have to
consider the kinematics of the interaction, which is frame dependent. It is, of course, desirable for practical use
to give an expression for the function



in terms of quatities related to the interaction process without knowing

about LF. There are two ways to do that:

1. If the energy transfer to the nucleus in the NRF is small, the inelasticity is given by the parallel momentum
transfer � ) in the NRF. The variable in this case are generally the energies and scattering angles of the
final state particles in the NRF; because of the conservation of energy we have � ��� �

final state variables
for � particles produced by the photon.
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Figure 1.4: Anisotropy distribution for photon spectrum given in Eq. (1.1.50b). The radius of the curves
corresponds to the LF probability density that the cosmic ray is hit from this direction, ��� � ��
 , for anisotropy
indices � as labeled at the curves.

2. In a final state containing only two particles with masses � � and � 	 , the inelasticity with respect to � �
(identified with the cosmic ray particle) is most easily described in the CMF, where it is given as a function
of scattering angle 4 � and total interaction mass � � �
	 by


 � 	 � � � �
	 � 4 � � � � � � �� � �
	 $ �� � � � �
	 � � � � � �� ��� / 4 �  � (1.1.53a)

with

$ �� � � � � � 	 � � 	 � � � 		
��� � � (1.1.53b)

being the Lorentz factor of the particle with mass � � in the rest system of the interaction mass � , and � ��
its velocity. Note that � may be set to � � �
	 in a collision, as well as to the mass of a decaying particle.� � �
	 is given as a function of NRF photon energy by Eq. (1.1.1), and often expressed in the quantity� � � 	� �
	 . We note that we can not use the simplification � �� < �

; at production threshold, we will even
have � �� � �

. We note that this expression does not assume that the energy transfer to the nucleus (mass
� � ) in the NRF is small.

The first method is generally only useful if elaborated theories allow to determine the complicated expression
for the differential cross section with respect to the � � � �

final state variables; we have made use of this
method in determining the efficiency function for the Bethe-Heitler process, Eq. (1.1.33). The second method
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is quite general; all we need are the differential cross sections , 2  ,�4 � , which are known from experiment for
many reactions. Unfortunately, there is no useful expression in the general case for the inelasticity of reaction
channels with more than two outgoing particles; therefore, we should try to choose our reaction channels in a
way that Eq. (1.1.53) can be applied; we will discuss this in detail in Sect. 1.2.

Cross section parametrizations : When we have found a suitable classification of a photonuclear reaction into
reaction channels, we need to parametrize the differential cross section of the reaction. The first step is to
separate initial and final state variables by writing

, � 2 � � � � �	� �,.6 � � ����� � ,.6 � � 2 � � � � ����� � � � � (1.1.54)

where 2 � � � � is the total photon absorption cross section of the reaction channel � , and the function � � described
its final state probability distribution. In the case of two particle kinematics, this is a function of only one
parameter, 4 � , which generally expressed as a superposition of Legendre polynomials.

The remaining task is to parametrize the total cross section. We have seen that bound systems of particles
generally will show resonant behavior in interactions with photons; since nuclei and even baryons are composite
particles, we have to expect that resonances play a dominant role in the description of reaction cross sections.
If we know the mass � , the width � and the angular momentum quantum number � of the resonance, it is
uniquely described by the Breit-Wigner cross section curve, which is given in terms of photon NRF energy and
related CMF quantities as

2
�� � � � � � � � � �� �7� 	� ��� 	 � 	 ���
� �

��� < � �
�
� � 	

	 � 	�� � 	# � �#� � 	 � 	  ��$ � � 	 � (1.1.55)

where � and � < are the mass and spin of the unexcited nucleus. Note that the only free parameter in this formula
are the branching ratios 	 � and 	�� for radiative decay of the resonance, and the decay into the chosen reaction
channel � , respectively. These parameters are often well determined by experiment (see Sect. 1.2.2.3). However,
in many cases we will be confronted with the situation that the cross section is given by a superposition of
overlapping resonances, whose properties are not all well known; in this case, it may be sufficient to express the
cross section by the approximate Lorentz-shape description of a resonance,

2�� � � � � ( 2 < I2�� � � � �
� < � �9� � 2 < � 	� � � � � < � 	 � � 	 � (1.1.56a)

and then to determine the resonance energy
� < , width � and maximum cross section 2 < by fitting the cross

section to experimental data. We note that the total integrated cross section resulting from Eq. (1.1.56) is

��� � 2 < �
� ! � � � C�D � 
 C 2�� 	
	 # � 1�
�	� 	
	 � � < � � 	
	

�  � � (1.1.56b)

where � 	
	 is the reaction threshold; thus we may express 2 < in terms of the total integrated cross section.
Clearly, there are reactions which do not proceed over resonance excitation; in such cases, there should be,

at least, some models available which predict the asymptotic behavior of the cross section — we may then fit
the data with a curve showing the predicted asymptotic behavior, and assume that we have found at least an
approximate description of the cross section. For this purposes, we define the special functions
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� � � � � � 	
	 � � �-.�� � , � � ! � � � 	
	� �-.�� � � 	
	 #
� $ � ! �� �-.�� # $

�

� 1�
� G � ,  � �-.��� 	
	 � (1.1.57a)

and
� � � � � � 	
	 � � �-.�� � , � � �

for � %�� 	
	 , and

� � � � � � < ��� � � �

�  � � � D � ! 	
� � ���

� ��� < � ��
�
� # � �

(1.1.57b)

The functions
� � � ��� show a power law behavior both at threshold and in the asymptotic limit, where

� � � � � � 	
	 � � �-.�� � , � %� � $ � , and have a maximum at � �-.�� . � � � ��� are a kind of smooth step functions, which rise
from � � � ��� � �

to � � � ��� � �
in the region � < % � % � < � � ; note that � � � � � � � � < � � � � is a cutoff function

dropping from
�

to
�

between � < and � < � � . Of course, other simple mathematical functions may find use
if appropriate; we will only always make sure to use functions with a predictable (and reasonable) asymptotic
behavior.
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1.2 Photomeson production at free nucleons

This section presents a detailed treatment of astrophysically relevant photomeson processes, following the phenomenolog-
ical approach described in Sect. 1.1.3.3. The approach followed here is guided by the phenomenological concept of mixing
experimental data with simple theoretical ideas to obtain a most useful parametrization of the various processes. Sect. 1.2.1
discusses the relevant concepts of elementary particle physics, and in Sect. 1.2.2 we develop the parametrization to be used
in astrophysical applications.

Basic concepts of particle physics are described, e.g., in the books of PERKINS [Per82] and CHENG & O’NEILL

[CO79]. A good description of the properties of baryon resonances is given by BRANSDEN & MOORHOUSE [BM73]. An
overview about the physics of photohadronic interactions can be found in a monograph of FEYNMAN [Fey72], and in the
proceedings Hadronic Interactions of electrons and photons [CO70]; specific references are given in the text. The Review
of Particle Properties (Edition 1994) [Par94] has been used extensively.

Notation: The notation of the last section applies unchanged. The symbols � , � and � denote mandelstam variables
throughout this section. We make use of the special functions ��� ��� � and �
	 ��� � , defined in Eqs. (1.1.57). The reader should
never be confused by denoting both the � -meson and the efficiency function with the same symbol, � .

1.2.1 Basic physics of photohadronic interactions

1.2.1.1 Classification of final states

On the definition of “final state” : The determination of the efficiency function for cosmic ray transport is based
on the analysis of the interaction kinematics. This is clearly dependent on the number and type of the mesons
produced in the interaction, so any kinematical analysis has to start with a separation into different final states.
But what should we call the “final state” of an interaction?

A convenient way often used in particle physics is to distinguish the number of pions produced; pions are
the lightest mesons and undergo only weak and electromagnetic decay, thus they have a relatively long lifetime
compared to strong decaying particles. Therefore, final state is here defined as that which can be observed in a
particle detector (e.g. a bubble chamber). We would therefore start the analysis by determining the differential
cross sections of the reactions $ � � � � , $ � � � �"� , $ � � � �"�"� etc., with respect to the energy
and momentum transfer to the nucleon in the NRF. This could be conveniently performed using particle event
generator programs. Finally, we would have to parametrize both cross section and inelasticity as functions
of photon energy. However, several problems of this method must be considered: First, some reactions as � or
strange particle production do not simply fit into a classification in pion multiplicity, because these particles have
additional decay channels not involving pion production; this could, of course, easily be considered by a good
event generator. More care has to be taken about experimental selection effects due to the bad observability
of neutral particles. Final states containing more than one neutral particle can not be completely analyzed
in general; therefore, they are often missing in standard data collections, which however does not mean that
they are nonexistent. Therefore, we have to consider the way of modeling efficiency functions from mere
interpolation and extrapolation of empirical data as problematic; using event generators which consider basic
symmetry principles may solve this problem.

In our phenomenological approach, we will go a different way: first, we separate the final state space into
quasi-two-particle channels, which means that we consider the first products of the interaction, which are gen-
erally strong-decaying particles of very short lifetimes. We find that almost the entire $ � cross section below
� � � =����

MeV and still a large fraction up to � � � �
GeV is dominated by quasi-two-particle final states. The

differential cross sections of these reaction channels are generally well treated in particle data collections. As
we have seen, the inelasticity of such reactions is completely determined by the CMF scattering angle 4 � . Fur-
thermore, we can use simple symmetry concepts to discern the contribution of not or badly detectable reactions.
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The remaining part of the $ � cross section, which does not fit into the quasi-two-particle picture, can then be
approximated by a statistical model of multipion production, which dominates for � � �� �

GeV.

Quasi-two-particle channels : The most important photohadronic two-particle channel is, of course, is single
pion production. However, also two- and three-pion production proceeds largely through two particle interme-
diate states. The main contribution is by the channels

$ � � � � (1.2.1)

$ � ��� � � � 	 ��� � (1.2.2)

$ � � � � (1.2.3)

$ � � � � (1.2.4)

$ � � � + (1.2.5)$ � � ��� 
 � (1.2.6)

where we have denoted the nucleon with
�

, and ��� stands for strange baryon, i.e. the particles � and � ;
heavier baryons are disregarded because of their negligible contribution. The channels are enumerated in the
order of increasing threshold energy, and decreasing contribution to the total cross section. Reactions (1.2.2) and
(1.2.3), together with a

	�@��
contribution of the � -decay from (1.2.4) make up almost the whole $ � � � �"�

cross section. Reactions (1.2.3) and (1.2.5) contribute substantially to three-pion production.
Reactions (1.2.1) and (1.2.2) are subdivided into different charge distributions on the outgoing particles,

which are connected by isospin symmetry (see Sect. 1.2.1.3). We can distinguish the reactions

$ ' � ' � � $ � � � � � (1.2.1a)

$ ' � � � � $ � � ' � � (1.2.1b)

and

$ ' ��� ��� � � $ � ��� � � � (1.2.2a)

$ ' ��� � � � $ � ��� � � � (1.2.2b)$ ' ��� � � � $ � ��� � � � (1.2.2c)

corresponding to the isospin multiplets of
�

and
�

baryons (see below). We have explicitly distinguished
between photo-proton and photo-neutron reactions; these are in general not connected by isospin symmetry,
because the electromagnetic interaction does not conserve isospin. However, one finds experimentally that the
total cross sections of $ ' and $ � reactions are almost equal, except for some special cases which will be pointed
out.

The strange channel (1.2.6) splits up into the reactions

$ ' � � 
 � $ � �
� 
 � (1.2.6a)

$ ' � � � 
 � $ � � � � 
 � (1.2.6b)$ ' � � � 
 � $ � � � � 
 � �
(1.2.6c)

Reactions (1.2.6b) and (1.2.6c) are connected by isospin symmetry, while (1.2.6a) is not. However, the � and the
lowest mass � baryons belong to the ( ��� � �

	 � ) SU(3) octet of baryons in the quark model, which also makes
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predictions for their relative contributions to strong interactions. The total contribution of the strange channel
to the $ � cross section is almost negligible, it only could play a role if the properties of the strange particles
are important, in particular their long lifetime

8
�� ��� $ � / � � which corresponds at highest energy cosmic ray

Lorentz factors, $ �� ��� � �
, to a mean path length � �� 	

AU. Moreover, the � and � baryons have almost equal
mass; we will therefore treat Eqs. (1.2.6) as just one reaction channel in photohadronic interactions and assume
SU(3) symmetry as valid.

Statistical multi-pion production : At high energies, photomeson production will generally not fit any more
into the simple picture of quasi-two-particle final states. Rather, the number of possible reactions possible in
every energy bin increases so fast, that we can assume a kind of statistical mixture of processes, all leading to
the production of two or more pions. This kind of models are called fireball models, or more specifically in
the context of pion production, statistical multipion production; pion production is here considered as the mass
fragmentation of an energy cloud.

An important feature of high energy pion production is the leading particle effect: It expresses the experi-
mental finding that most of the longitudinal CMF momentum in the final state of a fireball reaction is carried by
particles which have the quantum numbers of the incident particles. Simply speaking, we might say that the fire-
ball is produced “at rest” in the CMF by two particles flying “through each other”, interacting only peripherally.
Recalling our earlier description of this process as direct photon scattering at the quark scale (Sect. 1.1.3.2), we
may use the quark model to determine a quantitative estimate of the total energy available for mass production
(cf. [Erw71]): Adopting the hadronic picture of a photon as a superposition of vector mesons, we would expect
that the main interaction takes place between one nucleon quark and one (virtual) photon quark, while all the
other (spectator) quarks keep their momentum. Therefore, we would naively expect that about

	� of the total
kinetic energy is converted into mass production — which is in good correspondence with experimental results.
Hence, the leading particle effect finds a natural explanation in a participant-spectator model of inter-quark
collisions (see also Sect. 1.3.2.1 for similar ideas in nuclear physics).

The fragmentation of the fireball into pions can be treated in terms of simple thermodynamics, leading to a
pion multiplicity distribution as a function of total CMF energy. The first approach in this direction was done
by FERMI [Fer51]; modifying his ideas to comply with the leading particle effect and the inter-quark collision
picture, we may write ������� %� � � � 	�
� � %� � � � � �
which is in fair agreement with the data for � %� ��� � # ��� 	 [DS72]. More detailed models of multipion fragmen-
tation of fireballs are currently under discussion, but involve complicated physics of the quark-gluon-plasma;
for our purposes we will consider it as sufficient to use the numerical approximation

������� � � � � � � � " ! �# # ��� $ #
�
�

(1.2.7)

and assume the multiplicity distribution to be Poissonian around
�������

, which is roughly consistent with the data
[Wan69].

1.2.1.2 Resonances and direct scattering

Spacelike and timelike exchange diagrams : The quasi-classical view on resonances and direct scattering
events, as presented in Sect. 1.1.3, may help to imagine the processes happening in quantum-mechanical photo-
hadronic scattering processes. The corresponding picture of relativistic quantum theory is expressed by the
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concept of spacelike and timelike trajectories, which considers the “wholeness” of quantum mechanical states:
�

Timelike means, that the exchange particle has distinct time of production and decay, and a well defined lifetime;
this corresponds to the classical picture of the formation and decay of a resonance. The mass os the resonance
appears as a Breit-Wigner peak in the total interaction energy, called the � -channel. Spacelike means that there
is no causal connection between the emission and absorption of the exchange particle, the exchange happens
simultaneously. As already assumed, the mass of the exchange particle appears as a pole (one might say: a
spacelike resonance) in the

"
-momentum transfer. One distinguishes between the

�
-channel, through which a

meson is exchanged, and the � -channel corresponding to the exchange of the baryon. The lowest order terms of
single pion production may therefore be depicted as

� -channel
�
-channel � -channel

�
��

�
� �		 


�� � �

� ���
�

�

�

�
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Figure 1.5: Lowest order photohadronic Feynman diagrams

The main difference of these reaction types with respect to the astrophysical application is the different
behavior in cross section and kinematics: Timelike ( � -channel) reactions, i.e. resonant scattering, shows a pro-
nounced peak around the resonance mass in the total cross section, but is in good approximation structureless
in the momentum transfer distribution (i.e. isotropic in the CMF). Spacelike (

�
and � -channel) interactions are

almost structureless in their � -dependence, but show a strong correlation of the final state and initial state particle
momentum directions;

�
-channel reactions correspond to small scattering angles (i.e. they are forward-peaked),

� -channel reactions are backward peaked.
�

and � -channel correspond not equally to the cross section of direct
scattering, but depend on the mass of the exchange particle approximately as 2 % � $ 	 ; � -channel exchange
( � �� � � ) may therefore be disregarded in comparison to low mass poles ( � %� � � ) in the

�
-channel.

Baryon resonances : The baryon is a composite particle. Similar to the situation in atomic and nuclear physics,
we therefore expect a shell structure of the baryon, and the existence of excited states of well defined quantum
numbers, called baryon resonances. They have first been discovered as resonances in elastic pion-nucleon scat-
tering, and are thus described by spectroscopic terms of the pion-nucleon system: a capital letter, 	 � + � � � � � ���S� ,
for the orbital angular momentum of the � � system, � � � � � � � � 	 � �S�S� , and indices for the isospin 
 and the
total angular momentum � , in the way ��� ���� � ����� ; e.g., a resonance with � � �

, 
 � 
 	 and � � 
 	 , is denoted
as + 
�
 . The parity of a baryon resonance is given by + � � � � ��� � � , and the its angular momentum can only
take values � � �

	 -
��- � � �
	 ; thus an alternative, unique notation for a resonance is 
 � � �-� . Additionally,

every resonance state ��� ���� � ����� can exist in different radial excitation modes (i.e. on different shells), thus with
different masses. However, the mass differences between resonances due to radial and rotational excitation are

�
A Capraesque statement, but nevertheless true!
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comparable. The possible excitation states of the nucleon can only have the isospin values 
 � �
	 or 
 � 
 	 ; the

former are called
�

-resonances, the latter
�

-resonances. So, another way of denoting baryon resonances is by
calling their isospin and mass in the form

��� ��� � ����� � or
� � ��� � ����� � , which may be completed by notation of

� � .
Of the parameters determining a baryon resonance, their mass � , total width � , angular momentum � , and

radiative decay width � � determine completely their contribution to the total $ � cross section. For the � � decay
channel, the spectroscopic classification of the resonance determines the angular distribution of the resonance
decay. Finally, the isospin of the resonance, and the isospin of the final state particles, determine the branching
ratios within charge multiplets.

Spacelike trajectories and photon vertices : In our naive picture of direct scattering discussed in Sect. 1.1.3.2,
virtual mesons are scattered out of the strong field around the nucleon. Clearly, to be scattered by a photon, a
particle must carry charge. In the quantum-relativistic picture, this corresponds to the restriction that the photon
vertex in diagram 2 of Fig. 1.5 is electromagnetic. The second vertex, between baryon and meson, is assumed to
be strong, therefore fulfills isospin symmetry. Since the electromagnetic scattering cannot change the properties
of the particle, the mass of the exchange particles may be assumed to be that of the charged meson in the final
state, corresponding to direct � ! � 
 ! � ����� production.

Clearly, the vertex between the photon and the meson may be not purely electromagnetic. In this case, it
must be possible to “resolve” the photomesonic vertex into a set of vertices in the quark picture, where all direct
photon vertices are electromagnetic. Primakoff production of quark-pairs in the Coulomb field of the nucleus
can be resolved in a way shown in diagram 2 of Fig. 1.6, similarly to the Bethe-Heitler diagram (Fig. 1.2).
Since it contains two electromagnetic vertices, we may assume that it is suppressed by roughly two orders of
magnitude compared to direct production of charged pions. The Primakoff effect is expected to be important
in the production of mesons which show strong electromagnetic ( $ $ ) decay channels, as the � � and � mesons.
On the other hand, the production of vector mesons, which carry the same spin-parity quantum numbers as
the photon, � �
	 � � $ $ , requires the exchange of a particle with quantum numbers � �
	 � � � � . These
are the quantum numbers of the vacuum, and the corresponding exchange trajectory is generally depicted as
the Pomeranchuk particle or pomeron. However, there are also a number of massive mesons carrying these
quantum numbers, which may therefore contribute as massive poles to vector meson production. The lightest
vector mesons are the � < and the + , corresponding to superpositions of � �� and , �, quark states; heavier vector
mesons, as the

# � � �� play no role for our considerations. The general diagram for vector meson production
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����
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Figure 1.6: Second order direct meson production diagrams in the QCD picture
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in the quark picture would therefore be a quark-pair exchange (diagram 3 of Fig. 1.6). The Pomeron exchange
term could be probably depicted as a double gluon exchange between the virtual quarks in the hadronic photon
and proton quarks [DW88].

1.2.1.3 Final state angular distributions and branching ratios

Radiative excitation of resonances : Since baryon resonances have specific quantum numbers for angular mo-
mentum and parity, ��� , we can constrain the possible contribution of photon multipoles to the excitations of the
resonance. A photon with orbital angular momentum � �� ( �
�� �

) and parity � , interacting with a nucleon with
spin

�
	 , can create resonances with total angular momenta � � �

	 - � - �
� �
	 and parity + � � � ; therefore, for

given � the possible � values are � � �
	 - � - �

� �
	 , which means that there always exist two possible � values

for the excitation of a resonance with � + 
 	 , and one for � � �
	 . The parity constraint determines for each of the

possible � one electric and/or one magnetic excitation mode. Averaging over the possible spin orientations of the
nucleon, 	  � � �	 , and polarization of the photon, �  � � � , one can obtain the distribution of � orientations, �� ,
of the resonance. For the

� � � � � decay channel, we can immediately take the orbital angular momentum of
the
� � system from the spectroscopic classification of the resonance, and calculate the distribution coefficients�

� ��� of �  from the �  by using the Clebsch-Gordan coefficients. The angular distribution of the decay in the
CMF is then given in terms of spherical harmonics by

! , 2,�4 #
�

�� ��
� � $ �

�
� �
� �
� �

� 4 � � 	 �
(1.2.8)

It is convenient to introduce the electric and magnetic multipole transition amplitudes,
�
�
! and � �

! , respec-
tively, where � � refers to the resonance states

� � � � � with � � � � �
	 . Obviously,

�
�
! amplitudes correspond

to
� � transitions with � � � � �

, � �
! amplitudes to � � transitions with � � � . On can then find that, 2,�4 � % � � � D � � � � � � $ (1.2.8a)

, 2,�4 � % = � 	 ��� / 	 4 � � � D ���
$ � � � � (1.2.8b)

, 2,�4 � % � � ��� / 	 4 � � � D �
� � � � � $ (1.2.8c)

, 2,�4 � % = � � ��� / 	 4 � � = ��� / � 4 � � � D ���
$ � �

�
� (1.2.8d)

, 2,�4 � % � � � ��� / 	 4 � � = ��� / � 4 � � � D ���
� � � � $

�
(1.2.8e)

Higher excitations involve ��� / 	 � 4 � terms with ��+ 	
. Experimentally, the radiative excitation amplitudes are

commonly expressed in terms of the helicity amplitudes G 
 � 	 and G � � 	 , which correspond to a parallel and anti-
parallel spin coupling of the photon-nucleon system, respectively. The multipole amplitudes can be calculated
from the helicity amplitudes using the formulae in Ref. [BM73, App. B]; more important here is the connection
to the total radiative decay width of the resonance, which is given by

��� � � 	<� ���	�� ��� � � � � ,
�! � � G � � 	 � 	 � � G 
 � 	 � 	  � (1.2.9)

where � < is the decay momentum of the photon in the rest frame of the resonance. ��� determines the total cross
section for the radiative excitation of a baryon resonance, following Eq. (1.1.55).
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Figure 1.7: Average CMF scattering angle for
�
-channel reactions, as derived from Eq. (1.2.10) with

� �
� � 	 � � ��� , for: � ��� � � (solid line, OPE, 	 � � 	�� ), � ��� � � (dashed line, OPE, 	 � � 	�� ), and
� ��� � � � (dotted line, diffractive, 	 � � �
	���� �� , see text).

Angular distribution of
�
-channel reactions : The Lorentz invariant quantity

�
is connected to the CMF scatter-

ing angle by � �� � � � � 	 � � ' 	� � ' 	� � � ' � ' � ��� / 4 � � � 	 (1.2.10)

with � � �
� 	

� � 	 � � � 		 � � 	�
� � � �
	 � ' ��

�
� � 	� �
	 � � 	�

� � � �
	 C 2	� ' ��
�
� � � $ �� � �� �

where � � and � 	 are the masses of the baryon and the meson in the final state, respectively, and $ �� and � ��
can be determined using Eq. (1.1.53b).

� � �
is the CMF energy transfer due to mass production, in elastic

interactions is
� � � � �

. In the limit of large ��� � 	� �
	 , this leads to

��� / 4 � � � � � �� �
(1.2.10a)

In the picture of a definite
�
-exchange particle, corresponding to a constant

� � � � 	� � 	 , we see that ��� / 4 � � �
for � � �
	 � �

, which means that
�
-channel scattering is increasingly forward peaked for high energies. In the

special case of OPE reactions, i.e. direct pion production in the $ � � � � and $ � � � � channels, we have
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Table 1.1: Branching ratios within isospin multiplets
Final state:

� � � �

 
 
 � 
 
 � � � � 
 
 � � � 
 
 � � � � 
 
 � � � 
 
 � � �� � 	
 � � � � � �
 � � � � � �

	 � � ��� � � �
 � � � � � �
�
� � � � ��

� � � 	
 � � � � � �
 � � � � � �
�
� � � � � �
 � � � � � �

	 � � � � �
� � �
 � � � � � 	
 � � � � � 	� � � ��� � � �� � � � � � � �� � � � � � �	

� � � �
 � � � � � 	
 � � � � � �� � � � � � � �� � � � � � � 	� � � � � �
assumed that � � � � � , where the distribution of � � is given by a Breit-Wigner curve. There is no definite mass
assigned to the

�
-channel in Pomeron exchange; for high energy reactions one finds

, 2, � %� � $ � � � � � 1�
� � < � � �
 
# ���
� � (1.2.11)

which leads to an average value of � � � 	�=���� ��� . Adopting this value for diffractive vector meson � � � � �
for OPE reactions, we obtain 3 ��� / 4 � 6 as a function of photon NRF energy � � as shown in Fig. 1.7.

We should point out that the assumption of constant exchange mass is quite crude, and definitely wrong for
OPE reactions in the high energy limit. Rather, one finds that every reaction shows a

�
-dependence as given by

Eq. (1.2.11) for large � � , thus we have to expect that the OPE curves in Fig. 1.7 approach the diffractive curve at
high energies. However, we will see that the effect of

�
-channel reactions on inverse

' $ scattering is negligible
far from threshold, so that we only have to assume that 3/4 �76 as shown in Fig. 1.7 is a reliable estimate close to
threshold.

Isospin symmetry : In the same way as the distribution of �� determines the angular distribution of decay
particles, the distribution of isospin orientations, 
 
 , gives the charge distribution of the particles within an
isospin multiplet. We will call these numbers iso-branching ratios. Obviously,

�
-resonances exist in a charge

doublet (
� � � � � ), as the nucleon itself, while

�
-resonances form a charge quadruplet (

� ��� � � � � � � � � � ).
Like the geometrical spin, the isospin follows rotational symmetry principles, which allows to determine decay
branching ratios by use of Clebsch-Gordan coefficients. We note that isospin symmetry is fulfilled only in
strong interactions, thus the decay of resonances, but not in their electromagnetic formation (for this reason

�

resonances can be excited in a photonuclear reaction). Of course, electromagnetic interactions conserve 
 
 , i.e.
the charge of the particle.

The iso-branching ratios following from the Clebsch-Gordan coefficients are summerized for the possible
resonance excitation states of photonuclear interactions in Tab. 1.1. Simply speaking, they give the probabilities
for a certain isospin flip,

� 
 
 , of the baryon in the interaction. In � -channel reactions, every reaction has to be
energetically allowed, i.e. the sum of masses in the final state must be below the mass of the decaying resonance.
This constraint does not apply in

�
-channel reactions; here the branching ratios do still apply, but we have to

consider electromagnetic constraints on the “decay” channels, as the deletion of the � � branch in direct pion
production. On the other hand,

�
-channel reactions obey isospin symmetry between neutron and proton, because

they contain no direct vertex between the photon and the nucleon (see diagram 2 in Fig. 1.5).
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Figure 1.8: Angular distribution of resonance decay, following Eqs. (1.2.8)

1.2.1.4 Kinematics

Resonance decay : The angular distribution of the decay of resonances has been found to be a function of the
angular momentum � , radiative excitation mode and the orbital momentum � of the final state particles. From
Eq. (1.2.8) we immediately see that the final state probability distribution function can be written as a polynomial
in ��� / 4 � ,

�-,
�! � 4 � � � ��
� � <

�� � # ��� / 4 � $ 	 � � (1.2.12)

where the coefficients
�� � are calculated from the

�
� ��� . As we already have mentioned, resonances are clas-

sified by the partial waves of � � scattering, thus for � � decay � can immediately taken from the resonance
spectroscopic notation. For other decay channels, other dominant partial waves can be expected, and a “clean”
resonance in

� � scattering may appear as a superposition of partial waves in this case. Assuming
� � decay,

which is the dominant decay channel of most light resonances, �,
�! � 4 � � can be taken from Eqs. (1.2.8), if the
excitation mode is known. Fig. 1.8 shows that there is an increasing tendency to prefer decay into forward and
backward directions of the reaction axis with increasing � .

The average inelasticity of an � -channel reaction, however, is found to be completely independent on angular
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momentum parameters. Since � ,
�! � 4 � � contains only even powers of ��� / 4 � , we have


 ,
�! � � � �
	 � � 
 �

$ �
, ��� / 4 � �-,
�! � 4 � � 
 � 	 � � � �
	 � 4 � � � �

�

�
� � � 	� � � 	������ 	� �
	 � � (1.2.13)

where �	� and � ����� are the masses of the nucleon and the meson, respectively, in the final state. We assume
that the nucleon immediately reappears after the resonance decay; otherwise, we have to consider a decay chain
as discussed below.

Direct meson production : Considering the inelasticity of OPE and diffractive meson production, the only
difference to resonance decay is the angular distribution, thus the value of 3 ��� / 4 �'6 given by Eq. (1.2.10) when
setting

� � � � 	� � 	 . The inelasticity is then given by


 0 � , � � � �
	 � � � � � � � �

�

�
� � � 	� � � 	������ 	� �
	 � � � � � �� 3 ��� / 4 � 6 
���� 	 � � ��
 �  � (1.2.14)

where we again assume that the nucleon appears immediately in the final state and postpone decay chains to
the next paragraph. An important point to note is here, that the final state cannot be separated from the initial
state even if all masses including � � are fixed by the reaction channel, because � � �
	 appears explicitly in the
determination of 3 ��� / 4 �76 . However, we note from Fig. 1.7 that 4 � takes considerable values only near threshold,
where � �� " �

, while 3 ��� / 4 � 6 � �
when � �� � �

; thus, the impact of 3 ��� / 4 � 6 in Eq. (1.2.13) is large only in the
range where the reaction is strongly forward peaked. We may therefore set

3 ��� / 4 � 6 � � � � � D�C � � � � �
	 � (1.2.15)

for all
�
-channel reactions. The error in


 0 � , introduced by this simplification is shown in Fig. 1.9, we see that
it is generally of order

�����
or less, and becomes largest in the high energy region, where both cross section and

inelasticity of the reactions decrease strongly. We may therefore regard
�

channel reactions as strictly forward
peaked in the following; the final state space has thus no free parameter, and the inelasticity is fixed for every� � �
	 .
Decay chains : We have defined the inelasticity as the fractional LF energy loss a nucleon suffers in an inter-
action. In the two-particle channel picture, however, the final state is defined by the first particles which are
produced; in this state, the baryonic particle may be in an excited state, i.e. a

�
or
�

resonance rather than a
nucleon. To keep the meaning of the term “inelasticity”, we therefore have to include the whole baryonic decay
chain, whose end is defined by the recovery of the nucleon. The basic assumptions in our treatment of decay
chains are

1. The direction of the baryon (cosmic ray) velocity in the LF does not change in decays, which requires$*%'& ( �
. This means that all scattering and baryon resonance decay angles, generally taken in the CMF

of the decaying particle and therefore with respect to its velocity direction, refer to the same axis in the
LF.

2. Every intermediate baryon resonance in the chain has only one dominant two-particle decay channel,
which contains again a baryon resonance or a nucleon
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Figure 1.9: Error estimate for the inelasticity of
�
-channel reactions calculated using the

� ������� ��� � � �
assumption. Linestyles correspond to Fig. 1.7.

Then, we can easily show that the total inelasticity is given by


���	�� � � �
	 � 4 � ��
������ � � � � � � � 
 � 	 � � � �
	 � 4 � � � ��
� � �

� � � 
 � 	 � � � � 4 �� � � � �
(1.2.16)

The final state of the interaction is described by the set of masses 
 � � � � ����� � � � and decay angles ��� �4 �� � � ����� � 4 �� � of the � secondary resonances in the decay chain. However, to simplify the task we will generally
average over the mass distribution of the resonance (given by a Lorentz-curve) and use for � � the nominal
masses of the secondary resonances. Then, only the vector of decay angles � � determines the inelasticity of the
decay chain.

The initial assumption that during the decay chain every state has only one dominant decay channel seems
to be an oversimplification. However, it is clearly true in reactions where the (first) secondary resonance is the� � � � 	 ��� , which is also the only important application of decay chains; we therefore restrict ourselves to this
case in the following. The final state variables are noted as 4 � and 4�� , the latter being the decay angle of the

�

resonance relative to the CMF velocity of the incident nucleon. As a further simplification, we may assume that
secondary baryon resonances decay isotropically, which is motivated by the necessity of averaging of different
excitation mechanisms arising from the decay of the heavier resonance, and which is in good correspondence
with experimental data [Cam67, ABB68]. Therefore, the average of the $ ' � � ��� ��� � � decay chain
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inelasticity is given by


 � � � � �
	 � � � � �	�� � �
	 $ �� � � � � $ �� � � � �
	 � � � � � �� 3 ��� / 4 � 6 � (1.2.17)

The first interaction in a decay chain may proceed either over the � -channel, i.e. be again described as a resonance
decay, or over the

�
-channel. Hence, the angular distribution of the respective reaction type, as discussed above,

has to be inserted to obtain the averaged inelasticity.

Kinematics of statistical multi-pion production : The key to a simple treatment of multi-pion production within
our framework of two particle final state interactions is the leading particle effect; for the nucleon this means
that it carries on most of its longitudinal CMF momentum through the interaction. Considering energy, we
may express this as an approximately constant fraction of the CMF kinetic energy of the interaction going into
secondary particles. It is also known from experiment that the transversal momenta of the produced pions are
small; therefore, and because of the statistical mixture of scattering angles of the produced pions, we can expect
that the transversal momentum transfer to the nucleon is negligible compared to its total momentum, which in
turn means that the reaction is strictly forward peaked. This removes the CMF scattering angle of the nucleon
from the degrees of freedom in the final state space.

We may consider the multipion system produced in the interaction as one particle with an unknown mass,� ����� � & ����� � �
� � . � ����� � 	 is obviously equivalent to the total energy of the pion system in its own center of
mass frame. Then, the kinematics of multipion production is equivalent to that of a two particle final state with
strict forward scattering, and the inelasticity can then be written as


 �����>� � � �
	 � & ����� � � 
 � 	 � � � �
	 � 4 � � � � , cf.
Eq. (1.1.53a), with

$ �� � � � �
	 � & ����� � � � � �

�
� 	�
� �� � �
	 �	� � � � & 	����� � � (1.2.18)

where �	� is the mass of the incident nucleon. We see that


������>� � � �
	 � & ����� � � & 	����� � � D � � �
	 ��� �
(1.2.18a)

Since � � �
	 and � �
� � are functions of initial state variable ��� , the variable
& �����

determines completely the final
state of multipion production. The task is therefore to find the distribution function � ����� � & ����� � . We may again
adopt the idea of a quasi-free interaction on the quark scale, and take 3 & ����� 6 � 	� from the participant-spectator
quark number relations. To estimate the width of the distribution, we consider the nucleon as a relativistic Fermi
gas of three massless quarks (i.e. � � " �	� , see [Par94]) with a total energy

��� � � � � 	 � �� �  � � � � �	� � 	 ; we
stress that this relation is naturally achieved for a proton radius � � < � � 	 � � . Considering then the momentum
distribution of the three quarks within this model, and repeating the participant-spectator counting game (we
assume that the virtual photon quarks carry exactly

�
	 of the photon CMF momentum), we easily obtain

& ����� � � � " � � � � = (1.2.19)

The simplicity of our assumptions does certainly not allow a more definite prediction of � ����� ; we may thus take
any convenient simple distribution function which complies with Eq. (1.2.19). Clearly, we may also use the
exact momentum distribution of a relativistic Fermi gas. Unfortunately, there seem to be no reliable data of mul-
tipion mass distributions regardless of multiplicity which would allow to confirm, or even improve, Eq. (1.2.19)
empirically.
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1.2.2 Astrophysical application of photomeson production

1.2.2.1 The role of photomeson production in astrophysics

The Greisen-Zatsepin-Kuzmin-cutoff : Photomeson production is the most effective energy loss mechanism
for protons and neutrons of ultra high energies. In the NRF, the interaction threshold is approximately given
by the pion mass, � � � 	 � ��"���� ��� . Hence, extreme Lorentz factors of the cosmic ray particle are required if
we have to deal with ordinary, low energy background photons as the target field: With a typical intergalactic
LF photon energy � ,
� � � ��� $ � � ��� $ 	 ��� , a cosmic ray Lorentz factor $ %'& �� ��� � < � ��� � 	 is necessary to induce
photopion production.

