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Overview



Overview

Large initial-condition ensembles of Earth System Models
isolate global SST and sea ice responses to aerosol forcing.

They show a strong aerosol-dominated and transient signal in
West African precipitation, consistent with a lot of prior work.

Using the large ensemble SST and sea ice boundary conditions
allows us to separate fast (aerosol-driven) and slow (ocean
mediated) drivers of precipitation signals.

The approach is relevant to North Atlantic themes of this
workshop.



Aerosols Dominate Modeled Sahel Precipitation Changes

July-August-September (JAS) Sahel Precipitation Anomalies
in Large Initial Condition Ensembles

Observations and NCAR CESM1
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10 year running mean of land areas for 10N-20N, 20W-35E. 5-95% range shown for models.
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Aerosols Dominate Modeled Sahel Precipitation Changes
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10 year running mean of land areas for 10N-20N, 20W-35E. 5-95% range shown for models.

Many realizations sampled to extract a robust temporal signal to anthropogenic aerosol forcing.
Regional warming is dominated by greenhouse gases (extra slides)




The Patterns of Drying and Moistening Are Robust

CESM1 and CanESM2 similar
despite distinctive aerosol
schemes.

Again, many realizations
required to estimate this signal.

1970s minus 1950s

JAS Sahel Precipitation Response to Aerosol Forcing

CESM1 CanESM2

r0.3

o
o
Precipitation (mm/day)




The Patterns of Drying and Moistening Are Robust

CESM1 and CanESM2 similar
despite distinctive aerosol
schemes.

Again, many realizations

required to estimate this signal.

Aerosol driven drying through
the 1970’s, and aerosol driven
recovery through the 2000’s.

JAS Sahel Precipitation Response to Aerosol Forcing

CESM1 CanESM2

r0.3

1970s minus 1950s

o
o
Precipitation (mm/day)

2000s minus 1970s




The Patterns of Drying and Moistening Are Robust

CESM1 and CanESM2 similar
despite distinctive aerosol
schemes.

Again, many realizations
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What is the dynamics of this response?
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We use AGCM simulations to separate fast radiative/cloud and slow SST/sea-ice drivers.
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We use AGCM simulations to separate fast radiative/cloud and slow SST/sea-ice drivers.

Atmosphere

Aerosols
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1. Fast (radiative/cloud) response:

The atmosphere/land response
that is directly due to the
radiative forcing.

E.g. Li et al. 2018 study of East
Asian Monsoon.
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Framework: Fast and Slow Drivers

We use AGCM simulations to separate fast radiative/cloud and slow SST/sea-ice drivers.

2. Slow (SST/sea ice) response:

The atmospheric response that is
mediated by changes to SST and
sea ice.

E.g. Wang et al. 2016 study of
tropical trade wind response to
aerosol-forced SST changes.

~N

Atmosphere

Aerosols

1. Fast (radiative/cloud) response:

The atmosphere/land response
that is directly due to the

/ radiative forcing.
e E.g. Lietal. 2018 study of East
Asian Monsoon.
Setup:

100 Year time slice simulations
Carried out for epochs of 1950’s,
1970’s, 2000’s

Limited testing of additivity (see
discussion)

Carried out using NCAR CAM5 and
ECCC CanESM2



Slow Forcing: SST and Sea Ice Responses from the Large Ensembles
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Slow Forcing: SST and Sea Ice Responses from the Large Ensembles
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e CESM1 cooling and warming stronger than CanESM2.

* [What drives the North Atlantic cooling hole/enhanced warming? Direct aerosol
forcing? AMOC adjustment?]



Aerosol Responses

Fast Forcing
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Fast Forcing: Aerosol Responses

CanESM2

1970s
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* Note complicated structure of late 20t century aerosol forcing.
» Radiative/cloud responses are stronger in CESM1 (not shown).




How Do Our AGCM Experiments Capture the Coupled
Model Response?

JAS Precipitation Response, 1970’s-1950’s
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How Do Our AGCM Experiments Capture the Coupled
Model Response?

JAS Precipitation Response, 2000’s-1970’s
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* The precipitation response patterns are broadly consistent across the globe (extra slides).
* Regional details differ, of course: AMIP versus coupled, time slice versus transient.



CAMS5 Results: Slow Driving Controls Decadal Variability

JAS Precipitation Response, CAMb5
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CAMS5 Results: Slow Driving Controls Decadal Variability

JAS Precipitation Response, CAM5
Total Response Fast Response Slow Response
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CAMS5 Results: Slow Driving Controls Decadal Variability

JAS Precipitation Response, CAM5
Total Response Fast Response Slow Response
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* Fast aerosol driving dries throughout the period.
e SST driving moistens starting in 1970’s.