Shortly after the discovery of the cosmic microwave background (CMB) by Penzias and Wilson in 1965,
the photomeson loss time scale for cosmic ray protons in this universal background field was calculated by
GREISEN [Gre66], and independently by ZATSEPIN & KUZMIN [ZK66]. The photon density of the cosmic
microwave background (CMB) is about

"����  � � 
 , and multiplication with the efficiency in the
�

-region of
about

������A"B8C�D 2
yields an attenuation length

	 . 	/	 � �
8 � ��!0! � ����� � � . The characteristic photon energy of the

CMB is about � ,
� � � � � ��� $ � eV, thus photomeson production most efficient at $ � 	 � ��� � � , corresponding to
a proton energy of about 300 EeV. Thus it was concluded that, if cosmic rays originate mainly at cosmological
distances

� ( ���
Mpc, the spectrum should cut off in the sub-ZeV regime; this is commonly called the Greisen-

Zatsepin-Kuzmin-cutoff, or short GZK-cutoff.
It is worth to note that the GZK cutoff is in fact not connected to a specific source distance, but rather to

the time of flight of the extragalactic cosmic rays. For diffusive transport models of extragalactic cosmic rays,
even sources with

� %� ���
Mpc may show the GZK cutoff. Another application of photoproduction at the CMB

radiation was recently found as the limiting process for the shock acceleration at very large shock structures,
when

8
.�=>= �� ��� � � sec [KRJ96, KRB96]. Recent observations of cosmic rays with energies above the GZK

limit have drawn photomeson production at the CMB into the center of interest again, and it is one of the main
subjects of this work to improve the treatment of cosmic ray transport in the trans-GZK regime. A detailed
derivation of the photomeson efficiency function is required for this purpose.

Secondary gamma and neutrino production : Photomeson production at lower cosmic ray energies can happen
in the vicinity of strong IR-to-UV sources. In dense UV fields around AGN ( ��,
� � � ��� � ����� ��� ) photomeson
processes set in at $ %'& �� ��� � , which corresponds to proton energies in the PeV regime. Here, not the pro-
tons themselves, but the decay products produced mesons are of interest; considering only the lightest meson
products, the � ! and the � � , we have a source of energetic gamma rays by the dominant decay mode

� � � � $ (1.2.20a)

of the neutral pion, while the charged pions are a source of neutrinos by

� � � A ����� � A � � � � � � ���� (1.2.20b)� � � A � ���� � A � � � � �� ����� �
(1.2.20c)

We see that the ratio ��� � ���� � # � �  �� � $ is
� � � � � in any case, while the ratio ��� � �� � is determined by the � � � � � pro-

duction ratio. The primary gamma rays from the � � decay have generally energies above about
���

PeV, but will
cascade down to TeV energies in ambient radiation fields (due to $ $ scattering and subsequent leptonic radiation
processes). This kind of gamma ray origin in energetic astrophysical objects is completely different from pure
leptonic ( � ! ) radiation processes, which are usually considered in astrophysics; we may thus call them hadronic
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Table 1.2: Baryon resonances in � � reactions, arranged by resonance mass
Name � � ���� � ����� Modes �  � ��� ��� 
 	 � � <  # ��� 2 <' A"B8C�D 2� � � � 	 ��� + 
�
 � � � � � � ����� = � ? � � 	 " ".	�@ � =��� ��"�"�� � + � � � � 	�=�� � � = � � � " @ � ���� ��= � � � � � 
 � � � � � � � � " � = � � @�� ��� � � ���� ��=�	�= � 	 � � � � ��=�� " � = � � @�? "  � 	��� ����=�� � 	 � � � � ��=�� � � � � � ?   � ���� ���  � � � � � � � � � � 	 ��"�� � �  � � ��	 � � � "� � ��@���� � � 
�
 � � � � � 	���� � � � � � ��@ � ? �  � � ��?���= � � 
 � � � � � 	 	�=�� � � 	 � � ".� " � 	

� � ��?�=�� � � 
 � � 	 � � " 	���� � � " � � =�� � " �  
�����

contribution negligible, L�� �	� L�
 ������ � ��
Appears only in ��� scattering; instead, � � �����	� � �	� � � contributes to ��� scattering with ��������� % � � � . This is the only considerable

difference between the ��� and ��� cross sections, and will be called � � ��� ' � � � � � �����	� � asymmetry in the following.

radiation processes. The application of hadronic radiation processes to AGN and other energetic astrophysical
sources has been suggested first by PROTHEROE & KAZANAS [PK83] on the basis of energetic

'�'
collisions,

and was extended to photohadronic pion origin by MANNHEIM [Man93] who introduced the term Proton Initi-
ated Cascade (PIC). An observational confirmation of PIC processes could give direct evidence for the origin
of cosmic rays. More decisive would be a clear observational evidence for energetic neutrino radiation from
astrophysical objects, but experiments are not sensitive enough yet. The detailed treatment of hadronic radiation
processes is outside the scope of this work; however, we can derive some useful results on the first step of these
processes, the production of pions and their charge ratio.

1.2.2.2 Classification of energy regions in the NRF

The
�

-resonance region : The dominant feature in the total $ � cross section is the
� � � � 	 ��� resonance, which

has a spectroscopic classification + 
�
 . The resonance occurs in the NRF at a photon energy � � � 	 "���� ��� ,
approximately double the threshold energy; the energy regime marked by this prominent resonance is called the
first resonance region, or often just the

�
-resonance region

�
.

Because it is the lightest baryon resonance, the
� � ��	�	 ��� can only decay into an (unexcited) nucleon and a

pion; the branching ratio of radiative decay is about
� � ���

. The decay branching ratios of the different isospin
orientations of the

� � � � 	 ��� resonances are given by:
' � � ' � � ' � � � � � � � � � � �� ��� �

� � 	
 �
� � �
 	
� $ �
(1.2.21)

It can be deduced from the quark model that the only possible radiative excitation mode of the
� � � � 	 ��� is

the � �
transition; since it is a + -wave resonance in the pion nucleon system, the differential cross section

is proportional to
= � 	 ��� / 	 4 , which is confirmed by observations of the

� � � decay of the resonance. The
properties of the

� � � � 	 ��� are listed in Tab. 1.2.
!
Even though, of course, the " � � � � � � is not the only " resonance in the cross section!
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The second resonance region : Above the
�

-resonance region, the total $ � cross section shows two or three
resonance peaks between

=������ ��� %� � � %� � � = # ��� , which is called the second resonance region (SRR).
Of the baryon resonances known from � � scattering, only a few have considerable radiative decay branching
ratios and therefore contribute to the photohadronic cross section; they are listed in Tab. 1.2. Most of them have
large angular momenta, and particularly the heavier ones decay predominantly over channels other than � � .
Experimental results suggest that the differential cross section for all decay channels can be assumed as roughly
isotropical, which is used as an approximation henceforth. The most important decay channel in this second
resonance is the decay chain $ � � � � � � � � � , but also single pion channels and the production of heavier
mesons contribute.

The high energy region : At � � �� � � = # ��� , the total photohadronic cross section becomes roughly constant
above

�$# ��� with a value of about
� � =�A"B8C�D 2 . The most important channel is here the statistical multipion

production. About
��=��

of the cross section is contributed by diffractive vector meson production. In this
energy region, photohadronic reactions are completely analogous to other hadronic interactions, as � ' ,

'�'
or

' �'
scattering, therefore the findings from such interactions may be applied to photohadronic interactions. To very
high energies, models expect a slight increase of the cross section as

2����# A"B8C�D 2 $ � ��@ � @ � <�� < � � � � ? � $ <�� � � � (1.2.22)

with � � � � � �
	  # # ��� $ � 	 .
1.2.2.3 Cross section fits

General procedure : We extrapolate the cross sections of the quasi-two-particle channels given in Eqs. (1.2.1)
to (1.2.6) from fits to data taken from published tables [BFMM73]. The main task is to discern the contribu-
tions of resonant and direct reaction for every channel separately, because they behave quite different in the
efficiency functions. To achieve this, we make use of the fact that the resonance contributions are completely
determined from the resonance parameters listed in Tab. 1.2, and their branching ratios to the respective decay
channels, which have been experimentally determined by particle physicists on the basis of partial wave analy-
sis techniques, and are given in [Par94]. Then we can use the residual data to obtain the contribution of direct
interactions to every channel. For this we define the dimensionless function

�� � ��� by

2 � � � � � �7� ( �� � � �  # # ��� $ �'# A"B8C�D 2 $ � (1.2.23)

and express
�� � ��� for every channel in terms of simple fit functions, e.g.

� � � ��� or � � � ��� . Our procedure to obtain
cross sections may thus be summarized as follows:

1. Determine the resonances contributing to every channel and their branching rations into this channel.

2. Calculate the resonance contribution from Eq. (1.1.55).

3. Determine the residuals of the specific cross section data relative to the resonance contribution.

4. Find a suitable expression for
�� � ��� , and obtain the free parameters from fitting to the residuals.

5. In cases where only data to one part of a reaction iso-multiplet exist, derive the other branches by applying
isospin symmetry.
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6. Finally, sum up all quasi-two-particle contributions, and determine the residuals of the total $ ' cross
section. These are fitted by a simple function showing the correct high energy behavior (see Eq. (1.2.22)),
and treated as statistical multipion production.

For our fits, we use only data on $ ' reactions, with one exception in the reaction (1.2.1b), where $ ' and $ � data
are used. The differences expected for between proton and neutron are briefly discussed.

Single pion channels : From isospin symmetry, we expect that the branching ratio of single pion production
with and without isospin flip is

� � � in the
�

-resonance region, while it is just the opposite in the second res-
onance region, where predominantly

�
-resonances contribute. The resonances in the SRR which contribute

significantly to single pion production are��� ��"�"�� � ��� ��= � � � ��� ��=�	�= � ��� ����=�� � ��� ���  � � � � ��@���� � � � ��?�=�� �
	 � � � @ � � � � � =�= � � � � � � � � � � � "

For the
� � � � 	 ��� we already have stated that 	 � < �

. The contribution of resonances to the $ ' � ' � � and$ � � � � � channels are shown in Fig. 1.10 (a)&(b). For � � production there exist only second order direct
production effects, as Primakoff scattering; we see that there is no evidence in the data for a considerable
contribution of this effect, and neglect it henceforth. In contrast, for the $ ' � � � � channel we find a strong
background overlaid to the resonance contribution, which we can assign to direct pion production. We fit the
underlying background with a function�� � � ��� � =�	 � 	 � � � � � � � ��= � � � �S= � � � � � � � � � � ��= � � � � ��� � ��� � 	 � � � � � � � ��= � � � 	 � � � (1.2.24)

The abrupt cutoff of the direct pion production cross section at � � � ��=���� ��� can readily be explained by the
takeover of the direct

� � channel, as shown below. The data above
@�=���� ��� shown in Fig. 1.10 (b) are taken

from the $ � � ' � � reaction; in the region of the
��� ���  � � resonance at � � � �$# ��� the $ � cross section is

considerably smaller than the $ ' cross section because of the
��� ���  � �  ��� ����@�= � asymmetry (see Tab. 1.2).

Secondary baryon resonance production : Two-pion production below ��� � �$# ��� proceeds to a large fraction
over the quasi-two-particle channels $ � � � � � � 	 ��� � � � � � � 	 ��� � � � and $ � � � � � � � � � � � � � . The
former channel is subdivided into the isospin multiplet given by Eqs. (1.2.2a) to (1.2.2c). These reactions are
connected by isospin symmetry, which predicts

� ��� � � � � � � branching ratios of
	 � � � � for

�
resonance decay,

and
� �  � � for

�
resonance decay (see Tab. 1.1). Experimentally, reaction (1.2.2b) comprises the difficulty that

it has mostly two neutral particles in the final channels (except for $ � � � � � � � � � � ' � � ), and is therefore
badly to detect. In fact, almost no data exist for this reaction. On the other hand, for reaction (1.2.2a) the data
situation is excellent, and for (1.2.2c) it is good enough to confirm approximately isospin symmetry; we will
assume that isospin symmetry holds to determine the total cross sections for reaction (1.2.2b) and (1.2.2c) from
the data on reaction (1.2.2a).

The resonances which show a significant contribution to the $ � � � � channel are��� ��"�"�� � ��� ��= � � � ��� ���  � � � � ��@���� � � � ��?�=�� �
	 � � � 	 � � � = � � � = � � � � � 	

Using the isospin branching factors to determine the contribution to the $ ' � � ��� � � reaction, we find that
only an unsufficient part of the measured cross section can be due to the decay of heavier resonances. We obtain
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Figure 1.10: Cross section fits of specific � � interaction channels: (a) � � � � ��� , (b) � � ��� ��� ,
(c) � � � � ��� � � , (d) � � � � � , (e) � � � � � � , (f) � � � ��� . See next page for further explanation.
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Figure 1.10: (cont’d) Cross section fits of specific � � interaction channels: (g) � � ��� ���� � , (h) total � �
cross section, with multipion channel. Plotted are cross section in �����
	�� vs. NRF photon energy in GeV. Solid
lines show total cross sections, dashed line contributions from resonance decay (no fits!), and dotted lines the
direct (

�
-channel) contributions obtained from fitting the data. Data are taken from [BFMM73]. Plotted is ��� � � in �����
	�� vs.

� �
in GeV.

a good fit if we underly a background�� � � ��� � � � � " � � � � � � � 	 � � � � � =�= � 	 � = � (1.2.25)

which can be attributed to the direct (OPE) pion production with
�

excitation. The fit to the $ ' � � ��� � � data
is shown in as shown in Fig. 1.10 (c).

We can now use Tab. 1.1 for the determination of the mirror-reactions within the iso-multiplet. We expect no
big difference between $ ' and $ � reactions in this channel, because the suppression of the

��� ���  � �  ��� ����@�= �
contribution is partially compensated by a higher reaction width, 	 � � � � �

, of the
��� ����@�= � resonance. For

the OPE production of secondary
� ��� and

� � resonances isospin symmetry predicts a cross section ratio of	 � � , and no difference between $ ' and $ � reactions. The total cross section for secondary baryon resonance
production is shown in Fig. 1.11.

The � channel : An important channel for neutral particle production is $ � � � � . The � meson decays
mainly electromagnetically over � � � $ � 	�?�� � and � � 	 � � � 	 � � � . The dominant charged decay channels
are � � � � � � � � and � � � � � ��$ . The electromagnetic decay properties are the only thing which makes this
channel interesting, its contribution to the total photohadronic cross section is quite low. The only resonance
which contributes to � production is

��� ��=�	�= � with 	�� � � � 	�=
. A slight contribution of direct, presumably

Primakoff production can be seen at higher energies, and is fitted by an underground function�� � � ��� � � � = � � � � � � � @ � � � � � " � (1.2.26)

For rough calculations which do not refer to the � decay products, photo- � -production may readily be neglected.

Vector meson production : The reaction $ � � � � is the dominant vector meson production channel. The � �
decays to

�������
into a � � � � pair, the decay into neutral pions is forbidden by

�
-parity conservation. Diffractive
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Figure 1.11: Total contribution of all � � � � � channels (solid lines), as derived from isospin symmetry
from the data on � � � � ��� � � (dashed lines). Chain lines show � � � � � ��� , dotted lines � � � � ����� .
Left: Contribution from resonance excitation; Right: Total cross section; The cross section of direct

� �����
production is "� of that shown for the

� ��� � � channel in Fig. 1.10 (c). Axes labels are the same as in Fig. 1.10.

��� production sets in at about � �	
	 � � � �  # ��� , and shows an almost constant cross section of
� � A"B8C�D 2 above

this energy. However, the channel plays also a role below this threshold, because of the large � � -width � � <��=���� ��� . Thus we find ��� production as a considerable decay channel of the resonances:��� ��= � � � ��� ����=�� � ��� ���  � � � � ��@���� � � � ��?���= �
	 � � � ��= � � � � � ��= � � 	 � � �

Subtracting the resonance contribution from the data, we obtain a fit function for diffractive � � production as�� � � ��� � ��� � @ � � � � � � � 	 � � � � � � � � � ��� �
(1.2.27)

The threshold was set to that of the $ ' � ' � � � � reaction. In the high energy limit, we do not apply the possible
rise of the diffractive cross section. This is justified by the crude treatment of the multipion channel, which does
not justify the detailed treatment of a second channel at high energies, which only contributes to a few percent.

The second vector meson, + , is only produced in diffractive scattering for � � �� �$# ��� . The dominant decay
channel is + � � � � � � � , with a

�����
contribution of + � � � $ . The nominal threshold energy of this reaction

is � �	
	 � � � ���$# ��� , but as for the ��� the process is possible also at lower energies; a definite threshold is given
by the

	 � production threshold. We obtain a fit of the data with�� 	 � ��� � @ � � � � � � � � � = � � � � � 	 � � � � � �
(1.2.28)

The cross sections for photohadronic � � and + production are shown in Fig. 1.10 (e)&(f), respectively. The
cross section for production of the

#
meson is about an order of magnitude below that of + production and is

disregarded in our analysis.

Strange particles : Even less important than � or + production is the production of strange particles. Never-
theless we quote this channel, because the long lifetime of the strange particles may be of interest for specific



1.2. PHOTOMESON PRODUCTION AT FREE NUCLEONS 51

1.25

1.5

1.75

2

2.25

2.5

2.75

3

0 1 2 3 4− 1

b
a

rn
µ

σ 
/

Lg
[

]

Lg( ε / GeV )’

multipion

total

resonances

direct

Figure 1.12: Total � � cross section, with contributions of resonant two particle channels, direct particle
production and statistical multipion production. Low energy data are taken from [BFMM73], the shaded
area at the right border marks the cross section range obtained by the ZEUS and H1 detectors at HERA, at� ��� � � �	� 
 � �� [Lev93].

hadronic radiation processes. It is, however, disregarded for the derivation of the photohadronic cosmic ray loss
function.

The nonstrange baryon resonances showing a detectable branch to the channel
� � � � 


are
��� ����=�� � ,��� ��@ ��� � and

��� ��@ � � � , with 	�� � � � �
and 	�� � � � � , respectively. We note that the

��� ��@ ��� �  + � � resonance
does not belong to the resonances with strong radiative excitation; from the measured helicity amplitudes we
obtain 	 � %� = � ��� $ � ; its total contribution is therefore negligible compared to the neighboring

� � ��@���� � . The��� ��@ � � � shows similar branching ratios 	 � and 	�� , so we do not treat these two resonances separately; we just
sum up their contributions to 	 � 	�� � � � � � ��� $ � , guided by the limits set by the data.

The data situation on strange photohadronic channels is also quite poor; data are given only for the channels
(1.2.6a) and (1.2.6b). However, we can use the SU(3) symmetries to derive that 	��  	�� � � �

, and isospin
symmetry to obtain 	�� � � 	 	�� � . We then bin the data on � and � � photoproduction and put them together
to obtain better statistics; subtracting the resonance contribution, we see that most of the strange channel is
probably dominated by direct interactions. We find a fit with��	� � ��� � 	 � � � � � � � � � � � � � " � " � � � (1.2.29)

Because of the large uncertainties in the determination of the resonance contribution, these may also be omit-
ted and the cross section can be fitted using only Eq. (1.2.29), as obvious from Fig. 1.10 (g). Since direct


 �
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production is strongly suppressed, Eq. (1.2.29) is also the total cross section of the reaction
� � � � � � � .

The statistical channel and the total $ ' cross section : Summing up all total cross sections of the quasi-two
particle channels treated so far for the $ ' reaction, we find that we obtain an excellent fit to the total $ ' cross
section for � � %� � �  # ��� . This confirms that the selected quasi-two-particle channels are quite complete. Above
the

" � threshold, � �	
	 � @ � @�� ��� , we assume that statistical multipion production sets in. The residuals of the
total $ ' cross section data are fitted by�� ����� � ��� �  � � ����� ! � � � � � @ � @� �  # � � ��? �  � <�� < ��� � � " � 	 � $ <�� � � 
 � � � D �!� � � @ � @ � (1.2.30)

with ��� � �  � � � �  � � ; the total fit is shown in Fig. 1.10 (h). Fig. 1.12 shows the summed contributions of
resonant, direct, and multipion channels on a logarithmic scale, also showing the slight increase of the cross
section and the high energy limits set at the HERA accelerator.

1.2.2.4 Efficiency functions and hadronic radiation processes

Treatment of inelasticity functions : The efficiency functions are obtained by multiplying the cross section with
the inelasticity function, separately for � and

�
-channel reactions. Following our discussion in the preceding

section, we use the following results and approximations:

1. For resonance decay we have 3 ��� / 4 � 6�� � �
, thus the inelasticity is given by Eq. (1.2.13).

2. Particles produced in resonance decay below their nominal mass, i.e. below the nominal threshold for their
production, are assumed to be produced at threshold with � � � �
� � .

3. For
�
-channel reactions we assume strict forward scattering, and use Eq. (1.2.14) with 3 ��� / 4 � 6 � � �

.

4. The decay chain in the $ � � � � channel is treated using Eq. (1.2.16), again using the isotropy relation
for an initial � -channel reaction, and strict forward scattering for direct production of the

�
.

5. For the multipion channel we use Eq. (1.2.18) with
& ����� � � � "

.

We consider here only average values to obtain the efficiency function; methods for a statistical treatment are
discussed in in Sect. 2.2. The efficiency functions for $ ' reactions obtained this way are shown in Fig. 1.13,
indicating the relative contributions of � -channel and

�
-channel reactions. In this figure, we compare the result

for each specific channel with the common estimate of an average inelasticity of � ��� , which turns out to be
acceptable for the most relevant channels. Fig. 1.14 shows the total efficiency with the relative contributions of
different channels, including multipion production.

Energy loss time scale in power law spectra : The evaluation of energy loss time scales in general background
spectra for different $ %'& must in be performed by numerical calculations. However, for an important type of
astrophysical spectra, the anisotropic power law Eq. (1.1.50b), we find that all the particle physics can be reduced
to a set of simple coefficients, dependent only on the spectral index. If we insert Eq. (1.1.51b) into Eq. (1.1.45),
we see that we can obtain a very simple expression of the loss time scale if we introduce the reference Lorentz
factor scale
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Figure 1.13: Efficiency functions for specific channels, separated according to: total efficiency (solid lines),
� -channel efficiency (dashed lines),

�
-channel efficiency (light chain lines). Plotted is � ����� � in �����
	�� vs.

� �
in

GeV. Also shown is �  �  ��� � � (dotted lines) for comparison. Channel labels are the same as in Fig. 1.10.



54 CHAPTER 1. PHOTONUCLEAR INTERACTIONS

−1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

A

B

C

E

D

F

G

Lg( ε / GeV )’

b
a

rn
µ

η 
/

Lg
[

]

Figure 1.14: Total efficiency function for � � reactions. For neutrons, the resonance peak at about
� � �

� � �� is less pronounced, otherwise the function looks similar. Channel labels
� ���� ��� correspond to labels� � � �� � � � in Fig. 1.10, G marks multipion production.

I$*%'& � $*%'&$ < � 1�
� $ < � � �	
	 � <
��� < � (1.2.31a)

where � < is the lower limit of validity of Eq. (1.1.50b), and ���	
	 � < is the lowest threshold energy of all photomeson
production processes (i.e. $ ' � ' � � , � 	
	 � ��".=�� ��� ). Then, the validity of Eq. (1.1.51b) is limited to $�%'& %�$ < ,
or I$*%'& % �

. If we now introduce the total weighted efficiency

; 0 ��5) � � � � * � � � � 	 � � �
* � 	 � �


 �
� , � � $ ) � � � � � �	
	 � < � � (1.2.31b)

where * and 	 are the energy and anisotropy index, respectively, we can simply write8
$ �� ��!0! � � � < ; ) � I$ ) $ �%'& (1.2.31)

with ; ) � � � � ; 0 ��5) � ; they will be called the efficiency coefficients of the photon spectrum henceforth. For
isotropic power law photon spectra, the efficiency coefficients ; 0 ��5) < are shown as functions of * for all photome-
son channels in Fig. 1.15; here, we realize best which channels are really important in power law spectra and
which can be neglected in rough calculations.

�
Spectra with * - � correspond to so-called inverse spectra,

�
We stress that the power law index here refers to a global property of the spectrum rather than to a local. It expresses the relative

weight of high and low energy interactions.
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which are not energy normalized; we thus have to assume a cutoff somewhere, which affects the applicability
of our results. We therefore confine ourselves to the case * � � � =

, and recommend for flatter spectra to evaluate
the integral Eq. (1.2.31b) with an upper limit corresponding to the cutoff energy. The lower panel of Fig. 1.15
shows the total weighted photomeson efficiency for various anisotropy indices 	 .

Pion multiplicities and secondary �  $ ratios : Besides deriving efficiency functions for proton energy losses,
our detailed analysis of various photomeson channels allows to derive some general results on the secondary� � � � � � � � multiplicity relation. This is, as we have discussed in Sect. 1.2.2.1, important for the gamma-ray
to neutrino ratio produced in hadronic radiation processes. We introduce the average pion numbers

� 0 ��5� � � � �!� ,� 0 ��5� � � � �!� and
� 0 ��5� � � � �!� produced by a photon with NRF energy � � in a reaction channel � . For quasi-two-particle

channels, we derive from the decay channels of heavy baryons and mesons:

$ ' � ' � �&� � � � ��� � � � � � � � � � � ' � ' ��� ' +� 0 ��5� � � � � � � � � �
 � �� � �� 0 ��5� � � � �!� � � � � �
 �� � �� 0 ��5� � � � �!� � � � �
 	
 � � � �

(1.2.32a)

For multipion production, we make use of Eq. (1.2.7) and assume charge equipartition in the multipion system,
leading to

� 0 ��5� � � � � � � � 0 ��5� � � � � � � � 0 ��5� � � � � � � � �  ! �# # ��� $�#
�
� �

(1.2.32b)

We then define the pion production functions for every channel � by

� 0 ��5! < � � � � � � 0 ��5� % � 2 � � � � � C 2	� � ! < � � � � 0 ��5! < � � � � � (1.2.32)

The total pion production function is shown in Fig. 1.16. In $ � reactions, the � � and � � curves are interchanged,
and the little peak in the cross sections around ��� � �$# ��� is partially removed, due to the

��� ���  � �  ��� ����@�= �
asymmetry.

As a general example for the astrophysical application, we can now try to express the pion production rate
� ! < � $ � � of pions � ! < with Lorentz factor $ � in an anisotropic power law photon spectrum. The problem is
here, that the determination of the pion LF Lorentz factor requires in principle a detailed analysis of the final
state reaction kinematics, in the same way as for the determination of the efficiency function. However, it is
possible to use a very simple approximation here because of two facts valid in most reaction channels: (

�
) the

Lorentz factor of the CMF in the LF is very large, and (
���

) the pion CMF velocity is small, � �� " �
; this allows

us to write $ � � $*%'& . The latter assumption is only true close to the threshold of a specific channel, and for
most pions produced by fireball-fragmentation, but in fact most pions are produced in one of these two ways.
We can then write the approximate pion production rate in the same way as Eq. (1.2.31), that is�� ! < � $*%'& � � � � < � ! <) � I$ ) $ �%'& (1.2.33)

with
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Figure 1.15: Efficiency coefficients in power-law photon spectra. Upper panel: contribution of different
reaction channels, labeled as in Fig. 1.14. Lower panel: dependence on the anisotropy index � , marked at the
curves.
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�
! <) � � � � * � � � � 	 � � �

* � 	 � �

��
� , � � $ ) � ! < � � � �	
	 � < � �

(1.2.33a)

The resulting production functions for isotropic spectra are shown in Fig. 1.17; the scaling relation for nonvan-
ishing anisotropy is simple, hence we omit a figure.

Clearly, both the assumed spectral shape and the simplification $ � � $*%'& limit the applicability of our
results to real hadronic radiators in astrophysics (e.g. AGN); the purpose of this investigation is rather to show
up the influence of the severe differences in the pion charge ratio in the first and second resonance regions of
photohadronic interactions. We stress that these differences may even be more pronounced if pion production at
“sharp” black-body peaks is considered. Looking at Eqs. (1.2.20), we see that the � % � � � ratio reflects essentially
the power going into neutrinos relative to the power going into gamma rays. Even though the detailed PIC
physics of is complicated [MKB91, Man93], we can state here that the common assumption of equipartition
between charged and neutral pions is not quite correct in spectra with global power law behavior (and maybe
even less in other spectra). Rather, the ratio � % � � � is close to � � � — the same as at high energy interaction due
to isospin equipartition, with the only difference that at low energies the initial isospin of the nucleon causes an
anisotropy in the pion charge-ratio, � � � � � .
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1.3 Photodisintegration of nuclei

Photodisintegration of nuclei can be considered as the nuclear analogy to the atomic photoeffect, or more general, the
photoionization of atoms. In contrast to photomeson production, it is not the production of massive particles causing an
energy loss of the cosmic ray nucleus, but a mass loss of the nucleus itself. In this section, we give a phenomenological
classification of the processes leading to photodisintegration, and develop suitable efficiency functions for the application
to cosmic ray physics. Sect. 1.3.1 gives an outline of low energy nuclear physics, which is determined by the binding forces
between nucleons, while Sect. 1.3.3 Sect. 1.3.2 describes the effects of high energy, quasi-free photohadronic interactions
on single nucleons, as discussed in Sect. 1.2, on the surrounding nuclear environment. In refsec Sect. 1.3.3 we discuss the
physical processes of nuclear photodisintegration. Finally, in Sect. 1.3.4 we develop astrophysical efficiency functions for
nuclear photodisintegration, in the same way as in Sect. 1.2.2.

Basic principles of nuclear physics are taken from the books of EVANS [Eva55], BLATT & WEISSKOPF [BW52], and
MAYER-KUCKUK [May92]. An overview about the physics of nuclear photodisintegration is given in a book of LEVINGER

[Lev60], and in several review articles [BW57, DF65].
Notation: We try to comply with the usual notation of nuclear physics throughout this section, as found in the literature

listed above. In Sect. 1.3.4 we refer to the notations of Sect. 1.1.3.3 and Sect. 1.2.2. The reader should be warned that the
symbol � mostly denotes the neutron number, but is also used as a symbol for “nucleon” (� or � ) in some cases, which
should always be clear from the context.

1.3.1 Low energy nuclear reactions

1.3.1.1 Binding energy and shell structure

Binding energy in the liquid drop model : In the simplest model the atomic nucleus is treated as a fluid of
protons and neutrons, which are bound together by short range forces similar to fluid dynamics. This is called
the liquid drop model of the nucleus. We will denote a nucleus of an element ' , consisting of E protons and�

neutrons, with � � � � ; G � � � E is called the nuclear mass number.
� < The binding energy � � E � � � of a

nucleus � � � is given by its its mass defect

�
� 	
( � ����� E�� �

� � � �
����� �

In the liquid drop model, the binding energy can be split into terms representing the volume energy ��� % G ,
the surface energy � � % G 	 ��
 , and the Coulomb energy � %&% E 	  G � ��
 of the charged fluid drop. Quantum-
mechanical effects add terms for the asymmetry energy ��� % �&� � E�� 	  G , taking into account the different
behavior of protons and neutrons in the nucleus, and the pairing energy, which is �
	 % � � � � � G $ � � 	 for G
even, and ��	 � �

for G odd. The average binding energy 	
( �  G can then be written as a function of G using

the semi-empirical Weizsäcker mass formula

	 � G �
� ���

� ��= �  = � �  � 	 " G $ � ��
 � � � �  G 	 ��
� � � 	 � ��� $ 
 G � ��
 � � � " � ��� $ � G 	 ��� � G � �
(1.3.1a)

Here we have applied the relation between E and G for the � -stable nuclei, given in the liquid drop model as

� � We will only write the indices  , � or � as far they contain non-redundant information. In particular,  is implicitly determined
by the element name, and it is then sufficient to note either of the numbers � or � to give full information. Hence, �� � � is equivalent
to � � �� or � �� ��� . We use � for a variable element name.
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E � 0 � G � � G
� � ?  � � � � ��= G $ � ��


� G
�
� � � ����	 G � ��
 � (1.3.1b)

neglecting terms contributing only about 1% or less for
� % G %� � ��� . The � term in Eq. (1.3.1a) expresses

corrections due to the pairing energy, and vanishes for odd G . Omitting this term, Eq. (1.3.1a) still describes the
average binding energy for nuclei with a mass number around G in a good approximation and is so far useful
for our purposes; we will denote the average isobar binding energy per nucleon without the � -term with

�
	 � G � .

Separation energy : The separation energy 	 ��� � * � , necessary to separate a nuclear fragment �
�

, i.e. a nucleus
of proton number

�
and neutron number � , from a nucleus � � � , is

	��
(

	 ��� � � � � � � E � � � � � ��� � � � � � � E � � � � � � � �
Note that this equation simply bases on energy conservation and does not depend on any properties of the
potential, e.g. the charge of

&
.

The threshold energy of an endoergic nuclear reaction ' � * � 	7� � is generally expressed as
� 	
	 � � � � � ,

where the Q-value of the reaction given by

� � � � 	 ) � 	 �
� �5� �) � � �� � � �5� �

�
� � �� � �

,
and � denote the reaction channels, consisting of the particles

� ' � * � and
� � � 	7� , respectively, the separation

energies refer to the compound nucleus formed in during the reaction, and the
� �
� � � denote the excitation energies

of the respective particles. However, if we consider
� $ � & � reactions and ask just for the threshold energy for

emission of a fragment
&

, we can set all
� � � �

and simply get� 	
	 � $ � � � � � 	 ��� � � � �
The separation energy strongly depends on the involved nucleus and the emitted fragment. This is particularly
the case for light nuclei, where changes occur very rapidly due to the rapid changes in the binding energy per
nucleon

&
. However, for heavy nuclei

&
can be expressed as a rather smooth function of G ; if we only consider

the separation of � unbound nucleons, we can furthermore omit the binding energy of the fragment and write

	 �

� G � < �
�
	 � G � � �

� G)�
�*� , � 	, G �

(1.3.1c)

Clearly, this equation is of limited applicability in light nuclei, and may be regarded as a useful approximation
only for � � � � � .
Charge dependent effects and branching rations : The separation energy 	 is the energy necessary to remove
a fragment �

� ) from the nucleus to a very large distance. For a charged particle, however, this is not equal to
the energy required to move it out of the potential well, because of the existence of the Coulomb force. We can
write 	 � 	 � � 	 % , where

	 % ��� � � � < ��� E � � ��� 	
$ � $ )

� ��� E � � �� G)� * � � ��
 � ��� (1.3.1d)

is the height of the Coulomb barrier in the potential function, $ � $ ) is the radius of the residual nucleus. Hence,
even though 	�� is still the physical reaction threshold, 	 �� is the energy necessary in a classical sense to remove
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the fragment from the nucleus. The quantum mechanical transmission effect and the only approximative validity
of Eq. (1.3.1d), however, lead to emission spectra of protons peaking at somewhat lower energy.

The effect of the Coulomb force has a strong impact on the branching ratios for different particles in pho-
todisintegration, especially the ratios for proton and neutron emission. For light nuclei with E � � , we find
	 %� %� 	 �

� 	 � , and hence 	 �� %� 	 � , showing that proton emission is favored compared to neutron emission.
For beta-stable heavy nuclei, where we generally have

� � E , we rather find 	 �� � 	 � with 	 � < 	 � , due to
the strong Coulomb potential for large E , making neutron emission more favorable. It plays also a role for the
evaporation of composite fragments in very heavy nuclei: For G �!� ��� we have 	 � < �

, but because of the
Coulomb wall 	 �� ( 	 � , making the evaporation of

,
particles very unlikely.

Shell structure and excitation levels : The liquid drop model disregards the quantum mechanical selection
rules governing the energy distribution of the nucleons. In the nuclear shell model, the nucleons occupy discrete
energy states in a collective potential well, connected to the quantum numbers of the radial wave function � ,
orbital angular momentum � and total angular momentum � . Each level can be populated by four nucleons,
two protons and two neutrons with different spin orientation. In contrast to baryon resonances, this is not just
a spectroscopic classification for certain scattering channels, but rather resembles the atomic shell model of
electrons. The difference of nuclear and atomic shell models is mainly that the � 	 coupling leads to energy
differences comparable to that between radial excitation numbers, and increasing with � . For low � , � can still
be considered as the major quantum number as in atomic physics, and big gaps in the level structure occur at the
closure of the

� � , � ' and
� , shells, where in the latter one the � � level is embedded. This leads to closed shell

nuclei with
� � E � � �  � � � , which are the lowest magic numbers. These light nuclei are therefore classified

as � -shell ( E -!� ), ' -shell (
	 - E -  ), and � , -shell (

? - E - � � ) nuclei. For larger � , however, one finds
major level gaps rather between the � � � � �

	 and the corresponding � � �
� �
	 state for � � �

, while levels for� � � � 	 � ���S� are mixed in between them. This leads to the higher magic numbers
� � E � �  � =�� �  � � � � � . At the

magic numbers, the separation energy has a local maximum and drops sharply by about
� � ��� for

� � � � �
or E � E � �

. Nuclei where both
�

and E are magic numbers are called double magic nuclei, and have
particularly high separation energies; the only stable double magic nuclei are

		�� � � ,
�
��� �

� ,
	 <	 <�� C � < ,

	 �	 <�� C � � ,
and

� 	 �� 	 � B 	 < � .
Every level has well defined quantum numbers of angular momentum, � and � � � �

�
	 , parity, + � � � � ��� ,

and isospin, � .
� �

The 3-component of the nuclear isospin is given by �  � �
	 �&� � E�� , and � can take the

values
�
	 G � �	 G�� � � ����� � � �  � . The symmetry constraints set by the Pauli principle determine the possible isospin

configurations of every level, because the nuclei belonging to the same isospin multiplet are required to have the
same �  : in particular, for light nuclei with

� �  � - �
, one can easily show that the ground state has � � �

forG � " � , � � �
	 for G � " � � �

, and � � � � � for G � " � � � ( ��� � � � � ���S� ). In the same way as in particle
physics, the shell model sets up selection rules for specific excitation modes, which will be discussed below.

The nuclear shell model cannot account for distinct predictions of the magnitudes of binding energies and
separation energies; actually, it just assumes the existence of a self-consistent binding potential and treats the
nucleons as non-interacting particles in this potential. If the nucleus is excited in a nuclear reactions, this leads
in general to a change of the potential; so, the excitation levels and nucleon transition have to be considered as
between two different nuclei rather than between energy levels of the same nucleus. Thus, the excitation levels
of nuclei vary strongly from one nuclide to the next, and have to be taken from tables collecting empirical results
(e.g. [AGL � 61]).

� �
The isospin is generally denoted as � in nuclear physics.
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1.3.1.2 Electromagnetic excitation of nuclei

Excitation modes : Complex atomic nuclei show, as we have seen above, a behavior which is somewhere in
between a classical and a quantum-mechanical description. This affects also their interaction with electromag-
netic radiation: For low interaction energies, the shell structure of the nucleus determines possible transitions,
which obey the quantum mechanical selection rules. For larger photon energies � , the level density becomes so
high that even in small intervals , � almost every multipole finds a suitable level for transition. However, there
are some general rules which determine the probability of excitation by a specific electromagnetic multipole
independent on shell selection rules, just on the basis of classical electrodynamics; one finds the approximate
proportionality relation 2 � %� � 	 � $ � �

� � ! � � � � � � � 	 � � �
� �
� 	 �

(1.3.2)

for the absorption cross section for � � pole radiation, where � � � and � � � are the electric and magnetic multipole
moments of the nucleus, respectively. One can show that the magnitudes of these moments follow the relations� � � % E $ � and �

� �  � � � � ��  � $�� ; separating the cross section into electric and magnetic parts, 2 � �2 ��� � 2 
�� , according to the contributions of � � � and �
� � in Eq. (1.3.2), we find the order of magnitude

estimates

2 � � �2 �
� ��� $ � G � ��
  �

� ��� � (1.3.2a)

2 
��2 ��� � � � ��� G $ � ��
 �
(1.3.2b)

Following this, in medium mass nuclei ( G �� ���
) magnetic transitions are suppressed compared to electric

transitions of the same order by more than two orders of magnitude, and for energies � %� ������� ��� the same
suppression occurs by increasing the multipole order, � � �

� �
. Thus we can expect that electric dipole

transition is the dominant mode of the electromagnetic excitation of nuclei. We will see in Sect. 1.3.3.2 that
this transition occurs in form of the giant resonance at � � � ��� ��� , while

� �
transitions at lower energies

are mostly forbidden due to selection rules. Because of the high level density at excitation energies of about
� ��� ��� , electric dipole absorption of nuclei can be treated as a quasi-classical process.

The TRK sum rule for nuclei : Before discussing the photonuclear cross section in detail in Sect. 1.3.3, we may
discuss some relations for the most inclusive information about photonuclear reactions, the total integrated cross
section for photon absorption. Since we have to deal mainly with dipole absorption, we can apply the sum-rule
relation Eq. (1.1.43) to the nucleus; assigning the effective charges

� � � � �G C 2	� � � � ��EG
to the protons and neutrons in the nucleus, we find
��

< 2 � � � ��� , � ( �F7 &�� � � � 	 � 	 ��
�	� �

� EG < � ��� � ��� ��� � B8C�D 2 � � EG � (1.3.3)

which is known as the Thomas-Reiche-Kuhn (TRK) sum rule for nuclei. It makes use of the assumption that the
dipole moment of the nucleus can be completely described in terms of the coordinates of the single nucleons in
a common potential well, under neglection of direct exchange forces between nucleons — an assumption known
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in nuclear physics as Siegert’s theorem. A correction of Eq. (1.3.3) by inclusion of nuclear exchange forces was
done by LEVINGER AND BETHE [LB50], who found

���  � � � � � �  � .'� �F7 &�� � 1�
� � - � .�- � �
(1.3.3a)

�
�  is a constant depending on empirical nuclear parameters which was evaluated by the authors to

�
�  � � �  �� � �

, and
� . is the fraction of the attractive exchange force in the neutron-proton interaction. Eq. (1.3.3a) is still a

dipole sum rule, therefore neglects absorption cross sections of higher multipoles; however, LEVINGER [Lev60]
argues that magnetic dipole and electric quadrupole transitions essentially cancel each other by interference,
and from the discussion in the last paragraph we can expect that higher multipoles can be neglected altogether.
Therefore, Eq. (1.3.3a) implies that the total integrated photoabsorption cross section of nuclei lies about a factor
of
� � = � � above the TRK value, depending on the fraction of attractive forces in nucleon interactions.

Causality and the GGT sum rule : A different approach to express integrated photonuclear cross sections was
introduced by GELL-MANN, GOLDBERGER & THIRRING (GGT) [MGT54], who derived an expression known
as the GGT sum rule. It is based on the principles of dispersion theory, using the following assumptions: (

�
) In

the low energy limit, � � �
, the elastic photon scattering cross sections of the nucleus and the proton are given

by the respective Thomson cross sections,

2 
 � ���� � � � � 287�> � 2���� � � � E � G � � 287 � E � G � � E �G 	 I287 � (1.3.4a)

and 2 
 � ���� � � � � �
; (

���
) in the high energy limit, photon scattering by the nucleons in the nucleus is identical to the

total scattering of the same number of free nucleons,� 1 ���� � � 2 � � ��� � E�2 � � ��� � � 2 � � ��� � � � � (1.3.4b)

where we can assume that the total cross section is completely dominated by photomeson production; (
�����

) the
photon absorption cross section of free nucleons vanish in the low energy limit

2 
 � �.�� � � � � 2 
 � �.�� � � � � � �
(1.3.4c)

From this, one can derive the photon absorption cross section integrated up to the pion production threshold � �
as 
 � �

< 2*.�� � G � ��� , � ( ������7 � �F7 &�� � 
��
� � , � � E�2 
 � �.�� � ��� � � 2 
 � �.�� � ��� � 2*.�� � G � ���� 

� �F7 &�� � E � G ��� � � �
����7 � �

(1.3.4)

The integral in Eq. (1.3.4) must be evaluated on the basis of experimental data; in their original work, GGT
found a value

�
����7 < � � "

; but it was clear very soon that this value is exceeded by the experimental integrated
cross sections in heavy nuclei. On the basis of the vector dominance model for the hadronic photon, WEISE

[Wei74] argued that assumption Eq. (1.3.4b) has to be abandoned: Because of the virtual appearance of photons
as vector mesons there occurs a shadowing effect in photonuclear scattering, leading to 2 � % E�2 � � � 2 � at
high energies. Setting I2 � � E  G ��2 � � �&�  G ��2 � and

2 � � ��� � G ��� � ��� I2 � ��� �
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Weise developed a modified GGT sum rule, in which
�
����7 is replaced by a function

� � E � G � slightly increasing
with G . He used 3 G ��� 6 � < G <�� � in the baryon resonance region, � � % ��% � # ��� , and 3 G ��� 6 � G <�� � � for
� # ��� % � % � � # ��� , which was known from experiment. His scaling rule in the resonance region was,
however, not confirmed in the

�
-resonance region in high precision photoabsorption experiments, which rather

suggest G ��� � G , but there is a tendency of a decrease of G ���  G reported in the second resonance region,
confirming Weise’s assumption qualitatively [Ahr85].

We may briefly summarize the basic idea behind the GGT approach to the total integrated cross section
for photon absorption: The GGT sum rule does not make any assumptions on the detailed photon absorption
mechanism of the nucleus; it just uses the principles of unitarity and causality in the transition from coherent
scattering of the nucleus to quasi-free scattering on single nucleons. The suppression of the Thomson cross
section in the transition from the bound to the free system of nucleons gives immediately the TRK dipole sum
rule, and the suppression of real meson production above � � due to Pauli blocking effects in the bound nucleus
introduces the additional contribution

� � E � G � � 7 &�� � E � G � . We may interpret the latter contribution physically
as the reabsorption of the produced pions in the nucleus; since such exchange pions are virtual and therefore can
have masses below � � , the process can contribute below the real pion threshold.

Experimental results : The TRK sum rule in the formulation of Levinger and Bethe did not predict an upper
energy limit for the integral over the cross section; the progress introduced by the GGT approach was to fix it to
the pion production threshold. Therefore, it is useful to compare with experimental cross sections only up to this
limit, where real meson production does not occur. In early experiments, it were mostly the limited experimental
maximum photon energies which founded the belief that the original proposal of GGT, � 	 � 	 � � � " �F7 &�� , indeed
expresses the total absorption cross section. In modern experiments, it turned out that � 	 � 	 � � �F7 &�� forG � ���

, and slightly decreases to lower G , matching the GGT enhancement factor,
� � � � "

, for the deuteron
(see [Ahr85], and references therein). This behavior is essentially reproduced by Weise’s extension of the GGT
sum rule.

The most complete collection of integrated cross sections of all elements up to � � � � has been published by
PUGET, STECKER & BREDEKAMP (PSB) [PSB76], on the basis of data tables from the National Bureau of
Standards. They have distinguished between one and two nucleon emission cross section for ��% 	���� ��� , and
the contribution for

	���� ��� % ��% ��"���� ��� , i.e. up to the pion threshold. Their method of data reduction has
been quite crude, and also extrapolations have been included in the analysis, therefore their results cannot been
considered as more accurate than to about

�����
. Their integrated cross sections exceed � � 7 &�� for almost all

nuclei, which is at the upper limit of the results published by experimental groups [Ahr85]. Thus, even though
the PSB results are basically consistent with other publications, the possibility of a systematic error has to be
taken into account.

1.3.1.3 Statistics of nucleon emission

Selection rules of the shell model : In the shell model, quantum mechanical selection rules also determine both
the excitation of a nucleus and and its decay by particle emission. For radiative excitation, it can be shown that
the most effective

� �
transitions lead to

� � � � � � � and
� � � � � � � , and require a change of parity. The latter

condition implies that transitions between � � �
and � � �

states are forbidden. One finds that for low energy
excitation levels these conditions are almost never met; thus, low energy excitations will proceed mainly over
higher multipoles, and have therefore a low transition strength. For excitation energies in the range

��� � � ��� ��� ,
however, some transitions allowed for

� �
excitations exist.
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An important consequence is that the electromagnetic excitation of nuclei mostly leads to states with � �� �
.

For the decay of the particle by emission of composite fragments with � � �
, i.e. deuterons or

,
-particles,

this means that also the final state must have � �� �
. For light

" � nuclei, we know that the ground state has� � �
; an state excited by an

� �
transition then must have � � �

. Hence, an
,

particle can only be emitted
by a transition to an excited state of the final nucleus (which is also a

" � nucleus and has a ground state with� � �
). This is particularly important because one finds that the separation energies of

,
particles are in light" � nuclei mostly below the separation energies for single nucleons. In contrast to the situation in heavy nuclei,

where the Coulomb barrier suppresses the emission of
,

particles, this would — without effect of selection rules
— imply that

,
emission is energetically favored over nucleon emission. However, since the lowest � � �

level
in such nuclei has generally an excitation energy of

� ����� ��� , the effective
,

separation energy is shifted to
about � ��� ��� , far above the threshold for nucleon emission. In odd nuclei, the effect of the selection rule is
less strict, because

� �
transitions with

� � � �
are allowed, but it still applies partially by ruling out certain

transitions. For single nucleon emission, isospin selection rules hardly set constraints, because the total isospin
of the nuclear ground level is changed by a half-integer step in this case, so transitions from all

� �
excited levels

to the ground state are possible.

Thermodynamics of nuclei : In heavy nuclei, and at excitation energies above about � ��� ��� , the shell model
is only of minor use for the description of nuclear reactions. Rather, due to the high density of quantum states, it
can be replaced by a statistical description of the nucleus as a thermodynamical fluid, which is commonly called
the statistical model of nuclei. It assigns a nuclear temperature � to the excited nucleus,

� �5��� � � �

,��  , � � �
� � �

� � (1.3.5a)

where
� �

is the excitation energy and
�

is the level density parameter, that is connected with the nuclear entropy
� � � � � � � . � may depend on the details of nuclear structure, but is for heavy nuclei well approximated by

� < G
#  � ��� $ �

(1.3.5b)

The proportionality to
� % G reflects the takeover from the shell description (individual levels) to the statistical

description (continuous level density) with increasing nuclear mass.
The emission of nucleons from the “heated” nucleus can now be considered as an evaporation process,

leading to a modified Maxwell distribution

�
�
� ��� � � <��2 � � ��� � �����

� � �
� � � (1.3.6)

for the emission probability of a fragment
&

with an energy � , where the normalization constant is chosen in a
way that

�
��� � �

� ����, � � �
and � �

( � �5� � � 	�� � for an excitation energy
� �

. �2
	 � ��� is the cross section for
the inverse process, i.e. the formation of the incident nucleus in a reaction of

&
with the residual nucleus.

Nucleon evaporation and multiplicities : The statistical model also allows an estimate on the nucleon multi-
plicity, � , as a function of the excitation energy,

� �
. If we assume that all emitted nucleons are neutrons, we

obtain 2 � �
�

2 �

� � � ! � � � � � 	 � �
�

� �
# ����� ! � � � � 	 � �

�
� �

# � (1.3.7)
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where 2 � is the cross section for the emission of � or more neutrons, 	 � is the separation energy for � neutrons,
and � �

� � �5� � � 	 � � is the nuclear temperature of the � -th compound nucleus (after the emission of the � -th
neutron). Successive application of Eq. (1.3.7) over all � with 	 � % � �

gives the average neutron multiplicity
at the excitation energy

� �
; this calculation has been performed by LEVINGER & BETHE [LB52] for five heavy

elements, and they found that the result can in all cases be well approximated by the simple linear relation

�
�5��� � � � � �

	 �
�

	 	
�

(1.3.8)

So far, we only have considered multi-neutron emission, which might be a good approximation for heavy nuclei.
For charged particles, the Maxwell distribution of emitted particles is distorted and Eq. (1.3.7) is no longer
valid. However, if we ask for the total nucleon multiplicity, we can apply the following argumentation to
keep Eq. (1.3.7) and Eq. (1.3.8) as useful approximations: For � �

� � � � 	 %� , protons and neutrons behave
similar; this is almost always the case in light nuclei, where proton emission plays a role. On the other hand,
if � �

� � � % 	 %� , proton emission is suppressed, and their contribution to the total distribution of emitted
nucleons is not bigger than the distortions of the Maxwellian by quantum mechanical effects. In any case, the
assumptions leading to Eq. (1.3.7) can still be used, and Eq. (1.3.8) remains valid within the limits of application
of the statistical model, with �

�5� � now being the function for the total nucleon multiplicity.

Branching ratios of evaporated particles : Eq. (1.3.6) allows a crude estimate of the proton to neutron branching
ratio $ � � � in photodisintegration. Since �2 � is constant in good approximation and the difference between
protons and neutrons in nuclear reactions is only the electric charge, we can set

�2 � � ��� �
-

�2 � � � � 	 %�� � � - 	 %� �
and get for

� � � 	 �
� � ( � �

� �
$ � � � �5��� � � � � � � ��� , �

� � �
� ��� , � � � 	�

� 	�

�
	 %�
� �

� � � �����
� � 	 %�

� � � �
(1.3.9)

This formula reproduces the gross behavior of the observed
'  � branching ratios with nuclear mass, if we

set
� � � � � MeV (the energy of the giant resonance) and evaluate the nuclear temperature from Eqs. (1.3.5).

Levinger has calculated the proton branching ratio within the statistical model (with probably much less crude
simplifications) for a bremsstrahlungs photon spectrum and found good agreement with the experimental values;
these fall from more than

=����
for light nuclei ( E %� ���

) to less than
� �

for E � ".= . For light nuclei the statistical
model overestimates the proton ratio a bit, while for very heavy nuclei the experimental values fall of much less
rapid than the prediction, due to direct disintegration processes.

1.3.2 High energy nuclear reactions

1.3.2.1 Nuclear fragmentation and the abrasion-ablation approximation

The abrasion-ablation model : In Sect. 1.3.1.3 we discussed the evaporation of particles from an excited state
of the nucleus within a thermodynamical approach. We have not yet considered, however, how this excitation
exactly happens in nuclear interactions. Also, we may ask whether there are limits of applicability of the simple
description of the nucleus as an idealized Fermi gas.
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Figure 1.18: Mass yield distribution function for high energy proton induced fragmentation of heavy ions.

The main subject of this section is the estimation of the excitation energy transformed to the nuclear system
in direct reactions of its constituents. The abrasion-ablation model (see, e.g. [ODR79, Hüf85]), which was
designed to describe nucleus-nucleus reactions at high energy, divides the nucleons in both reaction partners into
participants and spectators. The participants are those nucleons which immediately interact and are swept away
with the “fireball” of the reaction process (abrasion), while the spectators, i.e. the nucleons outside the interaction
zone, take part only peripherally by being excited by some participants or secondary reaction products recoiling
through the spectator matter, and by surface deformation energy of the spectator pieces. This highly excited
spectator piece, which will be called the prefragment in the following, may have a mass G 	 � %� G , where G
is the original mass of the interacting nucleus. Subsequently it will lose further nucleons by evaporation, or
even may break up into little pieces (ablation). In astrophysics, we are most interested in what we may call the
surviving nucleus, i.e. the heaviest fragment being produced in a particle-stable state.

Evaporation vs. fragmentation : It is a matter of debate how the fragmentation of the excited prefragment
proceeds. The thermodynamical idealization predicts the successive emission of light nuclear pieces, mainly
single nucleons, until the heavy fragment becomes particle stable at some mass G � . This is what we called
“evaporation”, and which is more generally called spallation in nuclear physics. However, in particular for very
heavy ions excited in collisions, this is in contrast to the observation, which shows rather a break-up into several
pieces with G � � ���

. This is generally called multifragmentation, and is most beautifully explained as a phase-
transition process: The heated prefragment nucleus transforms into a gaseous state, and then condensates out
into fragments; for a condensating Van der Waals gas one predicts a fragment mass distribution 2 � G � ��% G $ � ��
�

.
Empirically, spallation is distinguished from multifragmentation by the mass of the heaviest fragment rel-

ative to the incident nucleus, ' �-.�� , with ' � G �  G . The distinction is most evidently seen in the empirical



68 CHAPTER 1. PHOTONUCLEAR INTERACTIONS

mass yield distribution formula
� � ' � %� � � � ' $ 	 � � � ����� � 	 � @ ' � � (1.3.10)

which is found to be valid for proton induced reactions on targets with G � ��� , and plotted in Fig. 1.18[Hüf85].
The curve shows two branches, divided by the minimum at ' � �
 : The lower one ( ' %

�
 ) can be called the
multifragmentation branch, and follows a power law similar to this expected for a Van der Waals gas condensa-
tion, the higher one is the spallation branch, where only one heavy fragment is produced and all other fragments
have G � % ���

. Obviously, this difference does no longer exist for G % 	��
; it is reasonable to assume that

multifragmentation for lighter nuclei leads to a complete shattering of the nucleus into pieces with G � % ���
.

Excitation mechanism for the prefragment : In the abrasion phase, there exist two possibilities to excite the
spectator prefragment; surface deformation and collision with recoiling participants, called frictional spectator
interaction (FSI) [ODR79]. The excitation energy per deformed surface area is about

� � ��� � � $ 	 , and was
first proposed as the dominant excitation mechanism of the nuclear fragments. However, numerical simulations
show that the FSI process leads to an energy deposit of about

@
MeV per nucleon in an Fe-N collision, which is

considerably higher than the surface deformation value in this case.
The FSI energy deposit for a single recoiling participant nucleon is here assumed to be described by a simple

energy loss equation , � �
� �, � � � 

� � � 2�� � �5� � ��� ��	�� ��� � � $ � � (1.3.11)

where 2�� � �5� � � # 	������ ��� � �
	 $ � $ � is the elastic nucleon-nucleon cross section, � < � � ��@ � � $ 
 is the nuclear
density and



� �
� � � � = is the average inelasticity of a elastic nucleon-nucleon reaction. Consequently, over an

average distance of a nuclear radius an energy

3 � � 6 � � � � ��@�� ��� � G � ��
 (1.3.11a)

is thermalized in the nuclear matter. Thus the maximal energy which can be thermalized by a single nucleon is
of the order of the Fermi energy

����� 	���� ��� for medium mass nuclei, but can be much larger in very heavy
nuclei.

We must note, however, that the FSI approach does no longer apply if the energy of the crossing participant
nucleon is smaller than

���
; this would correspond to the situation that the “participant gas” is cooler than the

“spectator gas”, and a net energy transfer to the spectators would violate the law of entropy. For
� �
� � � � �

, we
may estimate the excitation energy of the residual nucleus from the Fermi gas picture, under the assumption that
the participant is removed. Since this nucleon may have been on any shell level in the nucleus, the excitation
energy of the nucleus can range from zero to

���
, and we can estimate from the Fermi distribution, � �5� ��% � � ,

that 3 � �
6 � 	 � � � . If
� �
� � " � �

, some nucleons may be too deep in the potential to be removed; in this case,3 � � 6 � �
	 � �
� � may serve as a crude estimate.

Excitation energy distribution at very high reaction energies : At very high energies, one finds experimentally
that the distribution of fragments is almost independent of energy. This leads to the reasonable assumption that
the ability of the nucleus to absorb energy saturates. From data on proton-ion reactions at

= # ��� proton energy
one can derive the excitation energy distribution [Hüf85]

� 	 ���5��� � � �

3 � � 6 ������ � 	 � @ � �� � � G � � (1.3.12)
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where
� � � � � � � ��� is the mean energy removed by evaporation of one nucleon, and 3 � � 6 � � � � G  	 � @ �# 	�� ��� $�G ; assuming that the number of participant nucleons is small compared to the number of spectators, thusG 	 ��� G , we can say that in the high energy limit the prefragment gets an average excitation energy of

	�� ���
per nucleon, corresponding to a nuclear temperature 3 � 	 � 6 � =�� ��� . Clearly, we have to demand that the
energy released in the interaction

� � �
	 ( G 3 � � 6 . There is an obvious discrepancy between the average excita-
tion energy derived from Eq. (1.3.12),

� 	�� ��� , and the value of
@�� ��� derived from Eq. (1.3.11) in numerical

simulations [EGLS92]; this is in correspondence to our expectation that Eq. (1.3.11) tends to overestimate the
thermalized energy if the Fermi-motion of the spectator nucleons is neglected.

1.3.2.2 High energy interactions of photons and nucleons

Baryon resonances in nuclei : At photon energies of order
������� ��� and above, we can expect that the pho-

ton starts to interact with single nucleons. We know from Sect. 1.2.1 that the most effective mechanism of
photon-nucleon interaction is the excitation of baryon resonances, in particular the

� � � � 	 ��� resonance, which
is also called isobar excitation in nuclear physics. Isobar excitation in nuclei is basically a quasi-free process,
which means that the excitation and decay of the baryon resonance is widely unaffected by the other nucleons.
However, this is not exactly true: the possible coupling of the

�
with other nucleons, called the

�
-hole-system,

shows some decay channels which cannot be observed in free
�

excitation; in particular there is the possibility of
quasi-elastic � � production, equivalent to vector-meson production at higher energies. This gives an additional
contribution to the coherent production of pions at nuclei, as discussed below. While the total excitation strength
of the

�
-resonance is approximately independent of G , there is some evidence that the excitation strength of the

higher resonances decreases with nuclear mass; but data are sparse for ��� �� "������ ��� [Ahr85].
In any case, the total photoabsorption cross section of bound nucleons in the baryon resonance region is

different from that of free nucleons; however, it can be obtained to first approximation from the photoabsorption
cross section of the deuteron, which is known in great detail. Due to the Fermi motion of the nucleons, the ap-
parent widths of the baryon resonances in the NRF are broadened by about

=���� ��� ; the same applies to the pion
production threshold, which is smeared out by the Fermi motion. But even below the pion production threshold
at about

��".=
MeV in the nucleon rest system, the wings of the

�
resonance may influence the photonuclear

cross section also at lower energy, since it can decay also by virtual pion exchange in the nuclear matter.
Considering quasi-free resonance excitation, we may generally assume that the resonance is produced with

the interaction mass of the process, given in the nucleon rest frame. Therefore, we may completely neglect the
quantum mechanical properties of the resonances, and apply isotropic two-particle kinematics over the whole
resonance region. Then, the momentum change of the baryon resonance in the rest frame of the nucleus is' �
� � � �  � � ' �

; the short lifetime of the resonance, corresponding to a propagation length of
� � = � � , does

not allow an escape from the nucleus before decay. Thus, proton and pion are emitted inside the nucleus, and
we have to consider final state interactions with surrounding nucleons. Clearly, for heavier resonances we may
expect also other decay channels, but we cannot expect that the detailed properties of free baryon resonances
found are exactly reproduced in the nucleus. We therefore confine ourselves to considering only the

� � decay.

Coherent meson production : Even though meson-production is generally understood as an interaction of pho-
tons with single nucleons, and although the energies involved are much greater than the nuclear binding energy,
there exist meson production channels which do not disintegrate the nucleus. This kind of process is called co-
herent meson production. It is most easily understood when we consider the 3-momentum transfer to the proton
and apply the uncertainty principle: if a momentum � is exchanged in a reaction with a nucleon, the position
of the nucleon cannot be located more accurate than

� � � ��  � , which gives
� � � � � � for � % � ����� ���  � .
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Thus, for small exchange momenta the interaction happens on the scale which is larger than required to locate
a nucleon in the nucleus, and therefore the momentum is transferred to the nucleus as a whole. Moreover, the
kinetic energy transferred to the nucleus this way is only a about few MeV, therefore we can expect that the
nucleus remains on a particle stable state, if it is excited at all. In such reactions, we can generally not assume
that the cross section simply scales with the number of nucleons, because the nucleus appears here as a unit, not
just as a collection of nucleons.

� 	

Clearly, small momentum transfers are expected mainly for
�
-channel reactions which do not involve nucleon

excitation. We already have noted that there are some differences between the possible quasi-elastic interactions
at bound and free nucleons; the main difference appears in the energy region of the baryon resonances, where
we have observed a considerable contribution of direct charged pion production in free $ � interactions. This
process is almost completely suppressed in nuclei, mainly because of Pauli blocking; it may still occur as a
“surface effect” at the nucleus, but is observed as a coherent process only with a very low cross section. On the
other hand, the coherent production of neutral pions makes up about

�
 of the total effective � � production cross
section at � � 	 , where “effective” means that the � � appears in the final state; we have to consider that there is a
reaction cross section of the same magnitude for � � production with reabsorption. Quantitatively we may state
that coherent � � production off nuclei takes about the same fraction of the total photonuclear cross section as
direct charged pion production off free nucleons.

At higher energies, diffractive vector meson production will take over the main part of the coherent photo-
nuclear cross section. Clearly, the momentum transfer in this reaction is not always small, in particular not
close to threshold, because of the large mass of the � � . More important than the coherent

� $ � � � � cross section,
however, is the effect of the VMD contribution of the vector mesons to the hadronic structure of the photon: be-
cause the transparency of nuclear matter to vector mesons is much lower than to photons, the VMD contribution
causes a shadowing effect for high energy photonuclear interactions, due to mutual obscuration of the nucleons.
Accordingly, the mass scaling of high energy nuclear reactions is 2 � G � � � �'% G �

with
, % �

; from experiment
one finds

, < � � ? �
. This shadowing affects coherent and incoherent reactions in the high energy region in the

same way.

Pion fireballs : At very high energies, � �� @������ ��� , a process corresponding to multipion production is
expected to dominate the cross section. In the free nucleon case, multipion production was interpretated as
the fragmentation of a “fireball” into quark-antiquark pairs. In the vicinity of other nucleons, however, we can
expect that there exist other channels to deposit the energy of the fireball. Thus, even though the production
mechanism happening sub-nucleon scale can be assumed to be quasi-free, the pion fragmentation process might
be not. There exist little work on the absorption of pion-fireballs in nuclear matter, so we have to apply a simple
argument by analogy: From the general similarity of photonic and hadronic processes at high energy we may
justify the assumption that photonuclear interactions in the “fireball-region” follow the same laws as interactions
between nuclei and protons. Thus, we assume that a small number of nucleons are immediately swept out of the
nucleus by the fireball, while the remaining prefragment gets an excitation energy close to its saturation limit.
We can then use empirical formulae, e.g. Eq. (1.3.10) or Eq. (1.3.12), to derive the further fragmentation of the
residual nucleus.

� �

The best example for this property of coherent reactions is Thomson scattering, which scales with  �

rather than  
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1.3.3 Photodisintegration processes

1.3.3.1 Photon absorption by bound nucleons

The Bethe-Peierls cross section formula : The electromagnetic behavior of bound nucleons in complex systems
is difficult to treat theoretically because of the complicated nature of the nuclear binding forces and the quantum-
mechanical effects governing them. However, for the two-nucleon system, a complete theory has been developed
already in 1935 by BETHE & PEIERLS [BP35]. For a zero range nuclear force they derived the photoabsorption
cross section of the dinucleon as

2
 	 � � � � � � 287 �, � � � � 	�
� � � � � 
 � 	�8
 � (1.3.13)

where � � �  � and � is the binding energy of the dinucleon. For the free dinucleon, e.g. the deuteron, this is��� � � � ��� @�� ��� . We note that, due to the division by two small numbers,
, � and

� �  � � � 	 � , 2
 	�( 287 � for� �� �
; the maximum is reached for � � � . We will call 2  	 the Bethe-Peierls cross section henceforth.

Comparison with the experimental cross section for photodisintegration of the deuteron, 2�� , gives a discrep-
ancy to Eq. (1.3.13) by about a factor of

� � @
; this was corrected by BETHE & LONGMIRE [BL50] by considering

the effective range � ��� of the nuclear force, leading to

2�� � ��� � 2
 	 � � � ���7�� ��* � ��� (1.3.13a)

with

* � �
� � ����� �

(1.3.13b)

this removes the discrepancy to the experiment completely for � ��� � � � @�? � � , which is close to the range for
virtual pion exchange,

��  � � � 	 . Applying this picture to photodisintegration, we might say that the corrected
Bethe-Peierls formula describes photon absorption in a proton-neutron system by virtual pion production and
reabsorption. This gives rise to the expectation that a similar process may work in heavier nuclei below the
threshold for real pion production.

Collective excitation and the Giant Dipole Resonance : In large systems of nucleons, and for high excitation
energies, we have already pointed out that a detailed quantum-mechanical description can be replaced by sta-
tistical descriptions oriented at thermodynamics and hydrodynamics. A set of models of this kind, which was
aimed to explain the main mode of electromagnetic dipole absorption by heavy nuclei, has been proposed by
GOLDHABER & TELLER in 1948 [GT48]: They considered each the protons and the neutrons in the nucleus as
two penetrating fluids with effective charges, and described their interaction in terms of hydrodynamics. Dipole
absorption of electromagnetic radiation leads then, obviously, to a collective vibration of the proton fluid against
the neutron fluid, and therefore are expected to have a resonance shaped cross section with � 2 � ��� , � � �F7 &�� .
In fact, this Giant Dipole Resonance (GDR) is observed in nuclei and is indeed the dominant feature in the
photonuclear absorption cross section. It is often treated as a benchmark in the cross section curve, so that any
other processes are classified relative to the GDR cross section. The propositions of the Goldhaber-Teller model
are further discussed in Sect. 1.3.3.2

In the hydrodynamical model also other multipole excitations can be expected, as the magnetic dipole ( � �
)

or electric quadrupole (
� � ) excitation. For both the resonance energy would have about twice the value of the
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dipole resonance energy; however, as argued before on a general basis, both excitation modes have small cross
sections compared to the GDR, and we will see that they are not necessary to explain the total integrated cross
section for photoabsorption.

Discrete level excitations : Well separated discrete excitation levels exist in the nucleus mostly below
����� ��� ,

thus below the separation energy for a single nucleon. However, also for energies
����� ��� % � ��% � ��� ���

discrete levels can be observed as sharp peaks in the cross section, in particular those which are allowed by
� �

excitation, but their total contribution to the cross section is of order of a few percent. They can be regarded as
a structure in the background, set by the low energy wing of the GDR, rather than as an additional contribution.
Most level transitions are not allowed for

� �
excitation and therefore contribute little.

However, the situation is different in very light
'

-shell nuclei, G - ���
, in particular in those with very low

separation energies. The two most striking examples here are ��� � and � � 
 , with 	 �
� � � ��@�� ��� and 	 �

�
" � � � ��� , respectively. Both show strong

' �)� , transitions, forming broad resonances at about
��� � ��=�� ��� .

Similar low energy features are seen in most odd- G '
-shell nuclei, but less pronounced; they merge with the

giant resonance and just cause a very broad shape of the cross section down to threshold. Only the
" � nucleus

� � 	 shows a very clear and sharp GDR, due to its high separation energy for single protons or neutrons. The
low energy phenomena disappear mostly in the � , shell nuclei beyond the CNO group, where the shell structure
becomes apparent as a substructure of the GDR.

As we have already seen in the discussion of isospin selection rules, discrete levels also govern the emission
of composite daughter nuclei, mostly

,
-particles, trinucleons and deuterons. These reactions have generally a

very low cross section compared to single nucleon emission, and appear mostly in the giant resonance region.
We will disregard them in the following.

Direct processes and nucleon evaporation : In the same manner as for photohadronic interactions, one can
expect that for higher photon energies, or wavelengths smaller or comparable with the size of the nucleus, the
interaction will take place with single nucleons or nuclear substructures rather than with the nucleus as a whole.
This is essentially equivalent to a breakdown of Siegert’s theorem; the nucleon does no longer behave as a part of
a system which is excited in total, but rather as an independent particle. The simplest form of a direct interaction
would be the Compton scattering of a photon on a proton in the nucleus; however, this interaction has a very
small cross section. We have already seen that the photon absorption cross section by a nucleon pair is larger by
many orders of magnitudes, and therefore one can expect that the nucleon pair is the smallest structure which
can considerably contribute to the photoabsorption cross section of nuclei. In fact, this process is really observed
and is called the quasi-deuteron process, and was proposed by LEVINGER [Lev51]; we will discuss this process
in Sect. 1.3.3.3.

At still higher energies the substructure of the nucleon itself becomes apparent, and baryon resonances can
be excited. The physics of this process, as well as of other processes in the high energy region, has already
been discussed in Sect. 1.2. In contrast to there, however, we are here not interested in the fate of the interacting
nucleon — it is generally removed from the nucleus in the interaction — but rather in the side effects the
interaction has on the neighbor nucleons. This is, to a certain grade, also true for the quasi-deuteron process.
As we already discussed in Sect. 1.3.1.3, energy deposition in a nucleus can be treated as heating, followed by
nucleon evaporation from the Maxwell-tail of the energy distribution, or by fragmentation of the nucleus into
small pieces.
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1.3.3.2 The giant dipole resonance

Resonance frequency in collective excitation models : Goldhaber and Teller suggested three different hydro-
dynamical approaches to describe nuclear vibrations: In the first model they assumed that the protons vibrate
collectively around their original position in an oscillator potential, which is assumed to be the same in all nuclei,
leading to a resonance energy

�
����& independent of G . In their second model (hereafter referred to as GT-II),

they treated both protons and neutrons as compressible fluids vibrating against each other within a rigid sphere
of radius $ � G � ��
 $ < ; the restoring force is then given by the gradient of the density change of the nuclear
fluids, which is proportional to $ $ 	 , leading to a dependence

�
����&H% G $ � ��
 � # � ����� � � (1.3.14)

In their third model (GT-III) they assumed that protons and neutrons vibrate as incompressible fluids bound
together by a flexible surface. The restoring force per nucleon is then proportional to the ratio of surface and
volume, i.e. $ $ � , yielding �

����&H% G $ � � � � # � ������� � � (1.3.15)

On the basis of photodisintegration data available in 1949, Goldhaber and Teller themselves preferred their
model III and gave a more detailed description, expressing the resonance energy for self-conjugated nuclei
( E � � ) as

�
����& � � 	 6 �� 	� ��� I� $ � (1.3.15a)

where I� is the mass of the bound nucleon and 6 is the potential energy due to neutron-proton forces. An
improved version of GT-II was proposed by STEINWEDEL & JENSEN [SJ50], who connected

�
����& to the

constant term of the nuclear binding energy given in the Weizsäcker mass formula Eq. (1.3.1a), 	 � � ��= �  =�� ��� ,
as

�
����& � � 	 " � � 	 � � EG 	 �� 	I� $ 	 � (1.3.14a)

yielding
�
����& � # ����� ��� $ G $ � ��
 .

Experimental mass-dependence of
�
����& and � ����& : An early investigation of the mass-dependence of the

shape and energy of giant dipole resonance was performed by MONTALBETTI, KATZ & GOLDEMBERG (MKG)
[MKG53]. They give results for the

� $ � � � cross section of 22 elements between ��� � and � 1 	 < � . They found
an overall dependence

�
����& � # 	�@�� ��� $ G $ <�� � � , favoring the GT-III model. In contrast, in elastic scattering

experiments FULLER & HAYWARD [FH56] found a dependence rather consistent with
�
����&H% G $ � ��
 forG ��� � ; however, their results for light nuclei contradict the high precision results obtained at the Mainz linear

accelerator [ABC � 75], which are rather consistent with the earlier results of MKG.
MKG also published results on the half-width of the giant resonance; they found 3�� 6 � ��� ��� for medium

mass nuclei, slightly decreasing for heavier nuclei. For G � =�� , they found that � ����&  � ����& is roughly constant,
while for G % =��

the scattering is large and no clear dependence is visible. A more thorough investigation of
the mass dependence of the GDR width was performed by OKAMOTO [Oka58] for nuclei with G �� =��

; he
found a correlation of the GDR width with the nuclear eccentricity � , and stated that � ����& � � < � �

� with
� < � " � � � ��� and

�
�  � ����&Q% � � for

�
����&Q% G $ � ��
 . Noting that nuclei with G % =��

have mostly small
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eccentricities, one would therefore expect a constant width in light nuclei, and � ����& %� �
����& in heavy nuclei,

which is consistent with the results of MKG. One result predicted by Okamoto’s model which is also reflected
in the data is that � ����& takes local minima for double magic nuclei.

Fine structure of the GDR and shell model predictions : A different approach to explain the giant resonance
follows the shell model of the nucleus, and describes the GDR as a the coherent superposition of discrete one
particle excitation states. The model is much less successful in determining the gross G dependence of

�
����& and

� ����& ; on the other hand, it can account for the observed fine structure of the giant resonance for intermediate
mass nuclei. This fine structure is observed generally on energy resolution scales below

� � � � � ��� , on which
the giant resonance peak can be resolved in a sequence of many sub-peaks. It occurs mainly in � , -shell nuclei
and is most pronounced in the self-conjugate double magic nuclei � �

� and � C � <�� A good discussion of shell
model approaches to the GDR is given in the review by DANOS AND FULLER [DF65].

The fine structure of the giant resonance may be completely disregarded for the determination of average
properties of the photonuclear cross section. Principally, the underlying structure for these nuclei still fits in
the overall behavior of the GDR. Important for our considerations is rather the description of the GDR as a
collective one-particle excitation state, which gives rise to the expectation that the GDR is mainly de-excited by
the emission of a single nucleon. This will be checked in comparison to data in Sect. 1.3.4.3.

1.3.3.3 The quasi-deuteron process

Classical theory and the Levinger parameter : In its original form, the quasi-deuteron process has been pro-
posed as a photon absorption process for � � ��=���� ��� , i.e. in above the pion production threshold. The
limitation to high energies was applied because at low energies the wave functions of a proton-neutron pair in-
side the nucleus differs too much from that of a bound deuteron; for high energies, however, the wave functions
converge, and from 2����  2*0 � � �

���  � 0 � 	 Levinger derived the expression

2����2*0 � 	
� G $ 
<

� ��* � ���
* � * 	 � � 	 � � (1.3.16)

where � is the wavenumber of the relative motion of the proton-neutron system and * is the scattering length,
which is identified with the same parameter used by Bethe and Peierls in their calculation for the free deuteron,
Eqs. (1.3.13). This result is now multiplied with the possible number of proton-neutron combinations in the
nucleus,

� E , and averaged over all possible wavenumbers, yielding

2���� � � � EG 2*0 (1.3.17)

with � � 	
��$ 
<

� � * � ���
*



�

* 	 � � 	 � �
(1.3.17a)

The expectation value of
� * 	 � � 	 � $ � can be evaluated within a Fermi distribution of protons and neutrons with

the same maximum wavenumber � ����� � ' �  �� , where
' �

is the Fermi momentum; Levinger originally used��� � � � � � $ � and adopted the value *�� � � � 	 � � $ � as found for the free deuteron, and found � � � � "
for

$ < � � � " � � , which was later corrected to � �  for $ < � � � � � � . The parameter � is now known in the
literature as the Levinger parameter, or Levinger constant.
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The quasi-deuteron process is now mostly accepted to give the correct description of the high energy photon
absorption in nuclei; in contrast to Levinger’s original idea, however, it is rather used for energies below the
pion threshold, where the quasi-deuteron process fills the gap between the giant dipole resonance and the baryon
resonance region. To allow a consistent extension of his model to lower energies LEVINGER [Lev79] introduced
a quenching factor, ����� � � �  ��� , into Eq. (1.3.17), which reduces the cross section for low energies expected
due to phase-space reduction (i.e. Pauli blocking) of the quasi-deuteron final state. From experimental data for
� B 	 < � , he determined

� � ����� ��� . Later, a thorough investigation of the quasi-deuteron cross section for
various nuclei, obtained

�
as a function of G as

� � � � @ � G <�� ��� � ��� � (1.3.18)

which is consistent with Levinger’s result for lead [TDP89], but gives
� %� ����� ��� for light nuclei, which is

below the GDR regime. Hence, the heuristical introduction of the quenching factor does not seem to give a
consistent description of the quasi-deuteron contribution over the whole photon energy and nuclear mass range,
and the model is still only used for photon energies above

����� ��� .
The determination of the Levinger parameter has been subject to many experiments, and also to refined

calculations. The experimental results prefer consistently a value of � � � � � , hence somewhat lower than
the Levinger’s result, but still consistent.

� 
 TAVERES & TERRANOVA [TT92] recalculated � as a function ofG , using the new results on the behavior of the nuclear radius, which they identified with the root mean square
of the nuclear charge distribution; they derived � as a function showing the correct behavior in the low-mass
limit, i.e. � � � for the real deuteron. However, it is surprising that apparently the value * � � � � 	 � � $ � , used
for the scattering length and adopted from the free deuteron calculation, has never been questioned, even though
Levinger already mentioned that the classical binding energy of the deuteron, connected to * over Eq. (1.3.13b),
cannot be applied to the quasi-deuteron.

Interpretation and modification of the quasi-deuteron process : We may try to give an interpretation of the
quasi-deuteron process, in particular in view of its role for the total integrated cross section. As implied by the
GGT sum rule, the integrated photonuclear cross section below the pion threshold consists of two components,
both contributing about the same fraction: The first is the classical dipole absorption due to collective vibrations
of protons and neutrons, leading to the giant dipole resonance. The second is, in the GGT approach, the reflection
of the missing pion production cross section at �� � � , due to Pauli blocking of final states, into the low energy
regime. The physical process representing this “reflection” is the virtual pion production and absorption by a
nucleon pair — restriction to charged pionic currents allows only proton-neutron pairs as interaction partners,
which is therefore exactly equivalent to the basic idea of the quasi-deuteron process. In this way, we may expect
that � 2����F, � � ������7 � �F7 &�� � �F7 &�� ; this, however, forces a low energy restriction of the process, since
� 2*0�, � � �F7 &�� without the multiplication with � < �

.
Since the nuclear force is generally explained in terms of pionic currents, this interpretation is nothing

really new; it only gives an imaginary explanation what happens when a photon is absorbed by a nucleon pair.
However, in comparison to the free deuteron we may expect for the quasi-deuteron that the nucleon pair is much
stronger bound, to be separable from the rest of the nucleus. To give a quantitative estimate of the binding energy
of the quasi-deuteron, we may use the separation energy of an � ' pair, 	 � � . This estimate is motivated by the
� � AHRENS ET AL. [ABC � 75] stated that � %�' gives best correspondence to their experimental results. However, they erroneously

used the Bethe-Peierls cross section rather than the effective range corrected value L � , which differ by a factor of about �	� � . This is
inconsistent with LEVINGER’S ansatz, therefore their finding must be corrected to ��� � , which is consistent with the results of other
work (for a comparison and discussion of recent data see [TT92]).
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demand that the disintegration products of the quasi-deuteron must be separable from the nucleus to identify
it as a substructure of the nucleus. Using the Bethe-Peierls formalism consistently, we now have to write the
scattering length as *�� �

� � 	 � �  �� , which gives * � � � ��=
for nuclei with G � ���

and influences both the
shape of the cross section and the value of the Levinger parameter.

To quantify this, it is advisable to reformulate the parameters in Levinger’s formula, Eq. (1.3.17), in the way

2���� � � � G � � �� � EG 2
 	 � � � � �����
*
���

(1.3.19)

with �� � 	
��$ 
<



�

* 	 � � 	 � � (1.3.19a)

which now has the dimension of a wave number and will be called the normalized Levinger parameter. Here we
have used that the effective range correction factor enters in both the classical Levinger parameter and into the
deuteron cross section, and cancels in the final expression. Normalizing all energies to the binding energy of the
free deuteron, � � �  ��� and

�
��� � � ���  ��� , we can write

2
 	 � � � � �����
*
���

� # � � ��� � � 
 $ � � � �
����� 
 � 	�8
 �

(1.3.19b)

From comparison with the Bethe-Peierls formula, we note that

2
 	 � � � � �����
*
���

� 2
 	 � � � ���7�
* � � D � ��� �

i.e. the predictions of the classical Levinger formula are not changed in the high energy regime, where it is
conventionally applied. This means that the Levinger parameter, which is found in experiments for �� ����� ��� ,
should still apply to our modification; we obtain from � � = � @ that

�� � � � � � @ � � $ � for � ��� � ��� . If we
evaluate Eq. (1.3.19a) for with *

��� � � � ��=
, using Levinger’s expression for

� � * 	 � � 	 � $ � � [Lev51], we get�� � � � � � � � = � � $ � for � ����� � � �  � � � � � � $ � and $ < � � � � � � . For $ < � � � � � � the discrepancy can be almost
removed; however, we will not put too much emphasis on the determination of the Levinger parameter, noting
that Levinger’s ansatz contains many simplified assumptions and may be subject to reconsideration on a better
founded level than applied here; we note heuristically from comparison with the � � � � $ � ' � ��, cross section, that
our modified quasi-deuteron model gives an excellent representation of the shape of the data. We may therefore
use Eq. (1.3.19) as a cross section formula for the � ' -emission cross section over the whole energy range, and
apply the Levinger parameter which is empirically found at high energies.

Nucleon emission in the quasi-deuteron process : Essentially, the quasi-deuteron process is a two-nucleon
emission process, which has been emphasized in our modified model. Moreover, it is a direct process, because
the quasi-deuteron interacts as an independent particle pair. Therefore, the two nucleons can be emitted from
any shell level, and the residual nucleus is likely to be in a highly excited, possibly particle unstable state. The
kinetic energy of each of the emitted nucleons is approximately half the photon energy, reduced by the quasi-
deuteron binding energy; thus,

� �
� � %� � �
for � � %�  ��� ��� . Up to this energy, we can assume that the mean

excitation energy is about
�
	 � � � � � ���9� . For higher photon energies the emitted nucleons have

� �
� � � � �
, which

allows energy transfer by the FSI process. From Eq. (1.3.11) we see that the maximum excitation energy per
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emitted nucleon in a medium mass nucleus is about
"���� ��� ; assuming that the particle cannot be emitted (on

average) with less that the Fermi energy, we can assume that this maximum is reached for about � �� ��"���� ��� ,
thus above the pion threshold. The thermalized energy at this point would be about  ��� ��� , which gives rise
to the assumption that

� � � �
	 � � � � � ����� holds up to the pion threshold in first approximation, and is likely to

remain constant above.

1.3.3.4 Photodisintegration in the baryon resonance region and beyond

The cross section of complex nuclei in the baryon resonance region : In the energy region above the pion
production threshold, � � �� ��=���� ��� , the photonuclear cross section is dominated by the excitation of baryon
resonances. The total photoabsorption cross section in this region scales linearly with nuclear mass, but the
cross section per bound nucleon is different from the photohadronic cross section for free nucleons. It is best
estimated from the empirical photoabsorption cross section for the deuteron, thus we may write

2 � G � � � � � GHI2 � � � � � 1�
� I2 � � � � � �
	 2�� � � � � � � D � � % � � %� � # ��� �

(1.3.20)

We will give an empirical expression for I2 � � � � in the next section. Since the excitation of baryon resonances
is strongly coupled to the

� � system, the cross section is strongly reduced due to the decrease of the available
phase space below the threshold for real pion production; it is, however, not zero as in the free case, because the
pion may be emitted as a virtual particle and reabsorbed by another nucleon. We have already interpretated the
quasi-deuteron effect as the realization of this process. Hence, we can expect that the low energy wings of the� � � � 	 ��� resonance have some influence on the quasi-deuteron cross section, which cannot be predicted by the
classical theory, treating the nucleon as structureless. Also, the production cross section threshold of real pions
will be somewhat diffuse due to the Fermi motion of the nucleons.

Kinematics of quasi-free pion production : Above the pion threshold, the excitation and decay of baryon res-
onance can be considered as quasi-free scattering of photons on nucleons. The decay of the resonances will
mainly proceed in the

� � channel; the kinematical range for kinetic energy of the outgoing nucleon and pion
are shown in Fig. 1.19. We see that in most cases the nucleon has enough energy to be separated from the
nucleus, but there is some probability left that the nucleon remains bound. However, we have neglected Pauli
blocking effects here, which may change this result by reducing the probability for a small momentum transfer
in a quasi-free reaction; in the following, we will assume that the participant nucleon will be removed from the
nucleus. In the peak of the

� � � � 	 ��� resonance, � � � 	 "���� ��� , the energy of the emitted nucleon is hardly
larger than the Fermi energy; this has to be considered when final state interactions are to be taken into account.
The simple FSI treatment, guided by Eq. (1.3.11), may give inadequate results here; rather we should apply the
Fermi gas model with

� �
� � � � �
, leading to 3 � �
6 � 	� � � . This can be certainly only considered as a lower

limit for the average thermalized energy; from experiment it is known that particularly the emitted pions lose a
considerable fraction of their energy in final state interactions.

Pion reabsorption : An important secondary process connected to pion production in nuclei is the reabsorption
of the emitted pion by the surrounding nuclear matter. Real pions cannot be absorbed by single nucleons; the
smallest substructure responsible for pion reabsorption is thus a pair of nucleons, similar to the quasi-deuteron
absorption of photons; one may therefore call this process the pionic quasi-deuteron effect [VG94]. Since the
energy transferred to the nucleon pair is of the order of a few hundred MeV (pion mass plus kinetic energy),
we can assume that the reabsorbing nucleon pair is always removed from the nucleus; we will call them sec-
ondary participants, because they are more directly connected to the pion production process than the other,
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Figure 1.19: The kinematical range allowed for decay nucleons (left panel) and pions (right panel) from the
� � � � � � � � reaction in the NRF, as a function of photon energy

� �
. Solid lines indicate average values;

in the left panel, the approximate Fermi energy of nucleons is indicated.

spectator nucleons. Experimental results obtained at the Bonn synchrotron [AEH � 81] for � � 	 suggest that the
transparency of nuclear matter to charged pions, i.e. the fraction of the charged pion production cross section
to the total photoabsorption cross section, is about

=����
; naively we would expect that it scales approximately

with G � ��
 , since the probability of reabsorption should be proportional to the nuclear radius. Comparison of
data obtained on � � 	 ��� � 	 � and

� B 	 < � seem to indicate that the total pion transparency changes from
� @����

for
carbon to

� 	����
for lead, confirming basically the scaling assumption [VG94].

Photonuclear reactions at the highest energies : Considering resonances above the
� � � � 	 ��� , we have already

noted that a detailed treatment of their excitation and decay, as in the free case, is barely possible. Neither
their excitation strength nor their decay modes are sufficiently known in the nuclear environment. However,
we may discard this problem, noting that at energies above about

@������ ��� photonuclear reactions are domi-
nated by fireball processes, leading to the saturated excitation of the residual nucleus. A detailed treatment of
primary and secondary processes would therefore barely make sense, and we have to switch to an empirical
description of the excitation of the residual (prefragment) nucleus, as given by Eq. (1.3.12). Since the number
of evaporated nucleons in this energy range is generally much larger than the number of participant nucleons, it
is justified to neglect the primary interactions altogether and treat high energy photodisintegration as an entirely
thermodynamical process.

The problem occurring here is the possibility of multifragmentation. So far we have understood photodisin-
tegration as a process removing some nucleons from a nucleus, and leaving over a residual nucleus with its mass
close to the incident one. In multifragmentation, this treatment is no longer justified, because the fragments
will have masses much below the incident mass, and it may be not possible to choose the heaviest fragment
unambiguously. We may therefore distinguish two ways to treat highest energy photodisintegration, marking
the extreme limits of possibilities: (

�
) the nucleus is shattered into little pieces at once, thus more or less de-

stroyed in a single interaction; (
���

) the nucleus behaves as in the usual thermodynamical approximation, and
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evaporates nucleons following Eq. (1.3.8). Taking 3 � � 6 � # 	�� ��� $ G from Eq. (1.3.12), possibility (
���

) would
mean �

� G � � �� G , while possibility (
�
) always sets �

� G � � G . Reality is supposed to be somewhere in between;
to stress the difference between high and low energy photonuclear reactions, we will use the term photodisinte-
gration only for small step spallation processes, and the term fragmentation for processes proceeding in Giant
Steps [Col59].

1.3.4 Photodisintegration of cosmic ray nuclei

1.3.4.1 Inverse photodisintegration in astrophysics

The continuous mass loss approximation : When we consider UHE cosmic ray protons propagating through a
photon background, the basic idea is that we can treat the proton as one particle all the time, which loses its en-
ergy in subsequent interactions. In some approximation, we can consider the energy loss process as continuous,
and determine the loss time scale as the time over which the proton loses a considerable part,

� � � $ � � ��	��
,

of its energy. When considering heavy nuclei, it seems at first that this idea is no longer applicable: The nucleus
changes its “identity”, expressed in proton and neutron number in every reaction. However, in the preceding
section we have worked out some features of photodisintegration, which allow to see also the nucleus as one
particle evolving in a photodisintegration chain, regarding its mass number G as a quasi-continuous quantity of
state. The facts justifying this approach are the following:

1. Most photodisintegration reactions remove only one or two nucleons from the nucleus; thus, the mass
evolution proceeds mostly in small steps,

� G " G .

2. The average properties of the photonuclear cross section change sufficiently smooth with mass.

3. The Lorentz factor of the nucleus is almost unchanged in a disintegration interaction.

The latter statement arises from the fact that the energy and momentum transfer of the photon to the nucleus
in the NRF is negligible compared to the nuclear mass; in its usual meaning, we may therefore say that the
inelasticity of a nuclear interaction, with respect to the Lorentz factor of the surviving heavy fragment, vanishes.
However, if we consider the mass loss due to photodisintegration, the energy loss in the LF is

� � � $ %'& � � ,
and we can define the inelasticity of photodisintegration as


��9� � � � G � (  � �� ����� � � � � � GG �
�
�
� � � � (1.3.21a)

and accordingly the efficiency function� �9� � �5� G � ( 
��9� � �5� G ��2 � � �!� G � (1.3.21b)

and the nucleon yield function

� � � �5� G � ( �
� � �5� G ��2 � � �!� G � � G � � � � �5� G � � (1.3.21c)

where �
� � � � G � is the average nucleon multiplicity as a function of photon NRF energy and mass number. From� G " G follows


��9� � � � G � " �
, which allows us to consider the evolution of the nucleus as a continuous mass

loss. The disintegration loss function,

8
$ �0 � ! , can then be defined as in Eq. (1.1.45), and analogously we define

here the nucleon yield rate



80 CHAPTER 1. PHOTONUCLEAR INTERACTIONS

�
� � � � G � � G 8

$ �0 � ! � � � � G � �
(1.3.21d)

As in particle physics, we will investigate different disintegration processes separately, and determine the total
efficiency or yield rate as the sum of all partial rates.

In contrast to the photohadronic energy loss of a single proton, which is not limited in time, the mass
evolution of a nucleus has a well defined end. This is, however, not the disintegration down to the proton,
which would make problems because

� G " G is no longer valid for G % ���
. Fortunately, nature has drawn

a well defined separation line between light and heavy nuclei, by the unstability of nuclides with G �  andG � =
; at G < ���

, the photodisintegration chain drops almost instantaneously to G � "
, thus the relic nucleus

has to compete with primary
,

particles, which have a cosmic abundance about
���

times larger than that of
all heavy nuclei together. Therefore, we may neglect nuclear masses of G % ���

in disintegration chains and
consider the interesting mass range for astrophysically relevant heavy nuclei

��� - G - ���
; for heavier elements,

the abundance drops again by about three orders of magnitude. The assumption of small step mass losses
is generally not true in the fragmentation region, i.e. for very high energy interactions: here, we may apply
the limiting case of complete destruction of the nucleus at once, and treat this process as a quasi-absorption
process acting parallel to photodisintegration. The absorption time scale is then easily given by Eq. (1.1.45)
with replacing the efficiency function by the interaction cross section for fragmentation.

Even though our main interest is directed to heavy nuclei, we will briefly discuss the photodisintegration
cross sections of light nuclei. In particular the

,
-cascade, i.e. the subsequent photodisintegration of

,
-particles

into single nucleons, is of great interest in astrophysics due to the high abundance of � � � .
Rapid and slow disintegration chains : In Sect. 1.3.1.1 we have briefly discussed the branching ratios of proton
and neutron emission from excited nuclei, and the influence of the Coulomb barrier in heavy nuclei. This leads
to an interesting conclusion: A heavy nucleus, G �� 	��

, which generally shows a considerable neutron excess,
will always be more likely to emit a neutron than a proton in a photodisintegration event. Generally, we can
expect that a � � -unstable nuclide is produced in such a reaction, which decays after a certain time and moves
the nucleus back to the valley of stability; for G � "��

, we often find the situation that there exist many stable
isotopes, and the conclusion is here that the evolution in a photodisintegration chain goes along the isotopes with
the lowest neutron number for every E . If the nucleus moves into the � � unstable region, we have to compare
the lifetimes for beta decay, which are mostly of the order of minutes, hours or even days (

� ��� 	 � ��� � / � � ),
with the disintegration rate. For a nucleus with UHECR Lorentz factors, $ %'& �� ��� �

, a � � -unstable isotop may
travel distances of order

� � � -to- � ' � before decay; if the mean free path for photodisintegration is shorter than
this, additional neutrons can be removed, drawing the particle deeper into � � -instability. A rough inspection of� � -lifetimes and

'  � -emission branching ratios shows, that in this case the neutron excess of the nucleus can
be fully removed, before proton emission can compete or � � lifetimes become sufficiently short. We will call
this situation rapid photodisintegration, allowing to set E � � even for heavy nuclei in a photodisintegration
chain. In extragalactic transport, however, photon densities are mostly so low that interim � � decay is allowed;
we call this slow photodisintegration, with E � E � 0 � G � over the whole range.

Clearly, the difference is only important if we want to consider very heavy nuclei with G �� =��
; except the

nuclei around � � � � , these play almost no role in astrophysics because of their very low abundances. Nevertheless
the possibility for the nucleus to evolve off the valley of stability is important to note: it shows that there is little
sense in emphasizing the specific features of photonuclear cross sections of individual nuclides, because we
generally have to average over a broad range of partially unstable isobars for any given mass number.
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Mass scaling functions : From preceding discussion we may draw the conclusion that a nucleus evolving in
a photodisintegration chain can be completely described by its mass number G and its Lorentz factor $ %'& . We
have also seen that photodisintegration only changes G , not $�%'& ; the relevant functions determining , G  , � are,
however, dependent on $*%'& and G . The loss time scale can therefore be written as a two-parameter function,8
0 � ! � G � $*%'& � . The situation can be even reduced to a one dimensional problem, if the nucleon yield function

obeys a mass scaling law � 0 ��5� � G � � � � ��� 0 ��5< � G � I� � � � � � 0 ��5� � G � � � (1.3.22)

where �
0 ��5< � G � and �

0 ��5� � G � are called the mass scaling functions for the disintegration process � , and I� � � ���
is called the normalized efficiency function. Inserting in Eq. (1.1.45) and Eq. (1.3.21d), and using the scaling
properties of Eq. (1.1.49) in the limit $ %'& � � � �

, we immediately obtain8
0 � ! � G � $*%'&�� ��� 0 ��5< � G � I8 0 � ! � $*%'& � 0 ��5� � G � � �

(1.3.22a)

This scaling law generally requires the scaling of all relevant energy scales in the NRF with # � 0 ��5� � G � $ $ � , e.g.
threshold energy, resonance energy and width. Writing the threshold energy as � �	
	 � I� 	
	  � 0 ��5� � G � , and defining
the reference Lorentz factor as in Eq. (1.2.31a) by $ < � ��� <' I� 	
	 , we can write the loss time scale and in power
law backgrounds as 8

0 � ! � G � $*%'&�� � � � < � � � I; 0 ��5) � � 0 ��5) � G � � I$ ) $ �%'& � (1.3.23)

where the efficiency coefficients
I; 0 ��5) � are defined as in Eqs. (1.2.31) with using the normalized efficiency func-

tion, I� � � � I� 	
	 � in the integral. �
0 ��5) � G � is called the power law mass scaling function with index * , given by

� 0 ��5) � G � ( � 0 ��5< � G � � � 0 ��5� � G � � ) $ � �
(1.3.23a)

For the special case of power law type scaling functions �
0 ��5< � G � �HG �

and �
0 ��5� � G � � G � , �

0 ��5) � G � * � is a power
law in G with index

, � � � * � .

1.3.4.2 Photodisintegration cross sections of light nuclei

Stability gaps and the breakdown of scaling : In heavy nuclei, a lot of degrees of freedom are given to distribute
the energy absorbed from an incoming photon; it is mainly for this reason, that they can readily be described
in simple, quasi-classical models obeying elementary scaling rules. This method breaks down for nuclei withG % ���

, because their structure is essentially quantum-mechanical.
Empirically, one of the main features occurring for light nuclei are the stability gaps at G �  and G � =

.
No stable nucleus exists there: the nuclei � 1 � and � � are both � -unstable with decay times of about a second,
transforming to ��� � which is unstable against spontaneous fission into two

,
-particles. All nuclides with G)� =

are unstable against spontaneous nucleon emission. In between, there exist the stable nuclides � 1 � and � 1 � ;
however, they are unlikely to be produced by photodisintegration of a heavier nucleus, for the following reason:
The only stable nucleus with G � ?

is ��� � , which has the lowest neutron separation energy of all stable
nuclei, 	 �

� � � ����@�� ��� . The ��� � nucleus may be considered as consisting of a ��� � core with one loosely
bound valence neutron, keeping the whole system together. Since the separation energy for the emission of two
nucleons off ��� � is about 10 times higher, the only considerable disintegration channel is ��� � � $ � � ��� , . The

��� � nucleus itself has a unusually large cross section for � � � ����� ��� , more than a factor of two below the giant
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resonance; it can therefore be expected to be disintegrated much faster than other nuclei in astrophysical photon
spectra with strongly decreasing number density for increasing energy.

We will here present empirical fits to the cross sections for photodisintegration of the deuteron
��� 	 � , the

trinucleon
� � 
 ( � 
 C 2	� � � 
 � , the

,
particle

� � � � � , and the ��� � nucleus. We will not consider nucleon
yield functions, because they only make sense in the scaling region; rather, we briefly discuss the possible
disintegration channels for every nucleus and their quantitative contribution. We only give the cross sections
below the pion threshold here; for ��� � � , light nuclei obey the same scaling rules as heavy nuclei, which are
discussed in the Sect. 1.3.4.3.

The deuteron and the trinucleon : The deuteron is the only nucleus where an adequate theoretical description of
its dipole photodisintegration cross section exists; it is well described by the Bethe-Peierls formula corrected for
effective range, Eq. (1.3.13a). The cross section is shown in Fig. 1.20; obviously there exists only one reaction
channel, , � $ � � ' � .

For the trinucleon, we have the situation that there are additional degrees of freedom which could cause
deviations from a simple Bethe-Peierls behavior, but on the other hand there is still a strong similarity to the
deuteron structure. We use the results obtained at the LINAC accelerator in Stanford [FBMO81], to model an
empirical cross section expression. The trinucleon has two channels for disintegration, one with a deuteron and
a nucleon, and one with three nucleons in the final state. The data show that both channels contribute almost
equally; moreover, their cross sections seem to be acceptably described by a simple scaling of the Bethe-Peierls
cross section, if the binding energy of the deuteron in Eq. (1.3.13) is replaced by the threshold energy for the
respective process. We have applied the same modification to explain the low energy behavior of the quasi-
deuteron process, so we may interpret the disintegration of the trinucleon entirely as due to a similar effect, for
both the two-body and the three-body decay. We find a good fit with

2 7� � � � � � � � " 2
 	 � � �5� = �  � ����� � � D � 
 � $ � � � � 	 (1.3.24a)

2 7	 � � � � � � � @ 2
 	 � � �5� @ � 	�� ����� � � D � 
 � $ � 	 � � � (1.3.24b)

which represents the total integrated cross section, � 
 
 < �� � 	 , and the position and absolute value of the maximum
cross section found from the data. These equations apply to both � 
 and � � 
 disintegration; these nuclei are
mirror nuclei belonging to the same iso-multiplet, and indeed behave quite similar also in photodisintegration.
The small differences due to the different Coulomb field, which causes the differences in binding energy, will be
disregarded in our treatment. The binding energy values inserted in Eqs. (1.3.24) are averages for the respective
channels over both isobars.

The
,

particle : The � � � nucleus, i.e. the
,

particle, is the lightest double magic nucleus, and has the highest
separation energy for single nucleon emission of all nuclei, 	 �

� 	 � � � ��� ��� . Its structure has to be consid-
ered as fundamentally different from the deuteron; in fact, in contrast to the trinucleon we find a quite different
behavior of one and two nucleon emission in $ , reactions, the latter contributing only about

�����
. Using the

data for � � � photodisintegration obtained in cloud chamber experiments [GS58], we find the fit functions

2 �� � � � � � # 	 � ��� B8C�D 2 $ � � � � � � 	 �

� � � @�� ��� � = � (1.3.25a)

2 �	 � � � � � � � " 2
 	 � � �5� 	 �
� � � � (1.3.25b)

where 	 �

�
� ��? �  � ��� and 	 �� �

� � � � � � ��� . 2 �	 � � � � has been obtained assuming the validity of our modified
quasi-deuteron model. We stress that the energy dependence of the � � � � $ � � ' ��, data is well represented by
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Figure 1.20: Total photodisintegration cross sections of light nuclei with ��� �	� .

the model over the whole energy range, suggesting that the quasi-deuteron process entirely triggers photo- � ' -
emission off � � � . For the Levinger parameter we find empirically

�� � � � � � � $ � , which is much below the
empirical value found for heavy nuclei, but fairly consistent with the prediction of our modified model applying
Levinger’s theoretical formula.

The ��� � nucleus : The photodisintegration cross section of ��� � shows essentially three peaks at low energy:
one, very sharp just above threshold at about

� � @�� ��� , one broad resonance around
���

MeV and the giant
resonance at about � =�� ��� . The central energy of the giant resonance fits well into the smooth G -dependence
observed for nuclei with higher mass numbers (see below), but the width of about

��=�� ��� is exceptionally large.
The lower energy peaks are also exceptional and are observed in only a few nuclides, and in none of them with
a strength relative to the giant resonance as in ��� � . They are readily explained by

' � � and
' � , shell

transitions of the valence neutron. The low energy part of the cross section can be fitted by

2  � �� � � � � � # � � =�� B8C�D 2 $FI2�� � � � � � � @�� ��� � � � 	�� ����� � # � � ��� B8C�D 2 $FI2�� � � � � ����� ��� � ����� ������ # 	 � =�� B8C�D 2 $FI2�� � � � � � =�� ��� � ��=�� ����� �
(1.3.26a)

The peak around � =�� ��� is attributed to the GDR of the ��� � core nucleons. At higher energies, we adopt the
quasi-deuteron cross section as predicted by our modified model, using � ��� � 	 � �

� ��� � ?�� ��� , and obtain
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2  � �	 � � � � � ? 2
 	 � � � ��� � ?�� ���#� � (1.3.26b)

assuming a normalized Levinger parameter of
�� � � � � � � $ � , as found empirically for heavy nuclei. Summing

up low and high energy contributions, we obtain a total integrated cross section of about � 	�=�� ��� � B8C�D 2��
� � @�= �F7 &�� up to the pion threshold. Me may expect that quasi-deuteron disintegration will remove 2 nucleons
from ��� � � and may therefore produce � 1 � nuclei; however, it is not clear whether this general statement applies
in loosely bound systems like ��� � , and moreover the reaction products are likely to be produced in an excited
state and can further decay down to � � � ; thus, we may treat all reaction channels of ��� � as quasi-absorption.
The total photoabsorption data of ��� � at high energies [ABC � 75], and the data for neutron emission at low
energies [NH53] are reproduced fairly well by our parametrization.

Fig. 1.20 compares the total photodisintegration cross section of ��� � with that of other light nuclei; we see,
that despite of its exceptional low energy behavior, ��� � marks the transition to heavy nuclei, with a cross section
dominated by the giant resonance and continued to high energies by quasi-deuteron photodisintegration.

1.3.4.3 Photodisintegration yield functions in the mass scaling regime

Threshold energy and evaporation scaling laws : Eq. (1.3.1c) for the nucleon separation energy is only ap-
proximately valid for nuclei with G % =��

, in particular we note that it tends to underestimate 	 � and 	 � �
systematically. Its mass scaling behavior is quite complicated; thus, it may be advisable to find an empirical law
with simpler scaling properties to parametrize the threshold energies as a function of G ; in view of the scaling
properties of the GDR, we may try to find an expression which complies with the empirically well confirmed
GT-III model, proposing a scaling with G $ � � � . We find a satisfactory fit for the threshold energies 	 � and 	 	
with �

	 � � G � � I	 � G $ � � � � 1�
� I	 � � ��� � ��� ��� (1.3.27a)�
	 	 � G � � I	 	 G $ � � � � 1�
� I	 	 � 	�	 � 	�� ��� �

(1.3.27b)

This affects obviously also the mean energy per nucleon removed in an evaporation process, which is now# � =�� ��� $�G $ � � � , leading to

�
� G � ��� � � G � � � ���	 � � (1.3.27c)

where
� �	 � is the excitation energy in units of � =�� ��� .

The giant dipole resonance : It has been shown that the GT-III model of the giant dipole resonance, predicting
a mass scaling of the GDR maximum energy with G $ � � � , fits the data much better than any other GDR model;
we therefore adopt it here and fit the available data on GDR maximum energies [MKG53, Oka58] with the
functions

�
����& � G � � I�

����& G $ � � � � 1�
� I�
����& � 	�= � 	�� ��� (1.3.28a)

� ����& � G � � I� ����& G $ � � � � 1�
� I� ����& � ��= � � � ��� �
(1.3.28b)

Clearly, for medium mass nuclei there is no empirical evidence for a scaling of � ����& in this way, but on the
other hand Eq. (1.3.28b) is not in contrast to the data either. We apply this scaling because we have seen above
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that the possibility of the general scaling laws, Eqs. (1.3.22), requires scaling of all relevant energy quantities in
the same way.

The photoabsorption cross section of the GDR will be assumed to have a Lorentzian shape in the NRF;
we neglect the small deviations from the exact Breit-Wigner shape, because we know that the empirical cross
sections are in any case only approximately described by a single resonance peak. For the normalization we use
Eq. (1.1.56b), noting that

� 	
	 � � � "  independent of G , and write
�
����& � � � �F7 &�� � � � 	  2 < � ����& �

where
� � denotes the fraction of the total dipole absorption strength due to GDR. We determine

� � empirically
under the assumption that the GDR excitation is the generic one-nucleon emission process. We can then take the
fractions

� 
 
 < �� , obtained by PSB by integration the observed one-nucleon emission cross sections up to
	���� ��� ,

and find an acceptable parametrization by
� 
 
 < �� � � � �  � � � ����@ G ; the dependence on G is expected by the mass

scaling of the resonance position, and comparing with
� 
 
 < �����&* �

����& as a function of A, yields consistency with
� � � �

for all G , confirming beautifully our assumption that the GDR is the only relevant process governing
classical dipole absorption in nuclei. Thus we have

2 < � G � � I2 < G � � � � 1�
� I2 < � � � @ � � B8C�D 2 � (1.3.28c)

and with �
� G � ( �

we can write

� ����& � � � � G � � 2 ����& � � � � G � � I2 < G � � � I2�� � � � G � � � �5I� ����& � I� ����& � �
(1.3.29)

Hence, Eq. (1.3.29) complies with the scaling condition, Eq. (1.3.22), and we obtain

� ����&< � G � ��� ����&� � G � � G � � � C 2	� � ����&) � G � * � � G ) � � � (1.3.29a)

We do not take into account discrete level excitations. We note that they are expected to contribute only for
nuclei with G - ���

, and with a total strength of a few percent of �P7 &�� , which is equivalent to the background
set at low energies by the wing of the GDR.

The quasi-deuteron regime : In the same way we have treated GDR photoabsorption as a generic one-nucleon
emission process, we can treat the quasi-deuteron process as a generic two-nucleon emission process. The cross
section predicted by our modified quasi-deuteron model, which is proposed to give an approximate description
of this process down the two-nucleon emission threshold, can then be compared with the PSB values for two-
nucleon emission below

	���� ��� , as well as with their total integrated cross sections in the range
	�� � ��=���� ��� .

The latter range will be taken as the more important one, because there the quasi-deuteron effect dominates the
total photoabsorption cross section, while it is only a

�����
contribution below

	���� ��� .
We have found in our modified quasi-deuteron theory an approximately constant value for the Levinger

parameter in the mass range
��� - G - =��

, � � � � =
. Adopting this value, which is quite consistent with all

available data sets, and inserting � ��� � �
	 	 � G � from Eq. (1.3.27b) in Eq. (1.3.19), we find

2���� � � �5� G � � # � � =�=�� B8C�D 2 $"G � � � � ����� � � � 
 � 	�8
 ��� � 1�
� ����� � � � G � � �I	 	 �
(1.3.30a)

To check the absolute normalization, we integrate Eq. (1.3.30) over energy and compare with the PSB results
(Fig. 1.21). In the range between

	���� ��� and the pion threshold we have to consider that there is a contribu-
tion of the high energy GDR wing, which we find by integration of Eq. (1.3.29). The sum of GDR and QD
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Figure 1.21: Total integrated cross sections for two-nucleon emission below ����� �� (left panel), and for total
photoabsorption in the range ��� � � 	���� �� . Data are taken from [PSB76], the curves represent results from
our parametrization (see text).

contribution in this energy range is in good correspondence with the PSB results, but below
	���� ��� the QD

contribution seems to be insufficient to explain the data for G % "��
. However, in view of the neglection of

shell effects in our treatment, and the reduction of the GDR to a pure one-nucleon emission process, this dis-
crepancy is not really surprising; assuming a

= � ����� branching ratio for two-nucleon decay of the GDR would
suffice to explain the data; also a slight modification of the assumption � ��� � �

	 	 � G � can change a lot on this
result. We simply discard this problem noting the uncertainties contained in the PSB data, and that the sum of
Eq. (1.3.29) and Eq. (1.3.30), integrated up to the pion threshold, is in beautiful correspondence with the general
trend and magnitude of the modified GGT sum rule, slightly increasing from

� � � �P7 &�� for G � ���
to
� � �F7 &��

for G)� =��
. We note that we did not include any quenching factor into our calculation; this would deteriorate the

correspondence with the data a lot, unless we would increase the Levinger parameter ad hoc by a factor of 2, in
contrast to all experimental results. We conclude that our low energy modification of the quasi-deuteron model,
does sufficiently consider the low energy cross section reduction in light nuclei. In heavy nuclei, however, this
might no longer be true; the effect of Levinger’s heuristic quenching factor in lead can hardly be reproduced by
our model, so that an application of Eq. (1.3.19) with � ��� � �

	 	 � G � to masses G �� �����
would overestimate the

quasi-deuteron cross section.

Important for our considerations is, that Eq. (1.3.30a) obviously complies with the scaling condition. To
obtain the nucleon yield rate, we note that the quasi-deuteron process leads by assumption to a direct emission
of two nucleons; additionally, it deposits an excitation energy

� � � �
	 � � � � �

	 	 � G ��� in the nucleus, leading to
an average nucleon emission multiplicity of the quasi-deuteron process � ���

� � � � G � � �
� 	
 � ����� � � � with����� � � �! �	 	 � G � . Obviously, this has the same scaling properties as Eq. (1.3.30a), and we get
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� ���< � G � � G � � � � � ���� � G � � G � � � C 2	� � ���) � G � � � 	 � ) � � � (1.3.30b)

with the normalized efficiency yield function

I�
���
� ������� � # � � =�=�� B8C�D 2 $ � � ����� � � � 
 � 	 � � � ����� � � � � � 		 �8
 ��� �

(1.3.30)

At high energies, this scaling breaks down because of the saturation of the excitation energy deposition. How-
ever, this occurs mainly for � � � � , where the quasi-deuteron process contributes little, so we discard this
problem.

The baryon resonance regime : In the baryon resonance region, we obtain the cross section from an empirical
fit of the total $", cross section. We have noted that a detailed treatment of all baryon resonances barely makes
sense, and that Fermi-broadening of the resonances has to be considered. We therefore divide up the baryon
resonances from Tab. 1.2 into four groups, and approximate them by Lorentz functions in the NRF, writing the
total cross section as 2
7& � � � � G � � G �

� 2 � I2�� � � � �
� � � � � � �
(1.3.31)

The data express the total photoabsorption cross section; to obtain the photodisintegration cross section, we
must first subtract the coherent pion production part. Guided by the fraction of

�
-channel interactions in free $ �

interactions, and considering Fermi-broadening, we use the estimate

2*= � 	 � � � � G �# A"B8C�D 2 $ � ��= G I2�� � � � � ".=���� ��� � =������ ����� � ��� G � � � � � � =������ ��� � �$# ����� �
comparison with the data obtained at the Bonn synchrotron for � � 	 basically confirms this estimate in the reso-
nance region [AEH � 82]; the high energy part assumed here is due to diffractive vector meson production. We
discard the problem of the mass scaling of coherent interactions, and apply “natural” scaling with G , noting that
the contribution of these processes is not strong. The residual data for the $", reaction are fitted by Eq. (1.3.31)
with the following parameters:� � � 	 "���� ��� � � � � ��@���� ��� � 2 � � 	�= �"A"B8C�D 2 �� 	 � @�=���� ��� � � 	 � =������ ��� � 2 	 � ��=�?�A"B8C�D 2 �� 
 � �$# ��� � � 
 � ������� ��� � 2 
 � � �"A"B8C�D 2 �� � � � � = # ��� � � � �  ����� ��� � 2 � � � ��A"B8C�D 2 �
We stress that these parameters cannot be considered as more as a rough approximation, in particular when
visualizing the problems of mass scaling in the second resonance region.

To obtain the nucleon yield rate, we consider three kinds of nucleon emission processes: (
�
) emission of the

primary participant nucleon with probability 1; (
���

) reabsorption of the pion by a nucleon pair with probability� � ��	 G � ��
 ; (
�����

) deposition of an excitation energy
� � � "���� ��� per emitted participant nucleon, primary and

secondary. The latter value is set to the approximate saturation found for medium mass nuclei. Then we have

��7& � G � � � � � � � ��	 G � ��
 � � � � � � � G � � � � � (1.3.31a)

independent on � � , leading to the scaling functions
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� 7&) � G � ��� 7&< � G � � ��7& � G � � 1�
� � 7&� � G � � � �
(1.3.31b)

The independence on � � is, of course, just a result of the approximations we used. However, noting that baryon
resonance excitation will probably not play a dominant role in astrophysical applications due to the large required
excitation energies, the introduced error can be assumed to be small.

The high energy regime : Photodisintegration and photo-fragmentation at highest energies is treated as the
result of multipion production at single nucleons. We can therefore adopt the multipion cross section for
photohadronic interactions, and the empirical mass scaling law known for high energy photonuclear reactions,2 � % G <�� � � , considering shadowing effects due to the VDM structure of the photon. Since the difference be-
tween fragmentation and spallation reactions in this energy regime is difficult to treat exactly, we will confine
ourselves to discuss the maximum effect of fragmentation, the instantaneous destruction (absorption) of the nu-
cleus, �

� G � � G ; we note that therefore all our results have to be considered as upper limits. Thus we can
write I��� � ��� � ��� � # �"A"B8C�D 2 $ �� �����>� �  # # ��� $ � � (1.3.32)

with
�� ����� � ��� given by Eq. (1.2.30), and find the scaling functions

� � � ���) � G � ��� � � ���< � G � � G <�� � � C 2	� � � � ���� � G � � � �
(1.3.32a)

The efficiency is here obviously proportional to the cross section, because the destruction of the nucleus is
assumed to proceed in one reaction.

1.3.4.4 Total efficiency and astrophysical applications

Comparison of disintegration processes : In astrophysics, we are mainly interested in the total efficiency for
photodisintegration in a given photon spectrum, and in the contribution of the different disintegration processes.
Fig. 1.22 shows the total photodisintegration cross section, as obtained for the method described above, forG � =��

. We realize the typical two-bump structure, connected by the slowly decreasing quasi-deuteron cross
section, and extended to high energies by the constant cross section for fragmentation. In comparison, the
nucleon yield function shows an even more constant behavior, because the high energy reactions are favored
by higher emission multiplicities; now, baryon resonance excitation is the most efficient disintegration process,
comparable to instantaneous fragmentation. For different nuclear masses, these functions scale both in energy
and absolute value, as shown in Fig. 1.23 for G � � � � �  � =�� and � �  . The scaling up to the heaviest stable
nucleus,

� B 	 < � , has to be considered as only approximative, because many of our simple assumptions do no
longer apply for very heavy nuclei; it is done here only for comparison, and we note that nuclei with G � ���
play almost no role in astrophysics.

Loss time scales in anisotropic power laws : Although the baryon resonances mark the highest peak in the
photodisintegration efficiency, they occur at photon energies which are about one order of magnitude above the
giant resonance, and are therefore generally assumed to be negligible in astrophysical photon spectra. We check
this for isotropic power law spectra calculating the normalized efficiency coefficients,

I; 0 ��5) � , as to be used with
the specific mass scaling functions for the different processes (Fig. 1.24). The scaled coefficients for G � � �
and G � =��

are shown in Fig. 1.25: we see that quasi-deuteron disintegration (QD), and in particular isobar
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Figure 1.22: Total cross section (upper panel) and nucleon yield function (lower panel) for photodisinte-
gration of an � � 	�� nucleus, as calculated from the scaling model, with the contributions of the GDR, the
quasi-deuteron process (QD), baryon resonance excitation (ISOBAR) and fragmentation. The shadowed re-
gion for the nucleon yield of fragmentation corresponds to the range between ordinary evaporation and the
instantaneous absorption approximation.
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Figure 1.23: Mass scaling of total cross section per nucleon (upper panel) and efficiency function (lower
panel) for photodisintegration.
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Figure 1.24: Normalized total efficiency coefficients ���� ���
��� for the photodisintegration processes GDR, QD

and ISOBAR in isotropic power law photon spectra, to be used in Eq. (1.3.23). The curve for instantaneous
fragmentation marks an upper limit for the absorption efficiency of nuclei.

excitation and fragmentation play only a role in inverse spectra, where their contribution may be diminished by
cutoff effects. We note that for both masses the total efficiency coefficient is roughly constant over * .

We also determine the total weighted cross sections, � ) < , of light nuclei in power law photon spectra. The
only difference of � ) < and ; ) < is that in the former case the nucleon yield is not considered; � ) < expresses the
cross section for the first interaction rather than for total disintegration. If we want to consider disintegration
chains, we have to calculate secondary injection functions for all light nuclei from the disintegration of heavier
ones, and perform a full transport calculation with emission and absorption. Of course, we will not do this here;
here we just note from Fig. 1.26 that ��� � has the largest effective cross section of all light nuclei in power law
spectra, while its disintegration product, the

,
particle, has the smallest. We also see that in flat spectra the

time scale for
,

photodisintegration is about two times larger than for the trinucleon, and about one order of
magnitude longer than for the deuteron; we can estimate the time scale for total disintegration of

,
particles

to

8
�0 � ! � � � = 8 �� �
	 , when

8
�� �
	 is the time scale for the first interaction. In steeper spectra,

8
�0 � ! approaches

8
�� �
	 ,

because the further disintegration of � 
 and
� 	 proceeds very much faster.

We may compare the total efficiency coefficients of � � 	 and � � � � with the � ) < coefficients for light nuclei,
noting the difference in their definition described above. In particular, the reference threshold which determines
the Lorentz factor scale is here taken as

� � ��� rather than I� 	
	 � ��� � ��� ��� . Applying Eq. (1.2.31) uses then for
the same Lorentz factor $ %'& different scaled values I$ %'& ; to compensate this, we also plot �� ) < � ��� � ��) � ) < in
Fig. 1.26, which is then directly comparable to Fig. 1.25. We see that indeed ��� � disintegrates much faster than
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Figure 1.25: Scaled total efficiency coefficients for � ��� � ��� " � , left panel) and � � 	�� � ������� , right panel).

heavier nuclei, which justifies to leave it out of consideration for heavy nuclei mass evolution.

Rigidity conservation and the acceleration of nuclei in photon backgrounds : Finally, we want to note one
important feature of photodisintegration in connection to particle acceleration by large scale magnetic scattering,
i.e. the Fermi-process. We see from Eqs. (1.1.18) that the acceleration time scale in the Fermi process is only
dependent on the gyration radius, � � , of the particle. Introducing the particle rigidity, $ � �(' �  EF�� � , we can
write for ultrarelativistic nuclei 8

.�=>= % $ % G $E �
(1.3.33)

Now, for nuclei with G % 	��
we have E < �

	 G ; for heavier nuclei, we recall our discussion from above and
note that, during subsequent photodisintegration, the number of neutrons approaches the number of protons in
the nucleus, if the interactions occur fast enough to prevent interim � � decay. In any case, we can use $ %� $ for
all astrophysically relevant nuclei while photodisintegration is in action. We have already noted that $ remains
constant in photodisintegration interactions, so also $ and

8
.�=>= . This means that the Fermi acceleration of nuclei

is unaffected by photodisintegration; the acceleration process just sees a particle with constant rigidity.
We can use this property to make a simple estimate of the maximum Lorentz factor a complex nucleus can

gain in the Fermi process, before it is completely disintegrated. As before, we set the end point to G �
� � � ���

,
so ruling out light nuclei from the treatment, which is reasonable because the heavy nuclei are only important if
they have a favorable

�  $ ratio over the much more abundant primary
,

-particles. From Eq. (1.1.18a), assuming4 � �
for simplicity, we combine all quantities determining the acceleration rate in one parameter, I8 .�=>= , and write

the acceleration time as a function of the scaled Lorentz factor, I$�%'& � ��� < $  I� 	
	 , which reads8
.�=>= �JI8 .�=>= I$ �%'& � 1�
� I8 .�=>= � � = � � = � � �� = � �

I���(I��� 
 $ <
� � � �� � (1.3.34a)

where ��� � I���'I$ � $ �%'& , corresponding to an index of the turbulence spectrum � � � � , (cf. [BS87, Rac92]), and
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Figure 1.26: Total effective cross section in power law spectra for light nuclei with reference threshold����� � � � �� (left panel), and scaled to to the standard reference threshold for heavy nuclei (right panel, see
text).

� � is the shock velocity; for diffusion with energy-independent ��� (i.e. Bohm diffusion), we have
, � �

. Now
we can write a differential equation for the total acceleration time

, �, I$*%'& �JI8 .�=>= I$ � $ �%'& � (1.3.34b)

which allows now to express the nuclear mass as a direct function of the Lorentz factor

, G,�$ � , G, � ,
�
,�$ �JI8 .�=>= �

� $ � G � I$ � $ �%'& �
(1.3.34c)

Integrating out, we finally find the maximum Lorentz factor, $ �-.�� , defined by the time where G � G
�
� � is

reached as the result of photodisintegration, as

I$ �-.�� � � * � , � �

� I8 .�=>= � < 
 � �
� � � 	

, G � G � � I; 0 ��5) � � 0 ��5) � G �� $ � �
�

) � � $ � �
(1.3.35)

Multiplying with the mass of the final nucleus,
��� I� , we also find the maximum energy reached in the accel-

eration process. Clearly, we may also apply the classical gain-loss balance,

8
0 � ! � 8

.�=>= , to obtain a maximum
energy,

�
�-.�� ; but this works only if the Lorentz factor

�$ �-.�� for which this balance is given is smaller or equal
to $ �-.�� . If

�$ �-.�� % $ �-.�� , we will find the maximum energy nuclei for nuclei with G � G
�
� � ; otherwise, the

highest energy nuclei have G � ���
.
�$ �-.���� $ �-.�� obviously means, that the culminated photodisintegration,

integrated up from the injection of the particle, leads to its final destruction before
� � G  G � � � � $  $ � in a given

time interval.
We may give a numerical example: We consider a system with equipartition of magnetic and radiation energy

density, ��� � ��� � � � ���  � � 
 . The photon spectrum may be given by a power law with * � � � = , extending
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Figure 1.27: Maximum energy achievable with heavy nuclei by shock acceleration under the example condi-
tions discussed in the text.

from � < � ��� $ � ��� (equivalent to � � "�# ��� ) to infinity. With I� 	
	 � ��� � ��� ��� we then have the scaling Lorentz
factor $ < �  � 	 � ��� � � . We assume Bohm diffusion, and acceleration at a strong shock ( � = � "

) with velocity�
 � , giving I8 .�=>= �  � � � ��� � 	 / � � and
, � �

. For the photon spectrum we find
� < � � � @ � ��� � � � $ 
 ; since we

see from Fig. 1.25 that for a power law index * � � � = the GDR dominates photodisintegration, we neglect all
other channels and have

I; ) � ( I; ����&) � � � � ��A"B8C�D 2 and � ) � G � � G $ � � � 	 . Injecting � � � � nuclei, we then find
for G �

� � � ���
the value of the integral as

	 � @�=�� B8C�D 2 $ � . Multiplying with the constants, and noting the the
power index on the right side of Eq. (1.3.35) is

	� , we finally have I$ �-.�� � � � � ".@
, or $ �-.�� � " � ��� � < . This

maximum Lorentz factor is achieved with for the minimal possible mass, G �
� � � ���

, thus the corresponding
energy is

�
�-.�� � 	  � ���� , which of the order of the highest cosmic ray energies. If we consider the ejection

of heavier nuclei, i.e. set G �
� � variable between

���
and

=��
, we obtain maximum energies as shown in Fig. 1.27.

We see that the highest energies are emitted in nuclei with G � 	�=
, giving

�
�-.�� � ����� ���� . We note that

the numbers we have used in this example are quite close to the conditions in radio galaxy hot spots; thus, even
though a more thorough calculation is required to obtain reliable quantitative results, this example already shows
that acceleration of UHECR heavy nuclei in radio galaxy hot spots is possible.



Chapter 2

Statistics of cosmic ray interactions

Abstract : Cosmic ray transport through photon backgrounds is a classical example for that what is called a random
point process in mathematics; the energy of the particles is changed discontuously in randomly steps, with a randomly
distributed step size. Historically, it is even the case that cosmic ray physics has largely motivated the development of
the mathematical theory of random processes. The most developed part of the theory of random processes is the theory
of Markov processes, which are processes requiring that the future propagation of a particle is only determined by its
present state — a situation which can be assumed to apply generally in physics. In fact, it can be shown that the most
general problem of particle transport, the description of the evolution of spectra governed by the Boltzmann equation, can
be completely transformed into a description in terms of Markov processes.

However, in contemporary astrophysics the treatment of the transport of cosmic rays splits up into mainly two groups:
On the one side there are simple, but mostly qualitative approaches, which are useful to understand the basic phenomena,
but clearly overburdened when used for detailed predictions; on the other side some Monte Carlo or other numerical results
can be found in the literature, which may give a quantitatively correct answer to some specific questions, but are barely
transportable to other problems. Understanding the differences between the results of the first and second approach remains
a task for physical intuition.

In this chapter we develop a method which is proposed to close the gap between both extremes, based on the theory
of discontinuous Markov processes. Unfortunately, we cannot avoid to introduce a “statistical language” which is prob-
ably not common for many physicists. Therefore, Sect. 2.1 gives an overview about the basic formal terms and concepts
of probability theory. Then, Sect. 2.2 introduces the basic concepts of the theory of Markov processes and random point
processes, which is applied to cosmic ray physics in some simple examples. The main result is the derivation of a set of dif-
ferential equations, which propose to give a simple solution to some physical transport problems, which may be described
as processes with a weak autocorrelation; we call them the perturbative equations for the description of Markovian point
processes. These equations are applied in a simple example in the end of this chapter, but their full range of applicability
has to be further investigated.

95
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2.1 Notes on probability theory and Markov chains

This section gives a general overview about the mathematical foundations of probability theory in the context of this work.
It is thought as a reference for the discussion of random processes in the next section. We introduce some mathematical
terms which will be used in the following, more physical section.

Since most of this section covers subjects which can be found in textbooks, we do not give detailed references. For
general reading about probability theory we recommend the books of CRAMER [Cra46] and FISZ [Fis80]; the latter also
gives a very good introduction to random processes. Many specific formulae and relations can be found in the compendium
of ABRAMOWITZ & STEGUN [AS65]. The theory of generalized functions is described in the book of KANWAL [Kan83].

Notation: The symbol “
� ” is used for implicit definitions. Open and closed intervals are written as

� ��� ��� and � ��� � � ,
respectively. If we consider multidimensional objects, � � � ������ the ordinary product � � is generally understood as a
tensor product, i.e. � � is a tensor of rank

�
if � and � are vectors. The generalized scalar product is denoted as � ������
	 ��� � � �� 	 ��� � � 

. The ordinary matrix product as ����� ; powers of matrices are written as
� ��� �  . In Sect. 2.1.2 we use a special

notation for subspaces of � -dimensional probability (vector) spaces: � ���  ����� " ���� � � �� is a � -dimensional hyper-surface
of � � �!����� " ������ � �

�
; accordingly we use, e.g. � �#"  ����� " ���� � �  !#" � �  � " ���� � � � � and � �%$ ��& �' �(��� � � " ���� � �  !#" � , etc.;

the same notation is used for vectors and related quantities. The Dirac delta function is denoted as ) ��� � , the Heaviside step
function with * � ��� � . We use the Kronecker symbol, + ,� ��� for � �.- and � otherwise, and the abbreviation �+ ,� � � � + ,� .
The symbol “ / ” is used for the formal concatenation of functions,

� � /10 ����� � � � � 0 ��� � � ; � � ��� � � � is the unit function.
The power of a function, � /10 with � ��� � � � 

, is denoted as 0  ��� � (as in trigonometry, e.g. �32 � � � ); to avoid confusion,
we write the inverse function as 054 rather than 0 !#" . Derivatives are abbreviated as � �  � ��� � � � �  � � � �  � . The important
propagator product “ 687 ” is introduced in Eq. (2.1.63). Other symbols are introduced in the text or used in their common
meaning.

2.1.1 Probability distribution functions

2.1.1.1 Random variables and distributions

Continuous and discrete random variables : The basic concept of the theory of probability is expressed by
the terms “random event”, “random variable” and “probability”. A random event 9 is a non-mathematical (i.e.
physical) entity which is related to a number

� -(: � 99� - �
, called its probability. We will not try to discuss

the axiomatic approaches to the definition of the terms “probability” and “randomness”, but use the heuristic
approach to these terms common in natural sciences: Randomness of an event means, that, in a specific situation,
we are not able to give a definite prediction whether a specific event will happen or not. The probability of a
specific event 9 � is given as the limit of the ratio of the actual number of occurrences of 9 � , � , to the maximally
possible number of occurrences of 9 � , � , for a large number � . It is the law of statistical regularity which
guarantees that the limit of this ratio for � � �

always exists and is well defined; for practical use, the
methodological rule that an empirically given ratio of this kind for an ensemble of size � may be assigned to a
single event of the same kind as its approximative probability : � 99� .

A random variable
�

is a representation of a random event in a set of numbers ; . For discrete sets, i.e.
; �� � < ,

�
is called a discrete random variable, while for continuous sets we, i.e. ; �� � = ,

�
is called

a continuous random variable. There is an important difference between both cases: In the discrete case, a
random event is expressed by simple numbers, 9 � � � � , thus a probability value : � � � ��� can be given; in
the continuous case, a random event is only connected to number intervals, 9 � �
> # * � 	 $ , and only probabilities
: � �?> # * � 	 $ � are defined. Equality to simple numbers,

� � � , is only connected to a probability density.
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Cumulative Probability distribution and probability density : The probability of a continuous random variable
� > � = to be found in an interval $ * � 	 $ can be expressed as

: � � > $ * � 	 $ � �� � � 	7� � � � * � � (2.1.1)

where
�

is called the cumulative distribution function of
�
. Obviously,

� � ��� may be written as� � ��� � 
 	
$ �

& � � � , � � (2.1.2)

with
& � � � defining the probability density function of

�
. Since

& � � � is non-negative,
�

is a non-decreasing
function; assuming that

& � � � is a simple function,
�

is also continuous.
&

is not necessarily continuous and has
at least one maximum, which is called the mode of the distribution.

For a discrete random variable, �
> � < < , the probability density function is replaced by a series of probabil-

ities
'

� , normalized to
�

�

'
�
� �

. Obviously, the cumulative distribution function is now given by� � � � � ��
� � <

'
�

�
(2.1.3)

The continuous representation
� � ��� of a discrete distribution function is a non-decreasing step function, and

we will see later in Sect. 2.1.1.3 that Eq. (2.1.2) can be generalized to describe discrete distribution functions by
introducing the Dirac-

�
function as a probability density.

Obviously we have
� � ��� � �

for � � � � and
� � ��� � �

for � � � �
, both in the continuous and the

discrete case. Any point � �� satisfying
� � ��� + �

	 for � + � �� and
� � ��� - �

	 for � -)� �� is called a median of the
distribution. The median is generally defined as a real number; for a strictly increasing cumulative probability
function, it is uniquely given by the equation

� � � �� � � �
	 ; otherwise, we can find an interval with all points� �� > # * �� � 	 �� $ being a median, which in particular occurs for all discrete distributions. By convention, we will

always take the lower bound of this interval, which is always an allowed discrete value for
�
, as the median of a

discrete distribution.
Probability density and cumulative probability distribution are obviously equivalent for expressing the prop-

erties of a random variable
�
, because they are uniquely related. We will therefore use the expression “distri-

bution of
�
” as the sample of all its properties, and we may use either a cumulative or a density function as its

representation. It should be noted that the terms “random variable
�
” and “distribution

& � � � ” express practically
the same: A random variable is defined by its distribution. In practice this means that any empirically or theo-
retically given distribution of events — may it be count rates, energy or particle spectra, luminosity functions, or
whatever — can be used for the definition of a random variable describing the physical process which produced
those distributions by means of statistical theory.

Expectation values and moments : The expectation value 3 & � � � � � � � � 6 ( 3 � 6�� of a function
�

of a random
variable

�
distributed with a density function

& � � � is defined by

3 & � � � � � � � � 6 � 
��
$ �

� � � � & � � � , � � 
��
$ �

� � � � , � � � � �
(2.1.4)

The expectation value
�

of
�

itself, � � 3 � 6 is called the mean of the distribution, the expectation value of its� -th power,
A � � 3 � �'6 , is called its � -th total moment.

	
It should be noted that the moments are not defined for

�
In the following, the explicit notation of � as the random variable over which the expectation value is taken will be omitted if there is

no danger of confusion. The same method will be applied to any other function related to � . On the other hand, the full notation * ����� /
will be used if the functional properties of � are important.

�

Lacking any better word, we use “total moment” as a short form of “moment about the origin”.
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every distribution; to guarantee the existence of
A � for all � > � < , we have to require that either

& � � � vanishes
outside some finite interval, or decreases at least as � $ �

� �
for

� � �
. Of particular meaning for the description

of a distribution function are their central moments�A � ( � � � � � � � � �
(2.1.5)

The connection between total and central moments is given by the equation

�A � � ���
� < �

��  � � � � � $
�
A � � � $

�
�

(2.1.6)

This formula also gives the transformation of the total moments of a distribution under a linear transformation
of the random variable,

� � � * � � 	 , if we replace
A �

by *
�
A �

and � by 	 . Obviously, the central moments
transform just by

�A � � � * � �A � .
If

� � � � is a function of a random variable with distribution function
� � � � , we will call 3 � � � � � 6 � the � -th

moment of the random function
�

. Obviously, this notation is motivated by the fact that � � � � � � is a random
variable distributed by � � � � � � ��� ��� � � � � , if

�
is invertible. Differentiation of � � � � and substitution of

variables gives �
�
� ��� � � ��� � � � � � �

(2.1.7)

It can be shown that this relation also holds if
�

is not invertible.

Dispersion and shape parameters : In general, a distribution function is fully described by the set of its mo-
ments. The second central moment is the variance

�A 	 � 2 	 , where 2 gives a measure of the width of
& � � � is

called the standard deviation of
�

about � . Of the higher order moments,
A 
 and

A � are of specific importance
and are usually expressed as the quantities

$ � � A 
2 
 C 2	� $ 	 � A �
2 � � 	 �

which are called skewness and excess of the distribution, respectively. A positive (negative) skewness expresses
an asymmetric displacement of probability in favor of the positive (negative) wing of the distribution. The excess
expresses the symmetrical displacement of probability between the center and to the wings of the distribution
relative to the “normal”. However, for an asymmetric distribution this “degree of peaking” is determined by $ �
as well as by $ 	 (see Sect. 2.1.2.4). Skewness and excess are the first members of a family of invariant parameters
describing a distribution (see Sect. 2.1.1.2). In general discussions, the scaling dependent parameters � and 2
are usually absorbed in the definition of the standard variable

� � � � �2 �
(2.1.8)

We will denote the standardized distribution functions by
I& � � � ( & � � � and

I� � � � ( � � � � . Since � gives the
deviation of

�
from its mean in terms of 2 , � may be used as the quantum and 2 as the unit of dispersion. The

meaning of the higher order parameters $ � is discussed in the next section.
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Quantiles and confidence intervals : The median � �� of a random distribution belongs to a class of parameters,
which are called quantiles. The standard p-quantile � � is defined by

: � � - � � � � I� � � � � �� ' � (2.1.9)

where
'

expresses a specific probability value. In physics it is common to call
� � � �

� � � 2 the
'

confidence
limit 
 , and accordingly the interval # � �� � � $� $ , � !� ( � � � � 2 , is called a

'
-confidence interval if : � � � � - � �>� � '

.
Quantiles give therefore the connection between dispersion and probability: for a distribution with known mean
and variance, we can express any cumulative probability (confidence) limit by its according dispersion limit,
which is expressed as � � 2 .

Clearly, the connection between
'

and � � is dependent on the shape of the distribution. The requirement of
the existence of a finite 2 , however, sets an upper limit on � � , which is expressed by the Chebyshev-inequality

: � � � � + � � ��-
�
' 	 � � D�C � � '&� (2.1.10)

From this we can easily derive the limit � � - �  � � � '
. As long we do not know more about a distribution than

its mean and variance, no better restrictions can be given for its confidence limits. To give a numerical example:
If confidence of 99% is required, a random variable with arbitrary distribution (but finite dispersion) can only be
restricted to values

� % �
� ��� 2 . If we require the existence of all moments, the exponential function � $ �

� �
sets

an asymptotic limit to the probability density, which leads to the upper limit estimate

� � %� � 2 ! �
� � ' # � (2.1.11)

which, however, is only asymptotically correct and can therefore only be used for estimates of the allowed
dispersion. In the above example of a 99% confidence limit this leads to the estimate

� %� �
� " � = 2 . We will

return to the discussion of confidence limits and dispersion measure at the end of Sect. 2.1.1.3.

2.1.1.2 Generating functions and the cumulants

The moment generating function � � � � � : The set of moments of a theoretically defined distribution can be
expressed in a single function, called the moment generating function (m.g.f) of the random variable

�
. It is

defined by � � � � � � � � � � � � (2.1.12)

with the � -th derivative
� � � � � � � , and therefore

A � ��� � 0 � 5>� � � � � � � � � � �� � � �
�
�
�
�
�

� <
�

(2.1.12a)

In the literature, many variations of generating functions are used. The most common one is the complex valued
counterpart

� � � � � � � � � � � � , which is called the characteristic function of
�
. Other than � � � � , � � � � is bounded

for all real
�
; in the applications relevant here,

� � � � and � � � � are equally useful, only that � � � � allows for a
simpler notation. For discrete distributions, the probability generating function � � ��� � � 3 � � 6 � � � � � � 2 � � is

often used. Here, the moments are simple functions of the derivatives � 0 � 5 � � � , but not given as directly as in
Eq. (2.1.12a). Obviously we have � � � � � � � � � � � � � � � �

. We also note the simple relation of � � � � � to the
Laplace transform of

&
,
&��

, by � � � � � � &�� � �#� � , and that
� � � � is nothing but its Fourier transform.

� � is usually expressed in percent, i.e., we say “ � ��� ���	� ��� confidence limit”.
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The cumulants and the invariant parameters : Of particular interest for the description of probability distribu-
tion functions is the cumulant generating function (c.g.f.)

4 � � � � � � 2 � � � � � �
(2.1.13)

its � -th derivative, taken at the origin,

	 � ( 4 � 0
� 5 � � � � �

� � 2 � � � � �
� �
� �

�
�
�
�
�

� <
(2.1.13a)

is called the � -th cumulant 	 � of the distribution
� � � � . The cumulants are also called the semi-invariants of a

distribution; for a linear transformation of the random variable
� � � * � � 	 , we have 	*�� � *

� 	 � � 	 � � � , where � �
�

is the Kronecker-Symbol. In particular, we find for the standard variable � that I	 � � �
, I	 	 � �

and I	 � � 	 �  2 � .
This gives rise to the definition

$ � ( I	 � � 	 � 	 � � 	2 � � 	 (2.1.14)

The parameters $ � are obviously invariant under linear transformations of the random variable, and they give the
cumulants of

I� � � � , I	 � , for � + 	
. From Eqs. (2.1.15c) and (2.1.15d) in the next paragraph we see that $ � and $ 	

defined by Eq. (2.1.14) are the earlier defined coefficients for skewness and excess. The parameters $ � determine
the shape of a distribution independent of scaling.

Relations between cumulants and moments : If a distribution is not analytically given, the cumulants cannot
be calculated using Eq. (2.1.13a). However, an explicit calculation of the moments,

A � � 3 � � 6 , allows a deter-
mination of the cumulants. The relation of the cumulants to the moments of

� � � � is given by

	 � � A � � � (2.1.15a)	 	 � A 	 � A 	 � � 2 	 (2.1.15b)	 
 � A 
 � 	�A 	 A � � � A 
 � � �A 
 (2.1.15c)	 � � A � � "�A 
 A � � 	�A 		 � � � A 	 A 	 � � ��A � � � �A � � 	 2 � (2.1.15d)	 � � A � � =�A � A � � ����A 
 A 	 � � ��A 
 A 	 � � 	���A 		 A � � ����A 	 A 
 � � � "�A � � (2.1.15e)

The inverse relations to the total moments can be important for theoretical considerations and are given by

A � � 	 � (2.1.16a)A 	 � 	 	 � 	 	 � (2.1.16b)A 
 � 	 
 � 	 	 	 	 � � 	 
 � (2.1.16c)A � � 	 � � " 	 
 	 � � ��	 		 � � 	 	 	 	 � � 	 � � (2.1.16d)A � � 	 � � = 	 � 	 � � ��� 	 
 	 	 � ��� 	 
 	 	 � � ��= 	 		 	 � � ��� 	 	 	 
 � � 	 � � �
(2.1.16e)

There is barely a reason to include higher order moments or cumulants in the description of a distribution, which
will become clear in Sect. 2.1.2.4.
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2.1.1.3 Some special distributions

The Dirac-
�

distribution: The simplest possible distribution is also the most abstract one: It is the distribution
function of a random variable which has certainly a specific value * — i.e. it is the degenerate case of a “proba-
bility” distribution function with : � � � * � � �

. Obviously, according to Eq. (2.1.1) the cumulative distribution
is a step function,

� � ��� � � / � � ��* � ; the corresponding probability density function satisfying Eq. (2.1.2) is
the Dirac-

�
function, defined by 
��

$ �
, � � � � ��* ��6 � � � � 6 � * � (2.1.17)

for any smooth function 6 . Setting 6 � � � � � � � , we find the m.g.f., ��� � � � � � ) � , yielding
A � � * � . Obviously,

all central moments vanish, and therefore 2 � �
and all $ � � �

.
The great relevance of the Dirac-function in distribution theory arises not only from being the density func-

tion expressing “certainty”, but also from its property to transform continuous distributions into discrete distri-
butions. Inserting the density function & � � � � � � ' � � � � �)� � (2.1.18)

into Eq. (2.1.2) yields Eq. (2.1.3); thus, Eq. (2.1.18) is a discrete probability density function defined on a con-
tinuous random variable.

The uniform distribution: The
�

distribution expresses that a continuous random variable is certainly (or with
some weighting probability

' � ) identical to a specific value * . In reality, however, we will be rather confronted
with the case that

�
is certainly inside an interval # * � 	 $ . Lacking better knowledge about the distribution of

�
, the

first order estimate will generally be a uniform distribution over this interval. Transforming to a unified random
variable, � � � � ��* �  � 	 ��* � , the unified probability density function is

�& � � � � �
- � � � - � - �
� � � 
� � D � 1 / � � (2.1.19a)

and the unified cumulative distribution function is
�

�� � � � � �
��� ��
� � � % �
� � � - � - �
� � � � �

�
(2.1.19b)

For the unified m.g.f. we find �� � � � � � � � � �
� � (2.1.19c)

leading to the unified moments
�A � � � � � � � $ � . With Eq. (2.1.6) we find

��A � � �A �  � � for � even, and
�A � � �

for � odd. The cumulants are given by 	 � � � �  � for � � �
, where � � are the Bernoulli numbers; the first

non-vanishing cumulants are 	 	 � �� 	 and 	 � � � �� 	 < , leading to the basic parameters

�	 � �
�	� � � �

��
 � � � � � �
�

	


and $ � = $ 
 = 0. We immediately see that the standard deviation the non-unified random variable
�
, which is

uniformly distributed over a width � � � 	 � * , is 2 � �  � 	 . We also note that the absolute value of $ � increases
with

�
. Since the uniform distribution is symmetric, its median is equal to its mean.

�
Note the difference to the standardized distributions, �� and � .
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The saw-tooth distribution: The uniform distribution is symmetrical about its mean, all odd central moments
vanish. For some applications we may ask for the “we-don’t-know-better” form of a maximally asymmetric
distribution. This is obviously realized by a saw-tooth density function, whose unified form is given by

�& ! � � � � � �
�& � � � � �

(2.1.20a)

the corresponding unified cumulative distribution function is
�� ! � � � � � 	 in the interval # � � � $ , and

�� ! � � � ��� � � � � otherwise. For the unified m.g.f. we find

�� ! � � � � �� 	 # � �#� � ��� � � � $�� �
�� �� � � � �

(2.1.20b)

From the simple connection to the uniform distribution, the unified total moments are easily found as
�A � �

� � � � ��� $ � , but there is no simple general expression for
�A � and 	 � ; the low-order parameters are here

�	 �
�
� � � � �

� 
 � � � " � �
��
 �
	 � � � � �

�
	 � � � � �

� ��
 �
� 

We note that the even $ � are smaller in absolute value than the odd and seem to decrease; however, for larger
�

there is a general tendency of
� $ � � to increase. The median of the saw-tooth distribution can be found as�� �� � �  � � . Turning back to the non-unified random variable

�
and dividing the interval # * � 	 $ into three parts,	 � � 	 � * , we have � � * � � � and 2 � �  � � , and the median satisfies � �� � * � 	 2 .

The exponential distribution : As the last form of a continuous distribution of a particularly simple shape we
discuss the exponential distribution, which is defined by the density function

& � � � � * � 	7� � �

	 ����� ! � � *
	 # � � � D � + * � (2.1.21a)

and
& � � � * � 	7� � �

for
� % * . We easily derive its mean and standard deviation as � � * � 	 and 2 � 	 ;

introducing the standard variable � as defined in Eq. (2.1.8), we find for � + � �
I& � � � � � ����� � � � � � � (2.1.21b)I� � � � � � � � ����� � � � � � � (2.1.21c)

and
I& � � � � � I� � � � � � �

for � % � � . From this we find for the standardized median � �� � � 2 � � �
, giving the

approximate relation � �� � � � � � 	 2 . The c.g.f. is easily found as

4 � � � � � � � 29� � � � 2 � � � 2 � � � (2.1.21d)

leading to the simple expression

$ � � � � � � ��� �
(2.1.21e)

Since the invariant parameters $ � determine uniquely the shape of a distribution, we can use Eq. (2.1.21e) as a
signature for the exponential distribution, and the ratio $ �  � � � � ��� may be used as measure of the convergence
of a given distribution to the exponential.
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The binomial distribution: A simple case where a theoretical distribution can be derived is the counting statis-
tics problem: If we consider a limited number of

�
trials, and assume that

'
is the probability in each trial to

give a desired result and set � � � � '
as probability that the trial fails, then the probability to find this result �

times is given by the probability density of the binomial distribution

&  � � � � � ' � � � � �  ' � � � $ � �
(2.1.22a)

There is no closed form for the cumulative distribution function, which is obtained by inserting Eq. (2.1.22a)
into Eq. (2.1.3). The m.g.f. is

�  � � ��� � ' � � # � � ' � � � � � � $ � �
(2.1.22b)

Mean and variance of the binomial distribution are � � � '
and 2 	 � � ' � , and the lowest order parameters

are given by

� " �
� � � �
 � ��� � � � �

� � � ���
� ��� � � � �

� � � � � ��� � � � � ��� �
 � ��� � 

As the uniform distribution in the continuous case, the binomial distribution is the generic discrete distribution.
It only expresses the combinatorial possibilities of a counting experiment for a limited number of trials. The
extension to an unlimited for the number of trials is discussed in the next paragraph.

The Poisson distributionand the Gamma distribution : We consider a binomial distributionin the limit
� � �

,' � �
, but
� ' � � �� �

; we get the case where in principle an unlimited number of occurrences is possible,
but only a small value � (not necessarily an integer) is expected; the binomial distribution transforms into the
Poisson distribution, for which the probability density reads

& 	 � � � � � � � �� � � $ � �
(2.1.23a)

Obviously we have
& 	 � � � � � � �

for � ( � . We may point out the interesting fact that both
�
�
& 	 � � � � � � �

for fixed � , and � & 	 � � � � � , � � �
for fixed � ; hence, we may define two kinds of cumulative probabilities for

the Poisson distribution: The probability of up to � occurrences for a given expectation of �� 	 � � � � � � � $ �
���
� <

�
�
� �

� � � � � � � � � � (2.1.23b)

and the probability of an expectation less than � for � known occurrences

�� 	 � � � � � � �� � 
 �

< � $ � � � , � � + � � � � � � � � (2.1.23c)

where + and � are the incomplete Gamma functions defined by

+ � * � ��� ( �

� � * �

 	
< � $ � � ) $ � , �

� � * � ��� ( �

� � * �

��
	 � $ � � ) $ � , � � � � + � * � ��� �

Each
� 	 and

�� 	 correspond to a different question about a counting experiment; the former is a distribution
of occurrences, the latter a distribution of expectations. We immediately see that there seems to be a simple
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connection between both questions, because we have
� 	 � � � � � � �� 	 � � � � � � �

, in other words,
� 	 and

�� 	
express complementary probabilities. We will return to this point in Sect. 2.2.1.3. When we speak of the Poisson
distribution, we will always mean

� 	 � � � � � , i.e. we take � as the random variable and � as a fixed parameter. The
distribution

���*� � � * � � + � � � * � is called the Gamma distribution, which is also defined for non-integer * .
The m.g.f. of the Poisson distribution is

� 	 � � � � � $ � ����� � � �
� � �

(2.1.23d)

We find that
A � � � and

A 	 � � � � � � � , but no simple general formula for the moments. However, 4 	 � � � �� � � � � � � has a particularly simple form, and we find that the cumulants are	 � � � � � D"C � � � �
This leads to the basic parameters

� � � � 2 � � � � $ � � � $ � � 	 �
The Poisson distribution is a discrete distribution; nevertheless, the cumulative probability distribution func-
tions, Eqs. (2.1.23), and the probability density function, Eq. (2.1.23a), can be principally defined as continuous
functions by the transition � ��� � � � � � � . However, integrating over the continuized Poisson density function
does not give the correct cumulative probability, � �< & 	 � * � � � , * �� � � � � � � � � ; rather, we find
 � �

�
�

< , * & 	 � * � � � � � 	 � � � � � �
Thus, continuous and discrete probability functions behave quite different and have to be carefully distinguished,
which turns out to be a problem when compound continuous and discontinuous distributions have to be consid-
ered.

In contrast to the Poisson distribution, the Gamma distribution,
���*� � � * � , is continuously defined, both for

its random variable and its parameter. Its c.g.f. is

4 �*� � � � � * � 2 � � ��� � � (2.1.24)

leading to 	 � � * � � � � ��� and $ � � * $ � � 	 � � � � ��� . Obviously, the Gamma distribution is closely connected to
the exponential distribution.

The Gaussian distribution: The Gaussian normal or simply normal probability density function is given as

&
�
� � � � � 29� � �

2 � � � �����
- � � � � � � 	

��2 	 . � (2.1.25a)

leading to the cumulative distribution function�
�
� � � � � 29� � �

�

� � � � D � ! � � �2 � � # � � (2.1.25b)

where the error function, � D � � ��� , is defined by

� D � � ��� � �� �

 	
< ����� � � � 	 � , � �



2.1. NOTES ON PROBABILITY THEORY AND MARKOV CHAINS 105

For the m.g.f. we find

� �
� � � � �����

�
� � � �

� 2 	 � 	 � �
(2.1.25c)

From this we immediately find that
A � � � and

�A 	 � 2 	 ; � and 2 are the mean and standard deviation of the
normal distribution. We also see from 4 � � � � � � � �

	 2 	 � 	 that all cumulants 	 � for � ��� vanish; therefore we
have $ � � �

for all
�
. This property makes the normal distribution to a “simple” distribution of a particular kind:

it is the generic distribution of a random variable with mean � and standard deviation 2 .
In Sect. 2.1.2 we will discuss the specific role of the Gaussian distribution for theoretical and applied statis-

tics. Because of its importance, we introduce a special notation for the distribution functions of the standard
variable � :

� � � � � �

�

� � � � D � ! �� � # � (2.1.26a)

#-� � � � �
� � � �����

� � � 	
� � �

(2.1.26b)

The derivatives of
#-� � � are given by the simple relation# 0 � 5>� � � � � � � � � #-� � � ; �

� ��� � (2.1.27)

where ; � � ��� are the Hermite polynomials defined by �
; �

� ��� � � �
�
� � 	 ��� � <

� � � � � � � $ 	 �� � � � � � � � � ��� �
(2.1.27a)

The Hermite polynomials for � - =
are ; � � ��� � � , ; 	 � ��� � � 	 � �

, ; 
 � ��� � � 
 � 	 � , ; � � ��� � � � � � � 	 � 	
and ; � ��� � � � � � ��� � 
 � ��= � .

Normal dispersion and confidence limits : The property of the normal distribution to be the “generic � - 2 ”
distribution gives it a special role in the discussion of confidence limits. We call the “normal standard

'
-quantile”

� � , defined by
� � � � � � '

; in a normal distribution, it gives the upper limit in dispersion,
� � � �

�
� � 2

corresponding to the confidence level
'

. Since the correspondence of quantiles to confidence values is unique, � �
can be used as the normal measure for confidence, and is expressed in units of normal standard deviation, called
Gaussian Sigmas. � The numerical values of confidence the first integer normal standard quantiles,

'
�
� � � � �

for � - "
, are  " � ��	�� ,

?�@ � @ � � ,
?�? �  @ and

?�? � ?�?�@��
; the values of � � for the frequently used confidence levels?����

,
?�?��

and
?�? � ?��

are
� � �  � , � � 	 � � and

	 � ��?
, respectively. If deviation from the mean should be restricted

in both directions, the normal confidence intervals # � � � � � � $ with
� � : � � � � - � ��� � � � � ��� � � � � � ��� are used.

The well known numerical values of confidence
�
� for integer � � - "

are
�  � � ?�� ,

?�= � ".=��
,
?�? � @�	��

and
?�? � ?�?��

.
In physics it is common to use the “Gaussian Sigmas” as a measure for confidence estimation; this is justified

by the Central Limit Theorem, which states that the distribution of a large sample of independent observations
�
In the literature different definitions of the Hermite polynomials may be used. A collection of all possible definitions is given by

Abramowitz and Stegun [AS65], who denote the definition used here with ���
	 ����� .�

To be compatible with the usual language of physicists, we will use the notation Sigma for the Gaussian standard deviation measure,
used as a unit for confidence levels. It has to be strictly distinguished from the symbol “ L ”, which denotes the standard deviation of any
distribution under consideration.
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tends to be normal (see Sect. 2.1.2.3). In the general case, however, the normal dispersion � � for a given
'

is rather
a minimum estimate. The upper limits are given by Chebyshev’s inequality Eq. (2.1.10), and the exponential
estimate derived from the requirement of the existence of all moments gives also much weaker restrictions to
the allowed dispersion, and is for many distributions a better estimate than the normal dispersion.

2.1.1.4 Operational definition of distributions

Probability distributions, operators and generalized functions : In Sect. 2.1.1.1 we have introduced the notation3 & � 6 6 alternatively to 36 6 � for the expectation value of a function 6 of a random variable
�

with distribution&
. We also have noticed that (as long only one random variable is considered) the usage of

&
and

�
is synonym,

because
&

gives the definition of
�

as a random variable; this property distinguishes
&

from any other function
of

�
. Thus,

& � � � has rather the meaning of a functional operating on functions of
�
, which is expressed by the

notation 3 & � � � � 6 � � � 6 . Even if
&

can generally be written as a locally defined function of
�
, it is rather defined

by global properties. The theory of generalized distributions
�

uses only global operations of distributions to
define their properties. For probability distributions, the moments or cumulants are examples for their global
properties. Distributions which can be written as ordinary functions are called regular distributions; the general
algebraic and analytic relations which can be found for them are then used for the definition of non-regular
distributions, as, i.e. the Dirac-

�
function .

In the theory of generalized functions, some special restrictions are applied to the set of functions on which a
generalized function acts: the test-functions 6 � � � must be (

�
) infinitely differentiable, and (

���
) vanish identically

outside a finite interval. The latter restriction, called the requirement of compact support, guarantees that the
integral Eq. (2.1.4) always exists for locally integrable distributions

& � � � . However, we may use the notation3 & � � 6
also for functions which do not have a compact support and may not even be convergent, as we already

did in the definition of the moments. Here, we apply special requirements to the distribution
&

to guarantee
that 3 & � � 6

exists. A generalized function, which should be interpreted as a probability density function, must
obviously satisfy the relation 3 & � � � 6 � �

. Moreover, a probability density function expressing the distribution of
a physical parameter will always have a compact support itself, because no physical quantity can be distributed
over infinite intervals. When mathematical distributions are considered, we will force the existence of the
moment generating function 3 & � � � � 6 . The only non-regular distribution of practical importance, the Dirac-

�
distribution, even has a singular support. Therefore, we can completely reject the requirement of a compact
support of the test-function, and restrict ourselves to the requirement of infinite smoothness.

Calculus of abstract distributions: A generalized distribution is defined as a real-valued, linear functional3 & � � 6 , operating on set of test functions
�

. Linearity is expressed by the relation� & �
�
�
� � � � 6 � � � �

� � � 3 & � 6 � 6 �
In the context of probability theory, we will always require that any distribution

&
is uniquely connected to a

random variable
�
; if required for unambiguity, we use the functional notation

& � � � . Other functions which
depend on

�
are treated as regular, infinitely differentiable functions. Any functions which are not dependent on

�
can be treated as constants in the distribution calculus. We will not assume that test functions have a compact

support, but only that 6 � � ��� $ �
� � � �

for
� � � � �

. Distributions will generally be understood as probability
�
One usually says generalized functions or distributions in this context. Since we want to use (random) distributions in the sense of

generalized functions, we say generalized distributions.
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density functions with finite moments to arbitrary order, i.e. 3 & � � � 6 � �
and 3 & � � � � � � � 6 % �

; this is in
particular the case when

&
has compact support. In the following, the integer indexed symbols

& � will denote
distributions of a random variable

�
; 6 � ( 6 � � � � � denote test functions,

� � � � � � � � � other functions which are
not distributions, and � � constants; the index may be omitted in all cases, if only one symbol of a certain kind is
used.

The following relations are all motivated by Eq. (2.1.4), which is valid for regular distributions; for non-
regular distributions, these relations define their properties. Usually, a random variable is uniquely connected
to its distribution; however, it can be senseful to speak of sums of distributions of the same random variable

�
,

if its properties are itself subject of a random distribution. In this case, one may have a sequence of mutually
excluding distributions

& � � � � , which satisfy the linearity relation� � � & � ����6 � � �
� 3 & � � 6 6 �

(2.1.28a)

There is no general definition for the product of distributions of the same random variable; however, there is
also no meaning attached to it, because there is no factorization rule for the distribution of a random variable.
Multiplication with numbers and other functions are defined by

3 � & � 6 6 � �-3 & � 6 6 (2.1.28b)

3 � & � 6 6 � 3 & � � 6 6 �
(2.1.28c)

For Eq. (2.1.28c) we have to set some additional requirements on the function
�

, if neither
&

nor 6 have a
compact support; obviously,

� 6 must be a test function in the same manner as 6 itself. The transformation of
random variables is expressed in the relation

3 & � � � � 6 6 � � � � � � & �
�
��6 � � � (2.1.28d)

for any function
�

which is invertible over the support of
&

. From this relation, by setting 6 � � � we can easily
see that the probability density function of a random variable ��� � � � � , � � � � , is given by � � � & � � � �  � � � � ,
when

& � � � is the probability density function of
�
; inserting this result into Eq. (2.1.28d) we find

3 � � � � � 6 6 � 3 & � � � � 6 � � 6 � � D � � � � � � �
which is nothing but the operational formulation of Eq. (2.1.7) for 6 � � � � � � .

Applying the rule of partial integration to Eq. (2.1.4) we find that the � -th derivation of a distribution can be
defined by

3 & 0 � 5�� 6 6 � � � � � � 3 & � 6 0 � 5 6 �
(2.1.28e)

It should be noted that Eq. (2.1.28e) relates the derivation of the left side of a functional to the derivation of its
right side; in particular it is 3 � & 0 � 5	� 6 6 � � � � � � 3 & � � � 6-� 0 � 5 6 , and not

� � � � � 3 & � � 6 0 � 5 6 . Of course, if
&

can
be represented by a regular function, its derivative is much easier derived in the usual way than by applying
Eq. (2.1.28e); this equation is only of practical use when non-regular distributions like

�
functions are involved.
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Properties of the Dirac-function : From Eq. (2.1.28) we can derive some useful properties of the Dirac-
�

func-
tion, which we have introduced in Sect. 2.1.1.3 as the probability density function of the one-point distribution;
its general definition reads 3 � � 6 6 ( 6 � � � �
Using the functional notation

� � � � ����� ( � � � � � � � � and chosing
� � � � � � ��* , Eq. (2.1.28d) yields the well

known relation 3 � � � � * � � 6 � � � 6 � 6 � * � , which is equivalent to the definition Eq. (2.1.17) used before. We can
easily confirm the relations

� � � � � � � � � � (2.1.29a)
� � � � � � � ��* � � � � * � � � � � * � (2.1.29b)

Eq. (2.1.28e) yields for the derivatives of the
�

function

3 � 0 � 5 � � � * � � 6 6 � � � � � � 6 0 � 5 � * � (2.1.29c)

� � � � � 0 � 5>� � ��* � � � � � � � ��
� � < � � �  

� 0 � $ � 5>� * � � 0 � 5>� � � * � �
(2.1.29d)

if
�

has � simple zeros * � � ����� � * � , we have

� � � � � �� � ��
� � �

� � � � * � �� � � � * � � � � (2.1.29e)

which is a simple result of Eq. (2.1.28d). There is no consistent definition for
� � � � ����� if

� � ��� has higher order
zeros.

2.1.2 Multidimensional probability spaces and joint distributions

2.1.2.1 Uncorrelated random variables and the probability space

Connected, correlated and independent random events : Up to now, we only dealt with one random variable.
It is obvious that many practical problems involve more than one random characteristic. Consider two events
9 � and 9 	 , and assume that 9 � precedes 9 	 : In the simplest case, 9 � and 9 	 are connected, what means that we
know the result of 9 	 in the moment we get knowledge about 9 � ; here 9 � might imply 9 	 ( 9 � � 9 	 ), or exclude
it ( 9 ��� 9 	 ). If we call : � 9 ��� 9 	 � the joint probability of 9 � and 9 	 (i.e. the probability that both events occur),
and : � 9 ��� 9 	 � the total probability of 9 � and 9 	 (i.e. the probability that either one of them occurs), we get the
well-known relations

9 � � 9 	 � : � 9 ��� 9 	 � � : � 9 � � � : � 9 ��� 9 	 � � : � 9 	 �
9 ��� 9 	 � : � 9 ��� 9 	 � � � � : � 9 ��� 9 	 � � : � 9 � � � : � 9 	 �

These equations apply to different events related to the same random variable. If we relate the events to different
random variables

� � and
� 	 , and find that all events 9 � � � � > $ * � � 	 � $ and 9 	 � � 	 > $ * 	 � 	 	 $ are connected, we can

find a relation
� � � � � � 	 � � �

. This case has already be treated in the last section.
A more interesting case is given if 9 � does not tell us the result of 9 	 , but gives us additional information

about the probability of 9 	 ; in this case, we will call the events correlated ( 9 ��� 9 	 ). If not even this is the case,
i.e. if the probability for 9 	 is unaffected by the occurrence of 9 � , we will call them independent random events
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( 9 ��� 9 	 ). In both cases, it is obviously not possible to reduce the problem to one random variable; rather,
� �

and
� 	 span up a two-dimensional probability space �

� 	
. This is easily generalized to the � -dimensional case:

We will call the random variables
� � � ����� � � � unconnected, if there exist � events 9 � � �
> $ * � � 	 � $ � ����� � 9 � � �
>$ *

� � 	 � $ , which are pairwise unconnected. In this case, the random vectors � � � � � ����� � � � � span up an � -
dimensional probability space �

� � . The � -dimensional joint distribution function is defined as� ��� � ( : � � � - * � � ����� � �

� - *
� �

�� : � � % � � �
(2.1.30)

We may formally speak of a � -dimensional space of random variables � � � ����� � � � , for which are restricted by �
independent connection relations

� � � � � � ����� � � � � � �
; in this case, the probability space �

� � is a hypersurface
of � = � with dimension � � � � � .
Conditional probabilities and Bayes’ theorem : If we consider a two-dimensional probability space �

� 	 �� � � � � 	�� , it is useful to define for any two events, 9 � � � � > $ * � � � � $ and 9 	 � �
> $ * 	 � 	 	 $ , the conditional probability

of 9 	 under the condition that 9 � , by

: � 9 	 � 9 � � ( : � 9 ��� 9 	 �
: � 9 � � �

(2.1.31)

The requirement that 9 � and 9 	 are unconnected is equivalent to
� % : � 9 	 � 9 � � % �

, while : � 9 	 � 9 � � � �
means

9 � � 9 	 , and : � 9 	 � 9 � � � �
is equivalent to 9 � � 9 	 . Since 9 � and 9 	 can be interchanged in this Eq. (2.1.31), we

get the relation

: � 9 	 � 9 � � � : � 9 	 � 9 � �,: � 9 � � � : � 9 � � 9 	 �,: � 9 	 � �
(2.1.31a)

If we consider � events, 9 � � � ����� � 9 � � , all related to
� � , with 9 � � � 9 �

�
for all pairs

� � � �*� and : �	� � 9 � � � � �
, the

law of total probability

: � 9 	 � � ��
� � �

: � 9 	 � 9 � � ��: � 9 � � � (2.1.32)

relates the probability of 9 	 to that of the events 9 � � , and we can immediately derive from Eq. (2.1.31a)

: � 9 �
� � 9 	 � � : � 9 �

�
�,: � 9 	 � 9 � � �� � : � 9 � � �,: � 9 	 � 9 � � � �

(2.1.33)

This is known as Bayes’ theorem, which proves to be a particularly useful tool for the reversion of conditional
probabilities.

The idea of the conditional probability is easily extended to a � dimensional probability space. The joint
probability of � unconnected events is then given by

: � 9 � � ����� � 9 � � � : � 9 � � 9 � $ � � ����� � 9 � � ����� : � 9 	 � 9 � �,: � 9 � � �
(2.1.34)

Since the 9 � are principally interchangeable, the conditional chain Eq. (2.1.34) may be started with any 9 � and be
continued over any path through all other events. However, the probabilities in the chain are generally different
in all such permutations. In physical application, conditional probabilities often connect events occurring in a
fixed time order, which then gives in any case a natural order to the conditional chain. If orderliness of this kind
is given, we will say that the random variables

� � � �3�3� � � � , related to 9 � � ����� � 9 � , span up an orderly probability
space �

� � .
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Independent random variables : Two random variables
� � and

� 	 are called independent if any two events
9 � � � � > $ * � � 	 � $ and 9 	 � � 	 > $ * 	 � 	 	 $ are independent. From our earlier characterization of independence of
events and the definition of conditional probability, it is clear that two events 9 � and 9 	 are independent if
: � 9 	 � 9 � � � : � 9 	 � , which means that the joint probability satisfies the relation

: � 9 ��� 9 	 � � : � 9 � �,: � 9 	 � �
(2.1.35)

This immediately leads to the following relation: The joint distribution function of � independent random
variables,

� � � � � ����� � � � � , and the corresponding probability density function
& � � � � ����� � � � � are related to the

distribution and density functions of the single random variables as� � � � � ����� � � � � � ��
� � �

� � � � � � (2.1.35a)

& � � � � ����� � � � � � ��
� � �

& � � � � � �
(2.1.35b)

In the simplest case all
� � are identical, i.e. we have � identically distributed, independent random variables and

can write
� � � � � ����� � � � � � � � � � � . Obviously, the case of independent random variables is in so far related to

the case of connected random variables that both cases can be reduced to the consideration of one-dimensional
probability distributions. Interesting new aspects arise from the consideration of correlated random variables,
which can be expressed as combinations of independent random variables (Sect. 2.1.2.3).

2.1.2.2 Random vectors and probability propagation

Multivariate distribution functions : There are two reasons to consider multidimensional distribution func-
tions: First, a random event may be specified by an � -dimensional random vector in a physical space (e.g.
a random point in space or phase space), or second, to describe the joint distribution of random variables in
an � -dimensional probability space. The former case leads to the general discussion of multidimensional ran-
dom variables, the latter emphasizes the connection to the one-dimensional distributions describing multivariate
random functions defined on a probability space �

� � , which we may assume as orderly.
The probability density function of a vector of � unconnected random variables, � � � � � � ����� � � � � , is given

by
& � � � ��� � � � �

� �
( � � � � � �� � � ����� � �

�
� (2.1.36)

where the cumulative probability distribution function
� ��� � is defined as in Eq. (2.1.30). The probability element& ��� � � � is the joint probability : � 9 ��� ����� � 9 � � of the events 9 � � * � - � � - * � � , * � for

� � � � ����� � � . The� -th moment of an � -dimensional random variable is a tensor of rank � defined by � � � 3 & � � �'6 ; in principle,
all relations for the moments and the cumulants can be transformed straightforwardly to the multidimensional
case by interpreting ordinary products as tensor products. Of specific importance are the mean vector � ( � �
and the covariance matrix � ( � 	 ; the elements of � can be written as

	 � � � 2 	� and
	 �
� � 2 � 2

�
� �
�

for
� �� � ,

where � �
�

is known as the correlation coefficient of
� � and

�

�
; for independent variables we have � �

� � �
for all

� �� � , thus � is diagonal. The change of variables by � relations
�

� � �

� ��� � is performed by

� ��� � � & � � � � � � � (2.1.37)

where
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� � � � 
 ����� �� (2.1.37a)

is the Jacobian of the transformation.
�

The expectation value of a real-valued function
� � � � is, according to Eq. (2.1.4), defined by

3 & � � � � � � � � 6 � 3 � 6�� � 
 � � � � & � � � � � � � � (2.1.38)

and in the same way one can define the moments of
�

by 3 � �'6��
. Obviously the function

�
defines a one-

dimensional random variable � � � � � � with a distribution function � � � � � � � � � � , � and the moments3 � � � �76 � 3 � � � � � 6�� . Since the random variation of � is connected to the random variations of � variables
� � ,

we call
� � � � a multivariate random function. If there is a function connecting one dimension of the probability

space �
�

uniquely with � , i.e.
�

� � � �
� �

� � �
	 � � , � � � � can be derived from
& � � � by

� � � � � 
 � ���� � � 	 ���� �
�
�
�
�

� �

� �
� ��
�
�
�
$ � & � � ���� �  ����� 
 � � � �� � �

(2.1.39)

Even if
�

is not invertible in any dimension, one can get � � � � by splitting of the probability space in pieces
where

� �
locally exists and use the law of total probability. However, in many cases it may be advisable to

calculate the moments of � � � � by explicit integration of 3 & � � � � � � � � � 6 and construct � � � � in the way described
in Sect. 2.1.2.4.

Marginal and conditional distributions: The joint probability of � events assigned to a random vector, ��� � �� � � � ����� � � � � , in a probability subspace �
� � ��� � � � , is described by the � -dimensional marginal probability

density & � � � ��� � � ( 
 � ����� � ��� � & � � � � (2.1.40)

which integrates over all dimensions of probability on which
& � � does not depend; we will say that the dimen-

sions with index � � � are reduced in
& � � . Analogously we define the marginal probability density of one

dimension

& � � � � � ( 
 � ��� � � � 	 � & � � � �
(2.1.40a)

the corresponding distribution function
� � � * � � � ) & � � � � � , � � gives the probability : � � � - * � unaffected by the

other dimensions of �
�

.
Reduction is one possibility to remove dimensions; the other is fixing certain

� � to specific values, which we
will call restriction. The conditional probability density

& � �� � � !�" � � � & � � �&�" � � !�" � � (2.1.41)

gives the joint probability
& ���  � � !�" � � � � � � � : � 9 � � ����� � 9 �

� 9 � � ����� � 9 � $ � � of the events 9 � � * � - � � -* � � , * � for
� + � after � events 9

�
� �
� � �

�
have been fixed.

!
In our notation, it is indeed # � � O ��$&%�' � $�(  ��'  , because we understand the product between multidimensional objects as tensor

products!
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Propagators and Markov chains : We define the restricted marginal probability density by

& � � � � � � !�" � � � 
 � ����� � �
� � & � �� � � !�" � � � (2.1.42)

which corresponds to the distribution of the random variable
� � , restricted by fixing all

� � for
� % � , and reduced

for all
�

�
for � � � . The conditional chain given in Eq. (2.1.34) can then be written as

& � � � � ��� � �
& � � � � � � � " � � � (2.1.43)

setting
& � � � � � � � " � � ( & � � � � � . Eq. (2.1.43) can also called a prospective propagator chain through �

� � , because
every factor

& � � � � � " � � acts as a propagator of probability from subspace �
� � " � to �

� � � � . The term “prospective”
refers here to the assumption of a natural (time) order of the dimensions of �

� � . The propagators in Eq. (2.1.43)
connect every state

� � of a propagating random system to its history � � � ����� � � � $ � . A substantial simplification
occurs if

& � � � � � � !�" � � � & � � $ �
� � � � � � � � � $ � � ; in this case, the conditional chain Eq. (2.1.43) is called a Markov

chain, an we can define the transition or Markov propagator

� & � � � � � � � ( 
 � � �  3 � �, �
�
�
� ����� , � � $ �

�� " � � � & � � $ � � � � � � � � � � $ � � � (2.1.44)

which connects uniquely the dimensions � and � of �
� � , and transforms one-dimensional marginal distributions

as & � � � � � � 
��
$ �
, �
�
&
� � � � � � & � �

�
� � � � � � & � � � � � ��� � & � � � � � � � � �

(2.1.45)

Eq. (2.1.44) satisfies the symmetry relation
� & � � � � � � � � � � & � � � � � � � � & � � � � � � � � � ' � (2.1.46)

which is called the Markov equation. Since in a Markov chain there is no influence of the history on the
propagation from

�

�
to

� � , the direction of time can be reversed and we can define a retrospective propagator
chain. Prospective and retrospective propagators are connected by Bayes’ theorem

� & � � � � � � � � &
� � � � � � & � �

�
� � � �� & � � � �� � ��� � & � � �� � � � � �

�
(2.1.47)

In a homogeneous Markov chain all one-step propagators
� & � � � � � � � � � are identical, thus the general propagator� & � � � � � � � is only dependent on the “jump-size”, ��� � .

Formally, the Markov equation is a matrix multiplication chain, which becomes clear when we assume
that the

� � are discrete random variables which can take only a finite number of states. We may therefore
formally write the propagator

� & � � � � � � � as a transition matrix �
� � � � � � , and use the simplified notation �

� � �*� �� & � � �
$ � �

�

�
� , the Markov equation reads �

� � � � � � � �
� � � � � ��� ����� ��� � � � � . In a homogeneous Markov chain is

�
� � �*� � �

�
for all � , and we have �

� � � � � � � � � � ��� � $
�
. One-dimensional marginal distribution functions are

represented by vectors �
� � �*� ( &

� � � � in the matrix-language, and Eq. (2.1.45) looks like �
� � � � � �

� � � � � ����� � � �*� .
We will not use the matrix language for the description of Markov chains; instead, we define a more general
language on the basis of propagators in Sect. 2.1.2.5.
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2.1.2.3 Markov chains with independent increments

The convolution product : Any Markov chain can be written as a sequence of � random variables

� � � ��
� � �

� � � � D � � � � ����� � � � (2.1.48)

where the
� � are called the sequence of increments. We may call � � the accumulating random variable of the

increments
� � . If the

� � are independent random variables with distributions
& � � � � � , we will call the sequence � �

a Markov chain with independent increments, which has the propagators
� � � �

�
$ � � �

�
� � &

� �
�

� � �

�
$ � � . Inserting

this into Eq. (2.1.45) gives

�
�
�
� � �

�
�
� � � 
��

$ �
, �

�
�
� �

�

�
� &
� �

�

�
�
� � �

�
� ( � � � � &

�
� � �

�
�
� � � (2.1.49)

and the operation � � &
is called the convolution product of distributions. One easily verifies that the convolution

product is commutative and associative
�

and that finally

�
�
�

�

� � � � & � � ����� � &
� � � �

� � �
(2.1.50)

the distribution of the sum of independent random variables is given by the convolution product of the individual
distributions. Eq. (2.1.49) could also have been obtained by applying Eq. (2.1.39) with

� �
�

�
� �
�
�
� � � �

� �
�

�
�
� � �

�
�
� .

Moments, cumulants and error propagation : We temporarily generalize our discussion to a random variable ��
defined by the linear combination

�� � ��
� � �

* � � � � (2.1.51)

where * � are constants and
� � independent random variables. Denoting the m.g.f. and c.g.f. of each

� � with � � � � �
and 4 � � � � , respectively, we obtain

�� � � � � ��
� � �

� � � * � � � (2.1.51a)

�4 � � � � ��
� � �

4 � � * � � � �
(2.1.51b)

Calling 	 ��� � � 4 � 0
� 5>� � � , Eq. (2.1.51b) leads immediately to

�	 � � ��
� � �

*
�
� 	 ��� � �

(2.1.51c)

For � � � this reads �2 	 � � � * 	� 2 	� , which is known as the law of error-propagation. We may therefore consider
Eq. (2.1.51c) as a generalization of this law, covering also the higher order properties of the error distribution.

�
Associativity of the convolution product presupposescertain restrictions on the support of the distributions, which are always verified

for probability density functions.
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For the compound moments �A � there is no such simple formula in the general case; however, for two independent
random variables we have the relation

�A � � ��
� � < �

� �  * � � A � � � * � $ �	 A 	 � � $ � (2.1.52)

which can be straightforwardly (but also laboriously) extended to more variables.

The Central Limit Theorem : A particularly simple situation occurs when we consider a Markov chain ��
� with

independent increments
� � , which are identically distributed by

& � � � � . Denoting the generating functions of the
individual

� � by � � � � and 4 � � � , and setting all * � � �
, Eqs. (2.1.51) simplify to

��
�
� � � ��� � � � � (2.1.53a)

�4 � � � � � � 4 � � � � (2.1.53b)

and for the cumulants we find �	 � � � � � 	 � . With Eq. (2.1.14) this leads to the interesting relation

�$ � � � � $ �� � � 	 �
(2.1.54a)

Therefore we have for all
� > � < � 1 �

� � � �$ � � � � �
(2.1.54)

It is easy to verify that Eq. (2.1.54) also holds for independent random variables which are not identically dis-
tributed.

We have seen in Sect. 2.1.1.3 that the distribution with $ � � �
for all

�
is the Gaussian normal distribution.

Eq. (2.1.54) expresses that the accumulating random variable of a Markov chain with independent increments,
��
�
� � � � ����� � �

� , tends to be distributed normally for sufficiently large � , independent of the distribution of
the individual

� � , with

�� �
� ��

� � �
� � C 2	� �2 	� � ��

� � �
2 	� �

Eq. (2.1.54) is known as the Central Limit Theorem (CLT) of statistics.

Sampling statistics and the CLT : Another formulation of the CLT is immediately obtained if we consider
that the arithmetic mean

�� � of � random values
� � distributed about a mean � with a standard deviation 2 is�� � � � � � �  � : Obviously, the sample mean

�� � is also a random variable. The CLT claims that for sufficiently
large sample sizes � the sample means are distributed normally about the theoretical mean

�� � � with a
standard deviation

�2 � 2  � � . What “sufficiently large” means, depends on the distributions of the
� � and on

the requirements of accuracy. Quantitatively, we may set some small number � " �
, and the CLT guarantees

that we can find for any parameters an � < such that
� � � � is “sufficiently normal” for � � � < , in the sense that

all
�$ � % � ; this case will be called the “rich statistics” case in the following, the case where the theoretical

distributions of
� � � � have to be considered will be called the “poor statistics” case.

Clearly, the simplest example of sampling is counting; we can see immediately from Eq. (2.1.22b) ff. that
the binomial distribution for large

�
, and from Eq. (2.1.23d) ff. that the Poisson distribution for large � , are

approximated by Gaussian distributions. In the latter case, we find the well known relation� 	 � � � � � � �
�
� � � � � � � � �
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This approximation is generally considered as good for � �� ���
, which we may call a “rich” counting statistics. It

should be pointed out, however, that we only consider the counting of independent incidents; if the occurrence of
counts influences the probability of subsequent counts, the CLT does not apply and the asymptotic distribution
may strongly differ from the normal, as we will see in Sect. 2.2.1.3.

2.1.2.4 Asymptotic expansion of compound distributions

Practical use of the CLT : The central limit theorem states that any sum of independent random variables,
��
�
� � � � ����� � �

� , is asymptotically normal distributed for � � �
. In practice, we will be interested in

the question how fast this convergence proceeds, and how the remaining difference depends on the invariant
parameters $ � . In particular: Is there a way to find a function

�
$ �

����� $ � � ����� � $ � � , expressing the deviation ofI�
from the normal distribution? The usefulness of such a remainder function is obvious: The combination

of different random variables with different distribution functions can be reduced to finding relations for the
combined moments or cumulants, from which we can then reconstruct the final distribution. For a sum of �
independent variables and a sufficiently large � , the CLT guarantees that for any desired accuracy, �

�
$ �

��� � � %�� ,
there exists a number � such that all $ � for

� � � can be neglected.
From Eq. (2.1.54a), the CLT applied to a sum of � independent random variables, may be expressed in the

form I� ��� � � � ��� � � �
$ �

����� $ � � ����� � $ � � ��� � � $ 
 � � � � � 	 � �
(2.1.55)

Considering Eq. (2.1.55) as the � -th approximation, we may call the Gaussian
� ��� � as the 0-th order approxi-

mation of any combined distribution function, giving
I� ��� � to order

�  � � . For a Poisson distribution, this has
even a direct interpretation: If we say that a Poisson distribution about a parameter � � ���

is sufficiently well
approximated by a Gaussian with 2 � � ��� , knowledge of the remainder function up to $ 
 would enable us to
describe a Poisson distribution about � � � to the same accuracy.

The Gram-Charlier expansion in orthogonal polynomials : We consider the standardized probability density
function,

I& � �� � � , where �� � is the standard variable related to the accumulating sequence ��
�
� � � � ����� � �

�
of independent random variables. For simplicity, we assume that all

� � are identically distributed, so that the
parameters �$ � of the distribution

&
are connected to the parameters $ � of the distribution of the individual

� � by
Eq. (2.1.54a). Because of the connection of the derivatives of the standardized normal distribution

#-��� � to the
orthogonal Hermite polynomials, the Gram-Charlier expansion,

I& � �� � � �
��� � <
� �� � # 0 � 5 � �� � � � #-� �� � �

��� � <
� �� � ; � � �� � � � (2.1.56)

is an orthogonal expansion of
I&
, and the coefficients are given as � � � 3 I& � ; � 6 , so they are a functions of

the standardized moments of
I& � � � ; in particular we find we find � < � �

, � � � � 	 � �
, � 
 � � �$ � , � � � �$ 	 ,

� � � � �$ 
 and � �
� �$ � � ��� �$ 	� . We have indicated the coefficient � � not only to show that the simple relations

between the � � and the �$ � up to � � =
do not hold for higher orders; more important is the fact that, replacing

the �$ � by $ � using relation Eq. (2.1.54a), we find that � � % � � $ � � 	 for � - =
, but only � � %� � $ � . Hence, even

though the Gram-Charlier expansion gives us the desired relation of the deviation of
I&

from the normal to its
basic parameters, but it does not easily allow to find the cut the expansion at a specified order in � . For the
following considerations it is important to point out that the asymptotic dependence of the coefficients � � on �
is independent on the assumption that the

� � are identically distributed.
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The Edgeworth and Cornish-Fisher asymptotic expansions : The problem is obviously solved by ordering the
terms in Eq. (2.1.56) by powers of � $ � � 	 , considering Eq. (2.1.54a). This asymptotic expansion of the probability
density function is called the Edgeworth-expansion and can be written as

I& � �� � � � #-� �� � �
�
� � ��

� � �
$ � � �� � � $ � � ����� � $ � � � ��� � � $ 
 � � �

� � 	 � � (2.1.57)

where each $ � introduces a correction of order � $ � � 	 . Up to third order, the correction factors are

$ � � ��� � $ ��); 
 � ��� (2.1.57a)

$ 	 � ��� � $ 	
� " ; � � ���

� $ 	�@ � ; �
� ��� (2.1.57b)

$ 
 � ��� � $ 
� � ��; � � ��� � $ 	 $ ���"�"�; � � ��� � $ 
�� � ?�� ; � � ��� �
(2.1.57c)

We see here very clearly that the odd $ � (i.e. all odd combinations of $ � ) are connected to asymmetric poly-
nomials, thus express the asymmetric parts of the deviation of the distribution to the normal, while the even
combinations of $ � express the symmetric parts. We also see why the denotation “excess” for $ 	 is misleading:
For any skew distribution ( $ � �� �

) the “excess” of a distribution relative to the normal is affected by $ 	� to the
same order as by $ 	 .

It is obvious from
� � ��� � � #-��� � , that a similar expansion for the cumulative distribution function can be

found as I� ��� � � � ��� � � #-��� � ��
� � �

�

$ � ����� $ � � ����� � $ � � ��� � � $ 
 � � � � � 	 � � (2.1.58)

where the
�

$ � are simply obtained by replacing all ; � by ; � $ � in Eqs. (2.1.57). A more interesting problem
connected to the cumulative distribution function is, however, to give an expression for the standard variable � �
connected to a specific probability

'
,
I� � � � � � '

. This is provided by the Cornish-Fisher expansion: using the
Gaussian standard quantile � � , given by

� � � � � �� '
, we can write

� � � � �
� ��
� � �

+ � � � � � $ � � ����� � $ � � ��� � � $ � � 	 � (2.1.59)

with

+ � � ��� � $ ���; 	 � ��� (2.1.59a)

+ 	 � ��� � $ 	
� " ; 
 � ��� � $ 	�	�� � � ; 
 � ��� � ; � � ��� � (2.1.59b)

+ 
 � ��� � $ 
� � � ; � � ��� � $ 	 $ �
� "

� ; � � ��� � ; 	 � ��� � � $ 
�	 � "
� � � ; � � ��� � ��? ; 	 � ��� � �

(2.1.59c)

Since � � expresses the probability
'

in units of Gaussian Sigmas, we may say that Eqs. (2.1.59) allow to transform
Gaussian Sigmas into “real” 2 ’s, which means to multiples of the actual standard deviation. We also obtain an
approximate expression for the standardized median of a distribution (the “0-Sigma” confidence limit), which is
to third order

� �� � � $ �� � ��@ $ 
�	 � " � $ � $ 	� �
� $ 
"�� �

(2.1.60)

Note that the second order term is zero, because even orders do not influence the skewness of a distribution.
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Applicability of asymptotic expansion : Eqs. (2.1.57) and (2.1.59) approach asymptotically the real distribu-
tions or quantiles, respectively, only if

�

� is a Markov chain with independent increments. However, we may
use them as approximative expressions for general distributions; the only real requirement is that the invariant
parameters $ � asymptotically decrease with

�
. We see from Eqs. (2.1.57) and (2.1.59) that a decreasing influence

of higher order terms is given even when $ � keeps its order of magnitude with increasing
�
. We will set this as

the minimum requirement on the applicability of asymptotic expansion formulae. If this is not fulfilled, it may
be that the inclusion of successive higher orders of $ � diminishes the quality of the approximation, it may even
yield in completely useless results. One may verify this by trying an expansion of the exponential or the uniform
distribution!

Therefore, the applicability of this formulae is not restricted to Markov chains with independent increments,
but may be generalized to other accumulating sequences. However, we have to make sure that the $ � which are
included in the expansion tend to decrease, and that we have reasons to assume that the neglected parameters
do not contribute substantially. In many physical applications, the first condition can be examined empirically,
while the second may just be assumed on the basis of general arguments. It is generally not advisable to expand
to orders much higher than $ 
 , because the result will rarely be improved; for this reason we have restricted all
formulae given here to this order. The reason to choose an odd order as the highest one is, of course, that the
asymmetric redistribution of probability generally has the more important consequences. Even if the minimum
condition for an asymptotic expansion is not fulfilled, it is often possible to improve the approximation —
compared to the frequently used normal approximation — just by including the skewness coefficient $ � .
2.1.2.5 Products of distributions

Multidimensional distributions in abstract notation : According to the abstract notation of distribution opera-
tions introduced in Sect. 2.1.1.4 we give here the abstract operations dealing with multidimensional distributions.
Since abstract distributions are rather defined by their operational properties than by their functional form, we
again understand the explicit notation of variables only as a indication of the action of a distribution, and will be
omitted as far as possible. We will use an ordered notation in the sense that in any combination

�

�
occurs on the

left side of
� � if � % � ; this does not generally lead to the requirement of an orderly probability space. We use

the convention that
& ( & � � � � ����� � � � � is the multivariate distribution defined on �

� � and 6 � � � � ����� � � � � the ac-
cording test function, while

& � ( & � � � � � are marginal distributions with the related test functions 6 � ( 6 � � � � � ;
this convention is accordingly used for ordinary functions

�
and

� � .
The direct product of two distributions

& � and
& 	 is defined by

3 & � � & 	 � 6 � 	 6 �� 3 & � � 3 & 	 � 6 � 	 6*6 � (2.1.61)

It satisfies the relation of associativity and commutativity, and can therefore be expanded to a chain
& � � ����� � &

� .
A set of one-dimensional distributions

&
�

related to the dimensions � � � � ����� � � of �
� � is combined to the joint

distribution function
&

of �
� � by & �� & ��� ����� � &

�
�

(2.1.62)

Comparing with Eq. (2.1.34), we obviously have to understand the
& � occurring in a � -product as restricted

marginal distributions, where all random variables of the distributions occurring at the left side of
& � act as

conditional restrictions, while the random dimensions on the left side are integrated out. We call Eq. (2.1.62)
the conditional outer product. Therefore, the meaning of the “factors” in a conditional outer product depend on
their position in the product. If

& � � ����� � & � are independent random distributions, we clearly have
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& ��� ����� � &
�
� & � � ����� � &

�
�

(2.1.62a)

Introducing the notations
� &
� � ( � & � � � � � � � , � & � � � & � � � $ � �

� � � and
� & � ( & � , we can give the abstract description

of a Markov chain
& � � ����� � & � as

& ��� ����� � &
�
� � & � � ����� � � &

�
�

(2.1.62b)

The conditional outer product maybe written in any order, espression that we have in general the freedom to
express every random variable as as conditionally dependent on the others. Nevertheless, the operation is not
commutative in a common sense, because different orders of the product contain different terms; in orderly
probability spaces (i.e. if a natural or time-order is applied to the random dimensions), we can assume that only
one order of the product contains well-defined terms.

� < In the general case for conditional chains with memory,
it is not associative. For Markov chains and independent random distributions, associativity of the conditional
outer product follows from the associativity of the direct product. In the following, we will only consider Markov
chains.

The propagator product : Marginal distributions connected to random variables in a Markov chain are mapped
onto each other by use of propagators; in abstract notation, Eq. (2.1.45) can be written as� & � �

�
��6 � � � � & � �

�
�

� � & � � �
�
��6 � � � �

We introduce the propagator product� & � ������� � � � � � � ����6 � � � � �� � & � ��� ��� 3 � � � � � � � 6 � � � 6�� � 	 � (2.1.63)

which may in this sense applied to any kind of functions
&

and � , and call � the conditional variable of � � � � � � ,
which is reduced by the operation

& ��� � . For propagator chains, the conditional variable is just identical to the
free variable of the left hand propagator, so that its explicit notation can be omitted and we can write

3 & � � 6 � 6 � � & � � &
�
� � ����� � &

�
	 � & � �

�
��6 � � � � � � (2.1.64)

which we call a propagator chain. Here, we implicitly understand every
&
�

occurring on the right side of an
operator, � &

�
, as a propagator, where the conditional variable is set to the free variable of its left neighbor,

and reduced in the operation. The first distribution in the propagator chain
& � is an unconditional marginal

distributionand is called the initial distribution. Obviously, the number of terms in a propagator chain is arbitrary,
because from the Markov equation Eq. (2.1.46) we see that

& � � & � � & � � &
�
� & �

for any combination of dimensions
& � , &

�
and

& � ; this also guarantees the associativity of the propagator product.
it is obviously an ordered operation and therefore not commutative, even though it maybe written in different
orders yielding the same result; in the same sense as the conditional outer product, the meaning of the terms
changes by changing the order. In a time-ordered probability space, we may say that the propagator product
� � This corresponds to the problem of time-reversibility; see Sect. 2.2.2.1.
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unfolds the generation history of the final distribution
& � . Writing more or less terms into the product means

looking more or less detailed on this history.
To write propagators explicitly, we note that a propagator is nothing but the unconditional marginal distribu-

tion obtained from a propagator chain which starts from an initial one-point distribution
� � , and we define

� &
� � �� �

�
� & � (2.1.65a)&

� �� �
�
� &
� �

(2.1.65b)

The notation of the Dirac-function on the left side of the propagator product can be understood from the explicit
definition Eq. (2.1.63) by writing

� � � & � � � � � � � � � ����� �
� & � � �5� � � � �

For the combination of propagator products with ordinary functions of random variables we use the convention
that � & � � & � � �

� �� & � � � &
�

�

�
� � & � �

(2.1.66)

clearly, we can insert
&
�

�

�
at any place of the product. The meaning of Eq. (2.1.66) is, of course, that since we

are interested in a specific marginal distribution of a random variable
� � , functions of other random variables

are averaged over their random dimension. This becomes particularly clear if we assume that
�

�
and

� � are
independent random variables; Eq. (2.1.66) becomes then

� & � � & � � �

� � 3 �

� 6 & � �
(2.1.66a)

It is clear that the propagator chain Eq. (2.1.64) can be formally written also for independent distributions;
however, it does not contain any additional information about

& � .
Properties of the convolution product : Let now �

�
, � � � � ����� � � , be a Markov chain with independent incre-

ments,
� � � � � � � � $ � , � � ( � � . Denoting the distributions with � � � � � � and

& � � � � � , we can generalize Eq. (2.1.50)
as

� � � � � ��� � � & �
�
� � ����� � & � � (2.1.67)

where the initial distribution � � can be freely chosen.
The convolution product has some useful properties, which simplify the treatment of Markov chains with

independent increments. The abstract definition of the convolution product is

3 & � � & 	 � 6 6 � � � & � � & 	 � � � � � � 	 � ����6 � � � � � 	 � �� � & � � � � � ���*3 & 	 � � 	 � � 6 � � � � � 	 � 6 � � (2.1.68)

and we have already mentioned that it is commutative, and associative for normalized distributions. The Dirac-
function acts as the unit element in the convolution,

� � � &
� � &

�
� (2.1.69a)

and the multiplication rule with ordinary functions
�

� � � � � is
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� & � � &
�
� �

� � & � � � & � �

�
� (2.1.69b)

From this relations and Eq. (2.1.67) we can find the propagator rules

� � � � � � & �
�
� � ����� � & � (2.1.70a)� � � � � � � � � � �
�
� � � � � � � � � (2.1.70b)

�

� � � � � � � � � � � � � �
�
$ � �

� � & � �

�
� � � � � � � � � �

(2.1.70c)

The derivative of a convolution product satisfies for any combination
� � � � �

� & � � & 	 � 0 � 5 � & � 0 � 5 � & 	 0
� 5 � (2.1.71a)

from which follows that

� 0 � 5 � & � & 0 � 5 �
(2.1.71b)

The relation for the moments of the sum of two independent random variables, Eq. (2.1.52), can be rewritten in
abstract notation as � � & � � & 	 � � � � ��� � � � � ���

� < �
��  � & � �

�
�

� � 3 & 	 � � � $
�
6 � (2.1.72)

which proves to be particularly useful for the investigation of propagators in connection to Eqs. (2.1.70).
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2.2 The point process approach to cosmic ray transport

In this section we develop a new approach to the treatment of cosmic ray transport, which is founded on the theory of
Markov processes, in particular discontinuous Markov processes, called point processes. In Sect. 2.2.1 we give a mathe-
matical introduction to this theory, under reference to the general discussion of probability theory in the last section. The
concept of the perturbative treatment of Markov processes is developed, which reduces the description of an evolving distri-
bution function (propagator) by its moments. In the following section, Sect. 2.2.2, we establish the connection to classical
transport theory, and show the general method as well as a simple example for the application to cosmic ray transport. A
detailed application to specific questions of cosmic ray physics is, however, postponed to future work.

The theory of Markov processes is described in the book of FISZ [Fis80]. Specific discussions of point processes can
be found in the books of COX & ISHAM [CI80], a rather mathematical discussion is given by SNYDER [Sny75]. Other
references are given in the text.

Notation: We use the notation introduced in the last section and in Chapter 1, in particular Sect. 1.2.2 and Sect. 1.3.4.
Please read carefully the em Notation-paragraph on page 96! The author apologizes that more detailed information cannot
be given here; it is just necessary to read the other sections before reading this one.

2.2.1 Random point processes

2.2.1.1 Definition and classification of point processes

Random processes and propagator chains : In the last section we have discussed probability spaces of finite
dimension, in which it was possible to define sequences of random variables and relations describing them.
The next generalization is obviously the extension to probability spaces of infinite, in general even uncountable
dimension. The theory arising from this is the theory of random processes. A random process is a random
function

� � � � , depending on a real parameter
�
, which can in general be identified with time. Therefore we

might say that a random process is a random quantity changing in time. The realization of a random process
is a function on � = , called a path. The properties of this path function classify the random processes, where
the most basic distinction is between continuous and discontinuous random processes; the latter are called point
processes.

At any fixed time
� < , � � � < � is a random variable with a distribution

���-� � < � � � � : � � � � < ��% � � , following
Eq. (2.1.30). The corresponding probability density function will be denoted with

& �-� � < � � � . If we select an
arbitrary number of instances

� � � ����� � � � , the random sequence
� � � � � forms a propagator chain

& �-� �
� � � & �-� � � � � ����� � & �-� �

� � �
(2.2.1)

We might say that a random process is a family of propagator chains. In the most general case, the distribution& �-� � � � will be conditionally restricted by all
� � � � � � with

� � % � � . If
& �-� � � � � ����� � & � � � � � is a Markov chain for

any selection of
� � � ����� � � � , the process

� � � � is called a Markov process. Markov processes are the random
processes with the lowest reasonable autocorrelation; a random process which maps to independent random
variables

� � � � � for any sequence of instances
� � � ����� � � � could just be used as a definition for complete chaos,

in the sense that there is no way to determinate the behavior at a specific time
�
�

from the knowledge we have
for times

� % �
�
.
� �

We may alternatively repeat what we have stated in the discussion of the propagator product
— a propagator chain connecting independent distributions does not contain additional information about the
final distribution. Therefore, the simplest random processes are represented as Markov chains with independent
increments.
� �

This is a nice, but not very useful definition of “chaos”. In contemporary non-linear physics, one attempts to define this term on the
basis of determinate behavior [Hak83].
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Point processes : Pure point processes are random processes which are realized by step-functions in time.
A realization path of a point process over a finite period of time can therefore be described by a finite, but
randomly given number of quantities expressing the discontinuous changes of the random functions; we might
say that point processes are entities defined in probability spaces of random dimension. In the simplest case,
the step quantities are all identical (in absolute value and sign), and the randomness is completely reduced to
the number of counts accumulated over time; we call such processes counting processes. A counting process
with independent increments, i.e. where the numbers of counts occurring in a fixed sequence of time intervals
are independent, is called a Poisson process. A counting process of Markov type is called a birth process.
The simplest case of a birth process is the Yule-Furry process, in which the count rate is proportional to the
accumulated number of counts. An important property which we will always assume for counting processes is
orderliness, which means that only single counts occur at single instants, i.e. the probability that more than one
count occurs in an infinitesimal time interval, vanishes.

A point processes,
� � � � , in which the amounts of change, � � � � � , contributed by single steps occurring at� � � ����� � � � , are not identical, is called compound or marked point process. Every purely discontinuous random

process can be written as a marked point process. A marked point process can always be separated into a
counting process, � = � � � , and a mark distribution,

&
�
� � � � � . We might look at a marked point process as a

counting process which drives the accumulation of random variables � distributed by
&
� . The marks are in

general � -dimensional realizations of an � -dimensional probability space �
� �� , which we call the mark space;

in many cases, marks are just real-valued physical quantities. Clearly, the dimension of the mark space must
be larger than or equal to the dimension of the mark variable, � + � ; if � � � , the mark is described by a
multivariate random function defined on �

� �� . The relations between � = and
&
� can be various, and are used to

classify marked point processes in Sect. 2.2.1.4.

2.2.1.2 Markov processes

Markov property in continuous time : If a conditional chain Eq. (2.2.1) is a Markov chain, it enjoys associa-
tivity, which means that any subchain

� � � � � � � � � � � can be treated separately. In particular, it makes sense to
define the for any

�
�
% � � the propagator

�& �#� � � � � � � ( � � � � � � � & �-� � � � � (2.2.1a)

which is independent of the distribution of
� � � � at any other time

� �� �
�
� � � . In an ordered time sequence� � % ����� % � � , the Markov equation Eq. (2.1.46) can be applied to any propagator

�& � � � � � � � � with � � � � �
;

since the choice of time instants is arbitrary in a Markov process with continuous time, we can generalize this
equation and obtain for any

�
� � � � � � � & �-� � � � � � � � � � � � & �-� � � � & � � � � � �

(2.2.2)

this is known as the Chapman-Kolmogorov equation. A homogeneous Markov process is defined by

� � � � � � & �-� � � � � � �� � � � � � � & �-� � � � � � D"C � � � � � � � (2.2.3)

The Kolmogorov equations : The Chapman-Kolmogorov equation can be transformed into a differential equa-
tion; we consider the propagator of

�
from an instant

�
to
� � � �

in the limit
� � � �

, and we can write� 1 �� � � < # � �-� � � � � � & �-� � � � � � � � $ �� 8 � � � � � � � � # � � � � � � � � $ � ��� � � � (2.2.4)
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with

� � � � � � ( 
 � � � � � 8 � � � � � � � �
(2.2.4a)8

and � are called intensity functions of the random process.

8 � � � � � � � expresses the probability per unit time of
a change of

� � � � at a time
�

from a state � to a state
� �� � , and

� � � � � � � � is the probability per unit time that
nothing happens. Applying the Chapman-Kolmogorov equation, we immediately obtain

�
� �

�& � � � < � � � ���� � 
 � � � �� �& � � � < � � �����
8 � � � � � � � � � �-� � < � � � � � � � � & �9� � � � � � (2.2.5a)

which is called the prospective Kolmogorov equation describing the Markov process
� � � � . Analogously, the

retrospective Kolmogorov equation can be found as
�
� � <

�& �#� � < � � � ���� � 
 � � � � �� � � � < � � � � � � � < � � � � & �-� � � �
8 � � < � � � � � ��� & �-� � � � (2.2.5b)

Note that the term “retrospective” refers here to the variation of the condition rather than the result of a process
� � � � . Both Eq. (2.2.5a) and Eq. (2.2.5b) give a complete description of a Markov process.

The Kolmogorov equation for strictly continuous Markov processes : In the general case, the Kolmogorov
equations are integro-differential equations. However, in the case of a strictly continuous Markov process,
which satisfies for any � � �

the condition� 1 �� � � < � �
� � : � � � � � � � � � � � � � � � � �� � � � � (2.2.6)

the Kolmogorov equations reduce to a parabolic partial differential equation. Expanding to second order in" � � � � , we obtain

& �-� � � ���
8 � � � � � � � � & �-� � � � � � � � � � � � � � � � & � � � � � �93 8 � � � � � � � " � ��" 6  � � 	� �9� & � � � � � � � 8 � � � � � � � " � �� " 	 �8 �

and it can be inferred from the continuity condition, Eq. (2.2.6), that all higher order terms vanish identically, so
that the prospective Kolmogorov equation for the continuous Markov process is

�
� �

�& � � � < � � � ���� � 
 � � � �� � � � � � �& �#� � < � � � � � � � � � � � �9� � 	� � � �& � � � < � � � � ��� � � � � � � � (2.2.7)

with
� � � � � � � � 8 � � � � � � � " � ��� " ��� (2.2.7a)

� � � � � � � � 8 � � � � � � � " � ��� " 	 ��� �
(2.2.7b)

The coefficients
�

and � are called drift vector and diffusion tensor, respectively. In the general case, they are
of the same order; for a strictly increasing (or decreasing) random process, however, the drift

�
dominates and

� may be neglected to first order. The continuous Markov process with independent increments, i.e. if drift
and diffusion coefficients do not depend on

�
, is called a Wiener process. We can easily see that the random

variables
� � � � of a Wiener process have Gaussian distributions for all

�
; we should note that this is not true in

the general case.
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2.2.1.3 Counting processes

The Poisson process : The simplest discontinuous random process is given by a counting process with inde-
pendent increments, which is called a Poisson process. This process is completely described by its rate function� � � � ; in fact, � has the same meaning here as in Sect. 2.2.1.2, only that

8 � � � � � � � � � � � � � � ��� � � � � for all � , �
and

�
, expressing that only positive integer steps (counts) are possible. The Kolmogorov equation for the Poisson

process reads �
� �

� & � � < � � � � � � I� � < � � � � � & � � < � � � � � � � � � � � � � & � � < � � � � � �
(2.2.8)

With the initial condition
� & � � < � � < � � � � � < � we find the solution

� & � � < � � � � � � � �� � � $ � � 1�
� � � 
 �
� � , � � � � � � � �

(2.2.8a)

this is the Poisson distribution, which was already discussed in Sect. 2.1.1.3, and � is the Poisson parameter. For
the homogeneous Poisson process we simply have � � � � .

We may now discuss the finding about the complementary character of the expectation and occurrence
probability,

�� 	 � � � � � � � � � 	 � � � � � �
as expressed in the symmetry of Eqs. (2.1.23b) and (2.1.23c). In a Poisson process, the expectation � is an
increasing function of time, therefore we may introduce a uniquely determined time

�
� according to a given � .

Then, the symmetry of Eqs. (2.1.23b) ans (2.1.23c) expresses that the probability that an arbitrary realization
of a Poisson process has � counts at a time

� % �
� is equal to the probability that it has more than � counts at� � �

� . This is obviously an immediate consequence of the increasing character of a Poisson process, and we
can conclude that this symmetry holds for any distribution arising from a purely increasing random process.

The Yule-Furry process : The general case of a Markovian counting process, where the rate of increments �
depends on the number of accumulated counts, is called a birth process; the naming arises from its application
to self reproducing populations. With the initial condition

� & � � < � � < � � � � � � � , � + �
, the Kolmogorov equation

for the birth process reads
�
� �

� & � � < � � � � � � I� � � � � � � � � � � � & � � < � � � � � � � � � � � � � � � & � � < � � � � � �
(2.2.9)

In the simplest case, we have � � � � � � �� ��� � � � � , where � � � � � can be called the birth rate of one “individual” in
the process. This process is called the Yule-Furry process, whose solution is easily found as

� & � � < � � � � � � &�� ��� � � � � ( � � $ �� $ �  5� $
� ��� � � � $ ��� � $

�
� 1�
� � � 
 �

� � , � � � � � � � � �
(2.2.9a)

Introducing the notations
� ( ��� � � � ����� � � � , � � � � � � � � � , � � �  � and

' � � � � this can be rewritten as a
generalization of the binomial distribution,

&�� ��� � � � � � � � $ �� $ �  �
� ' � $ � �

�� &  � ��� ��� � � ' � �
(2.2.9b)

Note that
� + �

is required; in the following we briefly discuss the properties of the Yule-Furry distribution,
Eq. (2.2.9a), for

� � �
. The cumulant generating function is

4 � ��� � � � � � � 2 � � � 2 � � � ' � � � � (2.2.10)
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from which we find the lowest order cumulants as

	 � � � (2.2.10a)	 	 � � 	 � � (2.2.10b)	 
 � � � 
 � 	 � 	 � � (2.2.10c)	 � � � � � � � � � 
 � @ � 	 � � (2.2.10d)	 � � � " � �-� ��� � � � =�� � 
 � ��= � 	 � � �
(2.2.10e)

The expressions for the invariant parameters $ � of the Yule-Furry distribution are easily found from Eqs. (2.2.10),
and one can verify the asymptotic expression� 1 �

� � � $ � � � � � � ��� �
which shows that the Yule-Furry distribution converges against the exponential distribution for large

�
. For the

Yule-Furry process we have
� %� � � , therefore we can expect that the distribution of �

� �*� � � converges very fast
against an exponential shape with time.

Birth process with polynomial rate function : We now assume that the rate function � � � � � � of a general birth
process can be written as a polynomial of degree � in � ,

� � � � � � � ��
� � <

I�
�
� � �

(2.2.11a)

With this formulation, it is possible to reduce the integro-differential equation Eq. (2.2.9) to a coupled set of
ordinary first order differential equations, which describe the moments

A � � � � of
� & � � < � � � � � as functions of time.

Applying both the left and the right side of Eq. (2.2.9) on �
�
, we obtain

� A �
� � � ��

� � <

�
$ ��
� � < �

�
�  I� � A � � � �

(2.2.11)

Hence, only in the case of independent increments, � � �
, the moments

A �
are completely described by all

lower order moments,
A � with

� % � . The case � � �
includes a “Yule-Furry-component” into � � � � � � , and the

moments become self-coupled, which results in the exponential time-evolution of the Yule-Furry process. For
� � �

the equation system becomes upward-coupled, and higher order moments influence the evolution of
each

A �
. We may therefore consider the degree � as the coupling strength of a birth process, which describes

its degree of autocorrelation; � � �
means that the process has independent increments, and that therefore

the distribution of
� & � � < � � � � � obeys the CLT. Of course, the quantities I� � have also to be considered there: if

the sequence of absolute values
� I� � � strongly decreases with

�
, it may be possible to choose a limited coupling

strength
�� by neglecting all I� � for

� � �� . Since, by assumption, the I� � are dominated by I� < , we can furthermore
assume that the CLT holds approximately for such processes, which means that the $ � decrease with time, and
that an Edgeworth expansion to limited order � is possible for at least some accuracy �

� �� � � � . This treatment we
will call the perturbative description of birth processes, which is below extended to the general Markov process.
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2.2.1.4 Marked point processes

Definition and classification : The general discontinuous Markov process which accumulates � quantities � �
over time in a random number

�
of non-identical steps, can be written as � � � � ( �&��� � � � � � � � � � ����� � � � � � ��� , and

is called a marked point process.
� 	

It is described by Eqs. (2.2.5) by setting8 � � � � � � � � � � � � � � � � � � � � & � � �
� � � � � �

(2.2.12)

Since � and

8
are connected by Eq. (2.2.4a) we have � &

� , � � �
, thus

&
� is a probability density func-

tion, called the mark distribution, conditionally depending on
�

and
�

. � � � � � � � � itself describes, according to
Sect. 2.2.1.3, a counting process � = � � � , which we will call the driving process of � � � � , accumulating the inter-
action number

��� � � . We have assumed that
&
� is not dependent on

�
; this assumption arises from the physical

interpretation of the functions

8
and

&
� , namely that

&
� is completely described by the local physical state (see

Sect. 2.2.2.4). For the same reason we will assume that
&
� cannot depend on parameters which do not influence� . With these restrictions, we can give the following classification to marked point processes:

1. The compound Poisson process is given when � ( � � � � and
&
�

( &
�
� � � ; we then have a point process

with independent increments, which are, however, not identical. If both � and
&
� are constant, we have a

homogeneous compound Poisson process.

2. The compound birth process allows the dependences � ( � � � � � � and
&
�

( &
�
� � � . In this case, the

driving process alone shows autocorrelation, while the mark distribution is uncorrelated to the process. A
typical example for this is a idealized cascade process, in which a single interaction is not dependent on
the physical state of the interacting particle.

3. The Markov point process with uncorrelated marks, � ( � � � � � � � � and
&
�

( &
�
� � � . Here the complete

state of the process determines the interaction rate, but not the mark distribution. In most cases, this
situation is not exactly realized, but can be used as an approximation.

4. The general Markov point process with the highest possible autocorrelation, as assumed in Eq. (2.2.12).

The first two cases will be called compound counting processes, because here uncorrelated marks are just super-
posed to a counting process. The latter cases are combined as Markov point processes.

Compound counting processes with homogeneous increments : If a counting process is superposed by un-
correlated marks, which are all distributed identically, we can find for any given instant

�
a simple connection

between the cumulant generating functions of the distributions
& � � � � � � ( �&�� � � < � � � � � , & = �&� � � � and

&
�
� � � ,

which we will denote 4 � � � � � � , 49= � � � � � and 4 � � � � , respectively.
� 
 In this case, the state � of the point process

can at any
�

be written as a sum

� � � 
 � ��
� � �
� � �

with a random number
�

of terms
� � , which are all identically distributed random variables. Since for any fixed

number � of increments
� � the multivariate m.g.f. of

& � is given by � � � � � � � � � ��
� � � , we can write

4 � � � � � � � � 2 � & = �&� � � � ��� � �� � � � � � � � 2 � = � � �
� � � � � � � � 2 � = � 4 � � � � � � � �

� �

Marked point processes are not generally restricted to Markov processes, but we will apply this restriction here.� � We will restrict our considerations to one-dimensional marks here, because the specific case discussed here is only of didactical
importance. The generalization to multidimensional marks is straightforward.
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and therefore formally 4 � � � � � � � � 49= � 4 �#� � � � � � �
(2.2.13)

In other words, we just have to replace the parameter � in the cumulant generating function of the driving
process by the c.g.f. of the mark distribution. For this reason, point processes are often formally described by
generating functionals instead of generating functions. Eq. (2.2.13) can be used to give the general relation for
the cumulants �	 � , and thus for the invariant parameters of the distribution

& � � � � � � ; denoting
	
� ( 49= 0

� 5>� � � � � for
fixed

�
, and 	 � ( 4 � 0 � 5 � � � , we find

�	 � � 	 � 	 � (2.2.13a)

�	 	 � 	 	 	 	 � � 	 � 	 	 (2.2.13b)

�	 
 � 	 
 	 
 � � 	 	 	 	 	 	 � � 	 � 	 
 (2.2.13c)

�	 � � 	 � 	 � � � � 	 
 	 	 	 	 � � 	 	 	 	 		 � " 	 	 	 
 	 � � 	 � 	 � (2.2.13d)

�	 � � 	 � 	 � � � ��� 	 � 	 	 	 
 � � ��� 	 
 	 
 	 	 � � ��= 	 
 	 		 	 � � ��� 	 	 	 	 	 
� = 	 	 	 � 	 � � 	 � 	 � �
(2.2.13e)

Following Eqs. (2.1.15), the 	 � can be calculated from the moments
A �

of the mark distribution, which in turn
may be found by direct integration. The

	
�

can be found from the Kolmogorov equation of the driving process
Eq. (2.2.11), if the rate function can be expressed or approximated by a low order polynomial. In the special
case of the compound Poisson process we find from Eq. (2.2.13) the very simple expression

4 � � � � � � � � � � � � �
� � � � (2.2.14)

where the � � � � is the accumulated Poisson parameter, which leads to

�	 � � � A � � (2.2.14a)

when
A �

are the moments of the mark distribution. For the compound Yule-Furry process, with initial condition� & � � < � � < � � � � � � � , we obtain

4 � � � � � � � 4 � � � � � � 2 � � � � � � 2 � � � ' � � � � �
� � ��� � (2.2.15)

and by successive differentiation we may explicitly verify Eqs. (2.2.13) with the
	
�

replaced by the cumulants
of the Yule-Furry process given in Eq. (2.2.10).

Markov point processes : The compound counting process allows a very simple treatment of marked point
processes, but has also a very restricted applicability: it can be used only if (

�
) the driving process is self-

correlated, and not affected by the marks, (
���

) the marks are independent of the state of the process, and (
�����

)
the marks are homogeneous in time. If one of these restrictions is not given, the general Kolmogorov equation
for the marked point process has to be considered. Applying Eq. (2.2.12), and ordering the functions in the
propagator product according to their dependence on random variables, we can rewrite Eq. (2.2.5a) as

�
� �

�&�� � � < � � � ���� � 
 � � � �� � � � � < � � � &�� � � � � � � ����� &
�
��� � � � � � � � � � � � � � � &�� � � � � � � �

(2.2.16a)

In the general case, this equation cannot be easily simplified. However, in the case if uncorrelated marks, which
means that condition (

���
) of the list above still applies and

&
� does not depend on the process state, and restricting

to one-dimensional random processes, this transforms into a simple convolution
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�
� �

�&�� � � < � � � ���� � 
 � � � � �
� � � � < � � � # � &�� � &

�
$ � � � � � � � � � � � � &�� � � � � � � �

(2.2.16b)

Considering Eq. (2.1.72), this can now be applied to � � , and yields

�
� �

� � & � � < � � � ��� � � � � � $ ���
� < �

��  � � & � � < � � � � � � � ��� �

�
� � & � � � � ��� � � $

�
� �

(2.2.17)

For a polynomial representation of the rate function � ,

� � � � � � � ��
� � <

I�
�

� � �
we obtain the set of coupled differential equations for the moments,

� �A �� � � ��
� � <

� $ ���
� < �

��  I� � �A
�
� �
A � $

�
� (2.2.18)

in analogy to Eq. (2.2.11), where here �A
�

denote the total moments of the propagator
�&��

, and
A �

are the moments
of the mark distribution

&
� . Noting that any rate function can be represented as a polynomial by means of a

Taylor expansion, we can generally write

I�
�
� �

� �
, � �, � �

�
(2.2.18a)

depending on the magnitude of the derivatives of � and the desired accuracy, we can then find a suitable degree
� determining the coupling strength of the system. When evaluating propagators, Eq. (2.2.18) has to be solved
with the initial values �A � � � � � �A � � � � � , corresponding to an initial

�
-function at the position �A � � � � .

We may finish the mathematical discussion of marked point processes with some remarks about the appli-
cability of Eq. (2.2.18): As already noted for Eq. (2.2.11), the differential equation system is upward coupled
if the dependence of the rate function � on the Markov parameter is higher than linear. We therefore have to
rely on the assumption that

� I�
�
�
decreases with � fast enough to allow an upper cut in the equation system. This

problem is unchanged when mark distributions are considered: We note that the lowest order moments of the
mark distribution introduce in the highest order upward coupling degree; it doesn’t help to assume “close-to-the-
normal” distributions in the mark space to make the equations better handable. We note that this problem does
not depend on how many moments we want to include in the Edgeworth expansion of the propagator; rather,
it is the evolution of the lower order moments which might be uncontrollable influenced by the higher order
moments. Finally, we will expect that a thorough mathematical and empirical investigation of the results of
Eq. (2.2.18) in specific applications is required to find to which processes it can be applied and to which not; we
will, however, not do this within this work, and just state that at least for weakly coupled problems ( � - �

)
Eq. (2.2.11) proposed to be useful, and that in other cases it may help to explain more detailed why too simple
minded transport approximations give wrong results.
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2.2.2 Random processes and particle transport

2.2.2.1 Transport theory: the physical language of random processes

Random variables, distributions and propagators in physics : A random process describes the evolution of a
probability distribution with time; this is the easiest and most general way to speak of random processes in
physics, even though “time” may be replaced by any continuous parameter, or even a set of parameters. We will
call this parameter vector � in the following, noting that in many cases we may simply replace it by the time

�
.

In physics, a distribution function is usually related to an ensemble of identical entities, which are distributed
over a, possibly multidimensional, quantity of state,

�
; in case of a distribution of particles over energy, it is also

called a spectrum. With respect to an individual particle, the spectrum becomes a probability distribution of
a random variable

�
. The mathematical terms probability density and cumulative distribution correspond to

the physical terms differential spectrum and integral spectrum, respectively. Thus, a physical random variable
is nothing but a quantity connected to a particle distribution or spectrum, but related to an individual particle,
for which it is not fixed by any initial conditions. This is what we meant before when we said that a random
variable is defined by its distribution: the distribution describes the range of possibilities given by the physical
laws governing the problem.

A physical propagator is a distribution which arises from a well defined state at a time � < , as a function of
time. It describes the transport of the particle, and is connected to a physical process which we may characterize
as an interaction process in the widest sense. Since the process generates a distribution from a well defined
state, it must have the property of randomness. Hence, it must have some internal degrees of freedom, which are
not fixed by initial conditions, and are described by a random vector � , with a joint distribution function

& � � �
determined by the physical laws of the interaction process. The change of the random variable

�
is a random

function
� �9� � � , their distribution is the intensity function of the interaction process,

8 �
� � � � � � � �9� ����� , as given

in Eqs. (2.2.4). The integral rate function � � � � � � is obviously equivalent with the interaction rate, thus connected
to the interaction time scale by

8
$ �� �
	 � � � � � � � . We may distinguish between continuous and discontinuous

interaction processes; the former are well known in transport theory and are called diffusion processes, the
latter are those which we are most interested in: they describe the transport of a particle which undergoes well
separable interactions with background particles. There is no common term for this in physics, except the
mathematical term Markov process, or, more precise, Markov point process.

Markov processes and the Boltzmann equation : The aim of transport theory is the description of the evolution
of spectra in time under the influence of interaction processes. The aim of the theory of random processes is
the description of propagators. Obviously, both are equivalent, which becomes mathematically clear from our
notation of a propagator as

� �-� � < � � & �-� � � in Sect. 2.2.1.2: the Kolmogorov equations, describing the evolution
of propagators, do not really depend on the restriction to random processes starting at a specific initial state. We
may readily apply an initial spectrum,

& � � < ��� , to the left side of Eqs. (2.2.5) or (2.2.7), and they transform to
equations describing a propagating spectrum

& � � � . Writing the integrated form of Eq. (2.2.5a) in full notation,
we have � & � � � � �� � � 


� �
� & � � � � � 8 � � � � � � � � & � � � � �

8 � � � � � � � � � (2.2.19)

which is known as the Boltzmann equation from kinetic theory
�>�

, or as the master equation in a more general
context of transport phenomena.

� �
Written this way, it is the Boltzmann equation in a comoving volume element.
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Analogously, the reader may have already verified that the continuous Kolmogorov equation, Eq. (2.2.7), is
nothing but the Fokker-Planck equation known as the transport equation for diffusion processes. For this equa-
tion, an equivalent formulation in terms of stochastic processes was given by ITÔ [Itô51], which has been found
to allow a fast simulation of diffusion transport problems [KA94]. The perturbative equations, Eq. (2.2.18),
propose an approximative description for the discontinuous Kolmogorov equation, and thus for the Boltzmann
equation in its most general form, if the coupling of the system to its higher moments is not too large. We
will give brief examples how to use these equations in the end of this section; a thorough investigation of their
applicability in general physical and astrophysical problems remains a task for future work.

The continuous loss approximation and meaning of the loss time scale : After we have discussed the connection
of the mathematical theory of point processes to the most general tasks of transport theory, we return to the
physical treatment of photonuclear interaction processes we have performed in Chapter 1, and investigate the
meaning of the concepts derived there.

In Chapter 1 we have been guided by a principle we may call the leading particle concept of cosmic ray
transport: it expresses the fact that, at least over a certain time, protons and heavy nuclei can be treated as
individual particles, to which a evolving quantity of state is attached. In the most general view this is the energy,
but we have already noted that it falls apart into a description of the Lorentz factor and the nuclear mass, which
are essentially independent. The relevant quantity which we have used to describe the evolution of the variables
of state was the loss time scale. But what does the time scale tell us with respect to particle transport, independent
of their property of being comparable to other time scales (e.g. of acceleration processes)?

The loss time scale describes over which time the average of the quantity of state changes considerably. We
may therefore expect that, in terms of random processes, the loss rate,

8
$ �� ��!0! , is the expectation value over the

energy change per time, or the first moment of the intensity function8
$ �� ��!0! �� 3

8 � � � � � �
� � � � � � � 6 �

(2.2.20a)

It is obviously equivalent to the parameter 	 used in the continuous Kolmogorov equation, Eq. (2.2.7). But is the
way we have defined

8 � ��!0! in Chapter 1, resp. Eq. (1.1.45), really equivalent with Eq. (2.2.20)? Obviously, we
may write Eq. (1.1.45) as 8

$ �� ��!0! ( � � � ��� �� � �
� � � � � 	 � 
 ��� � � ���� � � � � ��� 	

� �
�
�

� � 
 ��� � � �� � � (2.2.20b)

using the conditional outer product introduced in Sect. 2.1.2.5. The intensity function is thus the product distri-
bution of photon NRF spectrum and interaction final state distribution applied to a random function

� � � � � � 6-� �� #-�5� � , describing the change of a function
#-�5� � of the random variable

�
; however, the inelasticity


 �� � � �  � � cannot be identified with the change of a random function,
� #-�5� � , in the general case. Only for

infinitesimal steps we can set ��� � 2#� and have

, �)� , � 2#� � , �� � � 
 � (2.2.21)

or
#-�5� � � � 2�� . This we may interpret as that the classical loss rate describes the mean loss of the logarithm of

energy per time, if the single steps in energy loss are infinitesimally small.
In the general case of non-infinitesimal steps, however,

8
$ �� ��!0! does not describe the mean evolution of any

random quantity. We may visualize the problem in an example: Assume a process through which a particle loses
many orders of magnitude of energy in every interaction, i.e.

� � " � � . Then, we obviously have
� � � �

or
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 � �
, and consequently

8
$ �� ��!0! � � � � � � � , which is the interaction rate function and thus independent from the

magnitude of energy loss in every reaction. It is clear that this cannot be correct, if we assume that the evolution
of the quantity of state,

�
, is described. In the limit of strong losses per interaction, the classical loss time scale

turns into the interaction time scale,

8 � ��!0! � 8 � �
	 , which gives a description of number of interactions rather than
the mean energy loss.

Prospective and retrospective views on cosmic rays : Before considering transport processes in greater detail,
we may add some remarks on the problem of time reversibility in stochastic processes. In practice we are often
confronted with two different views on a physical problem: The first, which we may regard as the theoretician’s
point of view, follows a physical process as it happens in reality, i.e. in positive time direction. Here, the
physical system can straightforwardly be described by application of physical laws to the present state of the
system. On the other hand, the experimentalist is often interested to draw conclusions form his experimental
results without referring to theories, which means a description of a physical system backward in time, starting
from the current observation and proceeding to earlier states. This approach will be called the retrospective, the
former the prospective description of the system. In determinate problems, both views are obviously equivalent,
because of the time reversibility of the fundamental laws of physics; however, we know from the entropy law in
thermodynamics that, as soon stochastic effects play a role, time reversibility does no longer hold.

Considering the transport of a cosmic ray particle, the problem of reversibility can be discussed at the
following example: Consider an interaction type of cosmic ray particles with a background field, which sets in
instantaneously at a certain threshold of cosmic ray energy,

� 	
	 , and leads to a certain, discontinuous energy
loss of the particle. Now consider a particle with an energy

� < �� � 	
	 hardly above threshold, which will move
to an energy

� � below threshold in the next interaction. In the prospective view, we will determine a certain
non-vanishing probability of the particle to interact, and therefore end up with an energy below

� � % � 	
	 . In
the retrospective view, if we start with an observed energy

� � , we find that the probability for a jump up to� < , is zero, as far as we use only the present state of the particle for its description; a result which is obviously
incorrect. The reason is, of course, that the properties of the interaction which took place were determined
by the physical initial state, which is the final state in the retrospective view. Therefore, the total probability
of an interaction is given by the distribution of final states in the retrospective view, which cannot be derived
solely by the knowledge drawn from the observation. This problem is mathematically expressed by Bayes
theorem, Eq. (2.1.33), which makes clear that we need knowledge — or at least assumptions — of the initial
state distribution of the particle to draw retrospective probabilistic conclusions. The importance of Bayesian
methods in statistical inference and data interpretation has recently been emphasized by PRESS [Pre96]. We
will not discuss these methods in detail here, but point out their importance in particular for the interpretation of
highest energy cosmic ray data and the discussion of possible models for their origin, and refer to, e.g., the book
of MARITZ [Mar70].

The retrospective view on cosmic ray transport is obviously possible if stochastical effects are not considered,
and has been extensively used in our previous work [Rac92, RB93]. However, we will see below that these
quasi-continuous approaches do not produce useful results in the vicinity of the GZK cutoff, and hence both the
quasi-continuous approach and the retrospective view has to be abandoned for further considerations.

2.2.2.2 Classification of transport processes

The Markov parameter : The transport of cosmic rays protons and nuclei through photon background fields
is a classical example for a — generally discontinuous — Markov process. It is described by the Kolmogorov
equations, Eqs. (2.2.5), and the task of the description of the interaction process is finding the intensity function
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8 �
� � � � � � � �9� � ��� , where the variable of state,

�
, is called the the Markov parameter of the transport problem. We

distinguish the Markov parameter from other quantities of state which are described by determinate processes,
which we combine in the parameter vector � .

Even though the physical quantity which is subject to random changes may be given unambiguously, the
choice of the Markov parameter bears a degree of freedom: we obviously may take any unique function of the
variable of state as a Markov parameter. In our choice, we will be guided by the separation of astrophysics and
interaction physics; we require, that the dependence of the interaction physics can be described as far as possible
independently from the astrophysical state. Since the interaction physics shall give the change of the Markov
parameter in every single step,

� �9� � � , we thus require that the changes in
�

do not depend on
�

itself; in other
words, we try to describe cosmic ray transport as a point process with uncorrelated marks, i.e. we can write8 � � � � � � � � � � � � � � � � & � � � � �

(2.2.22a)

If we restrict ourselves to the description of one-dimensional random processes, this relation is required to allow
a description by means of the perturbative equations Eq. (2.2.18). To make sure that this description works, we
also have to require that the rate function is not violently dependent on the Markov parameter, i.e.

, � �, � � %� � � � D � � � �
(2.2.22b)

Then, Eq. (2.2.18a) shows that � � %� �  � � , which we will assume as a minimal condition for the perturbative
approach to work.

The variables of state describing cosmic ray nuclei are the Lorentz factor, $ %'& , and the nuclear mass number,G %'& . Considering protons, it is the Lorentz factor which is subject to random changes due to photomeson
production; from Sect. 1.2 we know that the relative change of the Lorentz factor in a photopion production is
essentially given by the pion/proton mass ratio,

� $�%'&  $*%'& � � �  � � ; thus it is natural to choose

� �
( � 2 $*%'& (2.2.23a)

as the Markov parameter; as we have already stated in Sect. 1.2.2.4 (see also Fig. 1.13), 3 � � � 6 � � � � over the
whole range of $*%'& . The mass number is obviously constant for protons, i.e. G %'& ( �

. For heavy nuclei, the
mass number is the quantity which is subject to random changes; from Sect. 1.3.3 we know that the change ofG %'& in a photodisintegration reaction, which was expressed by the nucleon multiplicity �

� G � , is independent ofG for the most important process, the giant dipole resonance excitation ( �
( �

); consequently we set

� �
( G %'& � (2.2.23b)

and identify the Markov parameter for photodisintegration with the mass number. The Lorentz factor is, as we
have seen, approximately conserved in photodisintegration; it is nevertheless an important parameter of state
determining the intensity function, and it is subject to change due to other interaction processes, mainly inverse
Bethe-Heitler losses. We will see below that these processes are determinate in good approximation, thus $ %'& is
not a Markov parameter in the transport of heavy nuclei and can be included in the parameter vector � .

The properties of cosmic ray transport, i.e. that a quantity of state undergoes to first approximation either
constant absolute or constant fractional changes may give rise to a general distinction of marked point processes:
we write the evolution chain of a random variable ' alternatively as

' � � ' < � ��
� � �
� � � ' < ��

� � �
& � �
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Particularly simple cases are given when either the increments
� � or the increment fractions

& � are equally
distributed. We will call the first case the elementary arithmetic step process, the second the elementary geo-
metric step process. Both are represented by Markov chains with independent increments, which is obvious for
arithmetic processes with ��� ' , and for geometric with � � � 2 ' leading to� 2 �

�
� � 2 � < � ��

� � �
� 2 & � �

The mark distribution for geometric step processes is therefore given by the distribution of the random function� 2 &
. In most cases there are simple physical reasons to decide which process rather describes the physical

system under consideration, and we can take this distinction as a first step to reduce the coupling of the system.
In special cases, of course, other suitable functions to define Markov parameters from given quantities of state
may be chosen.

Quasicontinuous processes : Principally, photonuclear interaction processes are discontinuous, i.e. their sta-
tistical treatment leads to a point process, because changes of the particle state are invoked by single photon
hits. However, we have described in Sect. 1.1.2 some processes which have a fairly large cross section, there-
fore a large interaction rate, but lead only to very small energy changes in each single interaction, i.e. a small
inelasticity


 � � � � � � � �  � � . Then, the energy loss rate can be written as

� ! �� , �, � # � 3 
 6 �5� � � � � � � � � (2.2.24)

where � � � � � � is the interaction rate of the process, and 3 
 6 " �
. Since � � � � � � is given by the interaction

physics, Eq. (2.2.24) is a differential equation describing the energy evolution of the particle. This is a well
known classical approach to cosmic ray transport, called the continuous approximation.

If we turn back to the discussion of Sect. 2.2.1.2, we could classify such processes as approximately contin-
uous Markov processes, because Eq. (2.2.7) holds for all � � � � � � , where � � � � expresses the maximum step
size and is still a very small quantity. So, we will expect that Eq. (2.2.7) gives the description of the process in
good approximation, with

� ( � and
� " � � 


. In a pure loss process as considered here, we can now easily
see that the diffusion coefficient is of order

� � 
 	
, and can therefore be neglected because 3 
 6 " �

by
assumption. Then, it is easy to show that Eq. (2.2.7) is equivalent to Eq. (2.2.24), which can be called the drift
approximation of quasi-continuous loss processes [BG88, Rac92].

It should be pointed out that the diffusion coefficient
�

in Eq. (2.2.7) cannot be neglected when the transport
problem allows for energy gains as well as energy losses. This is generally the fact when we consider system
in which Fermi acceleration takes place; it will be principally possible to describe Fermi acceleration in the
framework of random processes developed here; however, this would be beyond the scope of this work, and we
will generally restrict our consideration to pure loss processes. Therefore, all quasi-continuous processes can be
treated in drift approximation, and will be called drift processes henceforth. It is obvious from Eq. (2.2.24) that
drift processes are strictly determinate, they are not random processes.

Adiabatic processes : A process which is generally treated as determinate is the adiabatic cooling and heating
of the “cosmic ray gas” enclosed in some expanding or contracting “cosmic box”. The change of energy density
of an ultrarelativistic gas in an adiabatic process is expressed by �(% $ $ � , when $

( � � ��
 is the characteristic
length scale of the box with volume � . Since the energy change is equally distributed over all particles, we have� %'&�% $ $ � (2.2.25)
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for the energy of a cosmic ray particle captured in the volume � . The application of this is various for cosmic
rays which are magnetically confined; the first order Fermi acceleration process principally bases on this equa-
tion, because it describes the acceleration of particles which are captured between permanently approaching
magnetic mirrors. The application important in the transport of cosmic rays over cosmological distances is, of
course, connected to the expansion of the universe itself: Inserting for $ the characteristic length scale of the
universe (see, e.g., [Wei72]), Eq. (2.2.25) results in the redshift relation

� % � � �
, where the redshift

�
is related

to time by , �, � � � ;�< � � � � � 	 � � � ��� < � �
(2.2.26)

We note that this relation applies to any ultrarelativistic gas, not just to photons to which it is usually applied. In
the nonrelativistic case, Eq. (2.2.25) still applies to the momentum of a particle.

Adiabatic losses are strictly determinate with respect to the energy loss of a single particle, if the “binding”
of the particle to the expanding system is due to permanently acting force; in the cosmological case, it expresses
the expansion of the gravitational field. It applies as well in systems where the particle is bound by frequent
scattering, i.e. in a system of expanding magnetic clouds. Then however, it describes the evolution of the average
energy of the particle distribution, while the energy change of a single particle is subject to fluctuations. In this
case, the determinate concept will certainly break down in the small statistics limit, i.e. when

8 !/=>. 	 � � �!/= , where8 !/=>. 	 is the scattering time as defined in Eq. (1.1.11) and ���!/= the time scale for the escape of the particle from
the system; adiabatic losses can then be treated as an inverse first order Fermi process by means of a statistical
evaluation of Eq. (1.1.13).

2.2.2.3 Simplified approaches to cosmic ray transport

Absorption processes : The simplest random process is one which allows only one kind of event, and only one
event per particle: it is the pure absorption process. Such processes may be applied in the transport of energetic
photons, if the subsequent cascade is neglected, or to light nuclei which are destroyed in the first interaction (see
Sect. 1.3.4.2). For other cosmic ray transport problems, they may serve as a first order approximation: We just
assume that a particle is absorbed with a time scale

8 � �
	 . This was the original approach performed by GREISEN,
ZATSEPIN & KUZMIN [Gre66, ZK66] to propose the UHE cutoff in the extragalactic cosmic ray spectrum. It
was later corrected by STECKER [Ste68] by replacing

8 � �
	 by

8 � ��!0! , which gives a more accurate estimate of the
extinction of cosmic rays by the microwave background; nevertheless it is only a first order approximation.

To show how the absorption approach works, and how it compares with other approximations, we divide the
energy axis into logarithmic intervals with a constant bin size,

� � � � � , starting from an arbitrary energy,
� � ,

corresponding to the bin number � � �
, and assume a power law particle energy spectrum, i.e.

� < �5� ��% � $ ) ,
corresponding to

� < � � ��% ����� � � , � � with
, � * � . The interaction rate will be given by a function � � � � ,

for which we make two simple assumptions: ( * ) a constant interaction rate, � ) � � � � � < , and ( 	 ) a linearly
increasing rate, � � � � � � � � � . We define the modification factor by ; � � � � � � ��� � � � �  � < � � � , where

��� � � � �
is the spectrum we find after a propagation time

�
. We easily get

; ) � � � � � � ����� � � � � (2.2.27a)

; �
� � � � � � ����� � � � � � � � (2.2.27b)

with � � � < � and � � � � � � . Case ( * ) yields a constant reduction, while case ( 	 ) results in a steepening of the
spectrum,

,
�
, � � � . In principle, this behavior should be reproduced by all transport approaches.
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Continuous loss approximation : A different, although just as simple approach to cosmic ray transport has been
introduced by BEREZINSKY & GRIGOR’EVA (BG) [BG88]; they assumed that all particles propagate equally,
with a relative energy loss

8
$ �� ��!0! � $*%'& � . This is an application of the quasi-continuous loss approximation to UHE

cosmic ray transport; we have already noted that this cannot give an exact description of the transport of cosmic
rays, because we have finite steps of considerable size, and random fluctuations cannot be neglected. Moreover,
we have noted that the inelasticity as defined in Sect. 1.1.3.3, which was also used by BG, does not give an exact
description of the mean energy loss of a single particle when finite steps are considered. We refer to Sect. 2.2.2.4
how this problem can be removed; the main drawback of the method, however, will become clear from applying
it to our simple example described above: The loss rate in our example is obviously given by � � � � , because� � � �

in every interaction. The process we consider now is not stochastic; rather, after a time
� � � � � � $ � all

particles in bin � move to bin
� ��� � � , and we get the modification factors

; ) � � � � � � ����� � � ,�� ��� � (2.2.28a)

; �
� � � � � �

��� ��
� � � D � % � �  � � �# � � ����� � � , � $ $ � � � D � � � �  � � �� � � D � � � �  � � � � (2.2.28b)

where
� � � denotes the largest integer � - � . The modification in case ( * ) corresponds to a spectrum moved

by
� ��� bins to the left; it therefore depends on the spectral index and on the bin size. ; �

� � � shows the typical
“Berezinsky-Grigor’eva-spike”, followed by an abrupt cutoff. It shows the advantage and the disadvantage of
this method immediately: The advantage over the absorption approach is, that the method conserves particle
number; in calculations where one sums up over many spectra with different modification factors, where the
“spikes” are smoothed out by superposition, the method will give a correct result concerning total flux far off
from the cutoff, while the absorption approach will underestimate the flux. For single sources, and in particular
near to the maximum energies, however, the continuous loss approach does not give useful results, because it
proposes a total cutoff of the spectrum. In a correct statistical treatment, the particle flux can obviously not be
diminished stronger than in the absorption approach.

Counting processes : We now try to introduce a statistical treatment which considers both fluctuations and
particle conservation. In our simple example, we assume that all steps are equal; thus, the random process we
have to consider is a pure point process, or counting process. From Sect. 2.2.1.3 we know that our case ( * )
corresponds to a Poisson process, which means that we find the particles of bin � Poisson distributed, i.e.

& ) � � � � � � � � � � $
�

� ��� �*��� � $ � � 1�
� � � � < � �
over the bins � � � � ����� � � . The integral over the spectrum is obviously conserving particle number; however,
some particles are moved out of the energy range. Summing up, we find after a little algebra

; ) � ������� � � � � � � $ � ��� �
(2.2.29a)

For case ( 	 ), we note that the counting process falls into the class of birth processes; however, the interaction
rate falls linearly with the number of interactions (because the particle loses energy). We may therefore call it
the inverse Yule-Furry process; we could actually transform it into a Yule-Furry process if we would consider
it retrospectively, but we also noted that random processes are not time-reversible and we would have to use
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Figure 2.1: Evolution of dispersion and shape parameters of the inverse Yule-Furry distribution with time, for
propagators starting from bin - � ���	� . Left panel: mean distance from starting bin, 	 , and standard deviation . Right panel: shape parameters � 	 .

Bayesian methods. We could, of course, try to solve the Kolmogorov equation for the birth process with falling
birth rate and starting bin � , which is

�
� � & � � � � � � I� � � � � � � � � � & � � � � � � � � � � � & � � � � � �

(2.2.30)

Instead of doing this work — which is analytically possible, but quite laborious and tricky, because it is a
differential equation system which has to be solved successively — we will go the easier way and describe the
system perturbatively, using Eq. (2.2.11) with � � �

, I� < ��� � � and I� � � � � � . We can solve Eq. (2.2.11)
analytically for � � � � ����� � = ; however, we abstain from giving the lengthy expressions for the solutions here,
and rather show a graphical example for the time evolution of the dispersion and shape parameters ( � , 2 and$ � $ 
 ), from which we model the distributionarising from particles starting in a bin � < � ���

, using the Edgeworth
expansion, Eq. (2.1.57). Fig. 2.2 shows the resulting distributions at

� � =
for different starting bins.

Comparison of the approaches and their applicability to cosmic ray transport : Let us first study the case of
an energy independent interaction rate; here we have only to compare simple numbers, and we see that the
counting process treatment gives generally the “smallest” modification of the spectrum (i.e. � closest to

�
).

The continuous energy loss predicts a modification dependent on the product of spectral index and step-bin-size,, � * � ; for
, � �

, it predicts a stronger drop of the flux in each bin than the absorption approach, which
certainly cannot be true: there is no way to reduce the flux more than by removing the particles entirely in the
first interaction. The simple factor given in Eq. (2.2.29a), predicted by the evaluation of the Poisson process,
considers both the statistical fluctuations and the “refill” of particles into every bin coming from higher bins.

We have assumed initial spectra without cutoff so far; if we have a cutoff, the action of the absorption
approach is unchanged, and the continuous loss approach moves the cutoff steadily to the left. The point process
approach predicts that the absorption approach applies in the highest bin, where no particles can be refilled;
therefore, we have to expect that the factor

� � � � $ � � in the exponent of Eq. (2.2.29a) will slowly increase to
�

close to the cutoff.
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Figure 2.2: Inverse Yule-Furry propagators for
� � 	 in natural units; bins are counted up to the starting bin

in all cases.

For the comparison of the approaches in case of an increasing interaction rate it is best to insert numbers for
our parameters and to compare numerically. We set

� � � � � � 2 $*%'& � � � � , i.e.
� � ��� $*%'& � � � ��?

; thus, eleven
bins cover approximately one decade of energy. We set � � � � � �

, which defines the natural time unit; after a
time

� � �
we expect one interaction per particle in the tenth bin. Furthermore, we set *�� � , thus

, � � � "
. We

compare the modification factors for the three approaches discussed here in Fig. 2.3 for
� � =

; because of our
simple assumption of proportionality, � � � �5% � , both the absorption approach and the point process approach
predict a steepening of the spectrum. However, the point process approach leads to a much smaller increase
of the spectral index than pure absorption, and includes a small bump at low energies to account for particle
conservation. In contrast, the continuous loss approximation predicts a pronounced bump and a “razor blade”
cutoff, which strongly deviates from the predictions of both other methods. Hence, it cannot be considered as a
suitable method to describe single cosmic ray sources, it is just useful for integrated calculations because of its
property of particle number conservation and its simplicity. The right panel of Fig. 2.3 shows the dependence of
the spectral steepening on the number of time steps in the inverse Yule-Furry process. Here, we have taken into
account a possible cutoff in the source spectrum, by limiting our summation to bins up to � � ��=

. We clearly
see the turnover to an exponential decline, but we do not quite approach the limit set by the absorption approach
in the last bin; this indicates numerical inaccuracies of our perturbative approach for small probabilities (i.e. the
regions of the propagator far from the mean), which we certainly have to expect.

To which extent does our discussion apply to cosmic ray transport? Clearly, it is not a quantitatively reliable
calculation, but it already shows some spectral features we will expect in the vicinity of the GZK cutoff: Close
to the maximum of the interaction rate of protons in the cosmic microwave background, at $ %'& %� ��� � 	

, we
can approximate the interaction rate as proportional to � 2 $�%'& , which turns into a constant rate for $ %'& � ��� � 	

.
Thus we expect a steepening of the spectrum, as shown in Fig. 2.3, for $�%'& �� 	 � ��� � < , and a constant reduction
(thus a continuation with the initial spectral index) for $�%'& � ��� � 	

. Comparing to our example, we may
assign the tenth bin to $ %'& � 	 � ��� � � , where

	 � �
	 � ��� � � , thus
� � =

corresponds to
	���� � � . Since the

steepening of the spectrum in this case is about
� * � � � @�=

, we expect a “flat” cosmic ray spectrum in the
conventional

� 	 � � � � , �  , � � representation between
	��

and
	���� ���� ; which will be probably followed by an

exponential decline due to cutoff effects in the source. Even though our statement is not quantitatively reliable,
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the different transport approaches discussed in the text, for
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and more thorough investigations are required, it already shows that there may be need to reconsider some of the
strong statements done after the the detection of the � ��� � 	���� ���� cosmic ray events at Fly’s Eye and AGASA
experiments [BCD � 95, HHH � 94, ES95, SSB94].

2.2.2.4 Cosmic ray transport as a marked point process

Separation of the probability space : In the previous section, we discussed the statistical properties of cosmic
ray transport using estimated numbers for the interaction inelasticity, and neglecting its distribution. A full
calculation would require to consider a marked point process, i.e. determine both the interaction rate, � � � � � � ,
and the mark distribution

&
�
� � � � � � , i.e. the energy loss distribution per interaction, directly from the interaction

physics, which has been described in Chapter 1.
To determine the intensity function,

8 � � � � � �
� � � � , we may separate the probability dimensions of the

interaction as follows:

1. The initial state probability space, �
� � , given by the energy distribution of the photon in the NRF, folded

with the total interaction cross section.

2. The branching ratio, 	 � , choosing an interaction channel.

3. The final state probability space, �
� � , given in photomeson production by the final state distribution func-

tion, ��� � � � � , of the channel � (see Eq. (1.1.54) and Sect. 1.2.1.4), and in photodisintegration by the nu-
cleon multiplicity function �

� � � � G � .
While the branching ratios and � � are normalized probability distribution functions, the absolute normalization
of the initial state determines the rate function,
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� � � � �
8
$ �� �
	 � �


��
������

, � �  , � � �, � � � � %'& 2 � � � � �
(2.2.31a)

We can then write formally for the mark space distribution

&
�
� 8 � �
	  , � � �, � � � � 2 � 	�� � ��� � (2.2.31b)

where we have used again the conditional outer product (Sect. 2.1.2.5) to emphasize the causal dependence of
the distribution functions: every distribution can depend on the random variables given by the distributions to its
left. Here it means that the photon NRF energy determines the branching ratio, and both � � and channel number
� determine the final state distribution. We may describe the mark distribution by the set of its moments, which
are given by

� &
�

�
�
�
� � � � � � ; explicitly we can write

A 0 � 5� � 8 � �
	


� � ��� �� � �

� � 2 � � ��� �
�
�
�

� � � � � � (2.2.32)

and
A � � � � A 0 � 5� ; here we have used the linearity of distributions and the definition of the specific cross section

of the channel � , 2 � � � �!� � 	�� � � �!��2 � � � � . We know from our discussion above that for photomeson production we
have

� � � � 2 � � � 
 � , where



is the inelasticity as used in Sect. 1.1.3.3. We note that the first moment,
A � ,

describes the average change of the Markov parameter in one interaction;
A � 8 $ �� �
	 is therefore an expression for

the energy loss rate, A � 8 $ �� �
	 � , � 2 �

, � � � �� , �, � � (2.2.33)

which is also correct for non-infinitesimal steps, in contrast to

8
$ �� ��!0! as defined in Eq. (1.1.45). For photodisinte-

gration, we have
� ��� �

� G � .
Scaling relations and the applicability of the perturbative approach : In the general case, the moments of the
mark distribution will depend on the Markov parameter; in some cases, however, this dependence can be re-
moved and the transport process can be described as a point process with uncorrelated marks, which allows a
description of the moments of the propagator by Eq. (2.2.18).

In photomeson production, the Markov parameter is connected to the cosmic ray Lorentz factor, ��� � 2 $ %'& .
We can immediately infer from the discussion in Sect. 1.2.2.4 (cf. that section for the notation used here), that in
anisotropic power law spectra, Eq. (1.1.51b), the moments of the mark distribution are given

A � � �

� 0 � 5) � � � * � � � � 	 � � �
* � 	 � �


��
� , � � $ )

� 2 � ��� �
�
� � 2�� � � � 
 � � � (2.2.34a)

where the cross section coefficient � 0 � 5) � is obtained as in Eq. (1.2.31b), by replacing � � by 2 � . Then, the rate
function is obviously given as

� � I$*%'&�� � � � < � ) � I$ ) $ �%'& (2.2.34b)

with � ) � � � � � 0 � 5) � . We note that the moments
A � are indeed independent of I$ %'& � $ < $*%'& , and thus of � .

Moreover, we find that
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I�
�
� �

� �
, � �, � �

� � * � � � �
� �

I� < (2.2.34c)

with I� < � � � � � . Hence, for not too large power law indices * , the absolute values of the coefficients I� � decrease
very fast, and the perturbative approach may give reasonable results.

In photodisintegration, the situation is principally more complicated: the Markov parameter is here the
nuclear mass, which is essentially connected to the microphysics — in contrast to the Lorentz factor, which acts
only indirectly by shifting the NRF photon spectrum relative to the cross section. In fact, we do not find a chance
to obtain mark distributions which are completely independent of the Markov parameter. On the other hand, we
know that the most efficient photodisintegration process is the excitation of the giant dipole resonance, which
almost entirely decays by emission of a single nucleon. Thus, we may describe the photodisintegration process
by a simple, unmarked point process, as discussed in the last section. To obtain consistency with the average
mass evolution, we may set the number of removed nucleons per interaction not to

�
, but to the average value

obtained from the ratio of efficiency and rate function.

The complete description of cosmic ray transport : Cosmic rays are not only subject to incoherent photonuclear
reactions — they are, of course, also affected by quasi-continuous and adiabatic loss processes. These are of
particular importance when considering cosmic ray transport over large extragalactic distances, at energies below
the GZK cutoff, where cosmological redshift and Bethe-Heitler losses have been proven to have an important
effect on the spectral evolution [BG88, Rac92]. Moreover, we might be interested to describe cosmic rays also
inside their sources, where loss process act parallel to Fermi acceleration processes. Is it possible to consider all
these processes, including the Markovian loss processes, in one treatment?

The transport equation describing the most general case of cosmic ray transport, separated into continuous
and discontinuous processes, is known as the Ginzburg-Syrovatskii-Equation [GS64, HS85]. In the language
of random processes, this equation describes the evolution of a random variable which is subject to continuous
and discontinuous Markov processes, thus a superposition of the continuous and discontinuous Kolmogorov
equation. With respect to our perturbative approach, it just means the inclusion of some additional terms on the
right side of the moment evolution equations, Eq. (2.2.18). Since we know that diffusion terms essentially lead
to the evolution of Gaussian distributions, we may expect that a continuous diffusion term in our equation even
reduce the effects of upward coupling arising from the discontinuous Markovian contributions — it only adds a
“harmless” component keeping the propagator closer to a Gaussian shape and thus better handable.

The answer to our question is therefore: Yes — at least in many interesting cases. Even though it remains
an unproved statement at this point, we may expect that the transport approach developed here may allow a
simple, and numerically fast description of the evolution of cosmic ray spectra in any astrophysical system. An
investigation of this — and of course the production of many astrophysically relevant results — can be set as a
program for the next years.



Outlook — no Conclusion

Contemplations about life, the universe and everything
� 	

About life: writing and finishing PhD theses

At this point the reader will certainly ask: Why stopping here? And all I can say is: Because there must be a
time to stop, and the time is now!

This work was a — maybe typical — example for a PhD theses which was started with a big, but apparently
feasible plan, then worn out between scientific everyday requirements and funding politics, extended due to the
insight that life (and in particular physics) is not that simple as it initially appears, and finally finished abruptly
as a snapshot of its present state. When the time came to take this snapshot (i.e. writing down and come to an
end), it became more and more clear to me that this work would contain — even though it is officially a PhD
thesis in astronomy — almost no astronomy at all! I just finished developing the toolkit to solve my problems;
but now there was no time to solve them any more. However, I realized that the toolkit itself may be interesting
enough, and before doing some bad work quickly with the good tools, better try to complete the toolkit and sell
it; there are enough people who may use it, and, finally: There is a life after the PhD — hopefully!

About the universe: the hot questions of cosmic ray astrophysics

Clearly, I did also astrophysical work in the last years; the results have been published in a couple of papers
listed at the end of this section (there are no distinct references given here). I may briefly summarize what they
were about, and how they fit into the “big view” of hadronic astrophysics stated in the beginning:

Analysis of soft X-ray spectra of PG quasars observed by the ROSAT PSPC instrument : We found that the soft
X-ray excess in UV-bright quasars is unlikely to be due to a thermal hot bump of a temperature of about

=�� ��� .
Rather, it seems that it is a gradual transition from a flat X-ray power law to a steeper power law towards the UV-
region. We found that this behavior is expected if hadronic X-ray generating processes are taken into account.
While it would be clearly exaggerated to state that hadronic models are the only ones which can explain such a
simple behavior, we may still consider our work as another hint that hadronic processes are important in AGN
— when they are probably necessary to explain the TeV features of AGN, it would be unreasonable to ignore
them at lower energies. This jump over energy regions is, in principle, nothing but a consequent application
of Occams razor, even though some “conventionally” thinking astronomers tend to interpret this principle in a
different way.
� �

The author drops the scientific “We”-form in this section, because it contains some rather personal statements. Nevertheless, the
reader may feel free to be included in the argumentation. Of course, “we” is still used in references to work which was done in a
collaboration.
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The search for the sources of the highest energy cosmic rays : The project to investigate systematically the
arrival directions of the highest energy cosmic rays was born during my stay at the Bartol research institute. The
first idea was ( * ) to find common features in the directional distribution of events above a few times

��� � � ���
in different experiments, and ( 	 ) to check the correlation with possible source distributions. While we had to
realize that the data situation is much too bad to solve the second task, the first part of the program had at least the
success to come in touch with various experimental groups. Later, this connection turned out to be fruitful, and
lead to the discovery of a correlation of the highest energy cosmic ray arrival directions with the supergalactic
plane, i.e. the local large scale structure of the universe. A positive side effect of our source search was also the
“discovery” of the FR-II radio galaxy 3C134, which is directionally near to the Fly’s Eye event. Its redshift is
unknown, but a simple estimate of its distance can be obtained from its radio size-luminosity ratio, which gives a
value in the range

	�� � 	������ � � ; this was meanwhile confirmed by an infrared detection of the obscured central
galaxy. Thus, this source may be the closest FR-II galaxy in the sky, and a candidate source for the highest
energy cosmic ray event.

Acceleration of cosmic rays at large scale shocks around clusters of galaxies : This model, based on an idea by
KANG, RYU & JONES [KRJ96], goes right into the direction I have stated on the basis of very general arguments
on large scale magnetic scattering in Sect. 1.1.1.3: The highest energy particles can most easily be accelerated
in the largest structures. In this paper we found, however, that an end to this rule can be set by the microwave
background: The highest energy cosmic rays become “GZK-limited” already in during their acceleration. If
the diffusion is too slow, they are even limited by pair production losses to much lower energies, but for the
fastest possible diffusion coefficients they may reach up to

����� ���� and above. One of the most intersting ideas
connected with this model is the prediction of a spatial structuring of cosmic rays: since the large scale flow,
and thus the accelerated particles, move inside the cluster, their only way to escape is through the cosmic matter
sheets attached to the clusters. In other words, they are confined to the large scale structure of matter. It is
immediately clear that this fits perfectly into our finding of a correlation of UHE cosmic ray anisotropy to the
supergalactic plane!

At the present state, this work seems to give rise to more questions than it gives answers. But, considering that I
am in search for an application of my hadronic-astrophysics toolkit, it is not a bad idea to ask questions — here
are some of them:

� If the ultra-high energy cosmic rays are confined in supergalactic sheets, how good is this confinement?
Is there a leakage? If so, it will be probably energy dependent, so — is there a spectral modification by
an supergalactic leaky box? We note that both the sources (galaxy clusters or active galaxies) and we
as the observers are inside the box — like in galactic cosmic ray physics. And what about the total flux
normalization, if cosmic rays fill only a small fraction of the total space? May it even be that finally a
much larger fraction of cosmic rays is of extragalactic origin than we ever thought?

� Considering this possibility, where is the transition point from the galactic to the extragalactic spectrum?
Is it really the “ankle” at about

	 ���� ? This question is closely connected to the experimental dispute
whether there is a change of chemical composition in the spectrum at this point or not. If it is not, it
is intersting to note that the spectral features around the ankle — a steepening of the spectrum followed
by a flattening — which are observed consistently by all experiments [BCD � 94, YHH � 95], perfectly fit
into the picture of a purely extragalactic modification due to the set-in of pair production losses at the
microwave background. And if this is in fact the explanation, we note that these spectral features have a
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well defined position in energy, dependent only on the temperature of the microwave background, which
is known to a high precision — couldn’t we use this to turn the tables and check the calibration of the
experiments by the position of the ankle?

� If this speculation is wrong, and the ankle is the transition from the galactic to the extragalactic spectrum,
i.e. if the composition change at the ankle is confirmed, we have to ask the following question: can we
really accelerate heavy nuclei to energies of a few EeV in supernova shocks running into progenitor winds
[SBG93], or at other places in the galaxy, without disintegrating them in background photon fields? Or,
turning the argument around — if we really observe such energetic nuclei from the galaxy, what can we
learn about the radiation fields in their sources?

� Leaving the field of cosmic ray physics, and turning to the sources of TeV gamma radiation: If this
radiation is of hadronic origin, which contribution to the cosmic ray background do these sources give?
Could this even constrain the models for the active radiation processes? How do the cosmic rays escape
from the sources — is the isospin-flip mechanism (i.e. the escape as neutrons) the only process, which
energies must the particles reach to escape? Which role play adiabatic losses, if we consider particles with
gyration radii close to the size of the magnetic system?

These are only some of the questions which come into my mind right now. There may be many more. And,
personally, I feel much better now when considering such questions than I did a year ago — because now I feel
I have the possibility to solve them, using the tools developed in this theses.

About everything: here in particular about the way of science

There is still one principal question the reader might ask: For what do we need these parametrizations and
mathematical methods, when we have so fast computers now and are able to simulate everything in Monte-
Carlo or other numerical codes?

Here I have a principal answer. In my understanding, science has to fulfill (at least) four principles:

1. Knowledge cannot be gained by pure observations; we understand only on the basis of theories explaining
data, never on the basis of data themselves.

2. Every prediction must be testable by observations; the more independent ways exist to falsify a prediction,
the stronger is it.

3. The way a prediction or an explanation of data is gained must be transparent; if a prediction cannot be
confirmed by observations, it must be possible to determine the exact reason for it.

4. Both data and theories must be communicable — and actually communicated; every scientist must be able
to reproduce exactly the results other scientists have published.

The first two propositions may be called Popper’s principles; they state that science gains knowledge not in one
direction — i.e. either purely empirical on the basis of data, nor purely deductive on the basis of theories — but
rather in an interplay of prediction, confirmation and falsification. The second two principles are requirements
to the form in which predictions are made, or data are explained. There will probably be no scientist who denies
the last three principles — in contrast to the first one, which is doubted by some people.

For my part, I believe that all four principles are essential for science, and I will now try to discuss how
numerical simulations fit into this picture of science. The first question is: Are numerical simulations data, or
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theoretical explanations or predictions? The answer is: they can be both and neither of them! They are pre-
dictions, but not gained from (physical) theories; if at all, they are extrapolated from data using mathematically
simple functions without physical foundation. They are never explanations, because they do not connect the data
to any more general principles. They may be treated as data, but they cannot replace real observations.

The empirist may be very happy with numerical simulations, because they allow to go the empirist way —
which states that knowledge is gained by extrapolation and abstraction directly from the data — a few steps
further than it was possible before fast computers were available. But they do not resolve the principal problem
that the empirist way does not lead to a definite end.

�
� I do not deny that numerical simulations play an important

role in contemporary science, and that they are really a useful technical tool — but it is dangerous to treat them
as substitutes for theories; we may be able to simulate the world using numerical techniques, but we will never
be able to understand it this way.

Less philosophical, but more serious is that for my impression many papers presenting results of numerical
simulations do not comply with the last two principles, transparency and communicability. In some cases,
Monte-Carlo codes are such obscure that, if there is a deviation in the results of two different simulations, even
the authors of the programs themselves cannot exactly tell the reason for this deviation. What is often missing are
the in-between steps of a calculation, which allow to analyze a result step by step. And even if this is carefully
done, the detailed methods are rarely published — which violates the forth principle, communicability. Or, can
any reader tell me a paper presenting Monte-Carlo results where the exact code is printed in the appendix?

Finally, even though I see numerical simulations as a very important tool of science, I still see the need for
methods based on exact mathematical and theoretical principles. Without them, we run danger to lose control
about our own results. I wouldn’t like to see science going this way, because it may probably be the way to its
end!

���
The reader may understand that we cannot discuss in detail here the problems of empirism, and is referred to Popper [Pop94].
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erfolglos, möchte ich auch Prof. Dr. J. Speth (ITKP Bonn und KFA Jülich) für seine Unterstützung bei meinem
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