CAMS5 Results: Slow Driving Controls Decadal Variability

JAS Precipitation Response, CAM5
Total Response Fast Response Slow Response
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* Fast aerosol driving dries throughout the period. ¢ 1970’s to 2000’s northward shift over West Africa
e SST driving moistens starting in 1970’s. combines aerosol drying and SST moistening.



CAMS5 Results: Slow Driving Controls Decadal Variability

JAS Vertical Velocity Response, CAM5
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CAMS5 Results: Slow Driving Controls Decadal Variability

JAS Vertical Velocity Response, CAM5
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e Aerosol drying associated with enhanced
subsidence in both periods.



CAMS5 Results: Slow Driving Controls Decadal Variability

JAS Vertical Velocity Response, CAM5
N Total Response Slow Response
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CanAM4 Results: Signal Is Weak and
Controlled by Fast Driving

1970s minus
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CanAM4 Results: Signal Is Weak and
Controlled by Fast Driving

1970s minus
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* Signals are highly structured and marginally significant
e Aerosol driving changes through two periods.




CanAM4 Results: Signal Is Weak and
Controlled by Fast Driving
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* Signals are highly structured and marginally significant

e Aerosol driving changes through two periods.

* Slow driving more consistent through two periods.




CanAM4 Results: Fast Driving of (Weak)
Decadal Variabiltiy

July-September Vertical Velocity Response, CanAM4
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CanAM4 Results: Fast Driving of (Weak)
Decadal Variabiltiy

July-September Vertical Velocity Response, CanAM4
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e OQverall, sign of response is similar in CAM5 and
CanAMA4.



CanAM4 Results: Fast Driving of (Weak)
Decadal Variabiltiy

July-September Vertical Velocity Response, CanAM4
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Dominance of the Dynamical Response

Spatial Correlation of each Moisture Convergence component
The proximity of the bars to unity indicates to P-E Field over the Sahel [ON:20N,20W:35E]
how well moist convergence from monthly CAM5 CanAM4
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data explain changes to P-E.

For all experiments, it is the dynamical
contribution of the response that is most
important.
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responses for greenhouse warming (Shaw and
Voigt 2015).
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Key Points



Key Points

Coupled ocean-atmosphere large ensembles isolate global SST
and sea ice response to aerosol forcing.

These simulations confirm that West African precipitation
response is dominated by aerosol forcing.

Fast (aerosol-driven) drying is in a tug-of-war with slow (ocean
mediated) moistening.

Fast and slow responses are fairly robust and reflect circulation
changes, but their timing and relative contributions are model
dependent.



Discussion



Discussion

* Over the 1970’s-2000’s period, CanAM4 fast response is weak
and is not a simple drying, but is more structured.

* There are distinctive roles for transport of pollutants and for
black carbon forcing that need to be sorted out in these two
models.

* A tug-of-war effect is also seen in East Asian monsoon response
to greenhouse gas forcing. How are these results related?

* We have diaghosed nonlinear interactions between
greenhouse forcing and aerosol forcing (extra slides). How
should this be dealt with?



Extra Slides



Aerosol Forcing Drives Precipitation Changes in West Africa

July-August-September Sahel Surface Temperature and
Precipitation Anomalies w.r.t. 1950-1909
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Are AGCMs a Good Testbed for Understanding Precipitation
Responses?

July-September Precipitation Changes, CESM1 (mm/day)
2000’s Minus 1950's 2000’s Minus 1970's

Coupled LENS
(CESM1 LENS)

AGCM Timeslice
(CAMS5, Fast Plus
Slow,100 )

AGCM experiments captures global pattern of precipitation changes over land from coupled models
Over tropical ocean and coastal regions, some AGCM responses appear unrealistically amplified.




Nonlinear Interactions between Greenhouse and Aerosol

Forcing?
CESM1 20-member large Annual mean Aerosol Surface Net SW flux Anomaly (Wm-2)
ensemble uses All-but-Aerosol 1940-1960 to 1985-2005
forcing. L B
CESM1 also has a 3-member 11 ALL - All-but-aerosol (n=20)

—— Aerosol Only (n=3)

Aerosol-Only ensemble (with
—— All-but-GHG (n=20)

differences in tropical emissions).

™~
Aerosol-Only response in SW is § 01 Statistically Significant difference
weaker than Aerosol-Only. <
Note that CanESM2 large = 11
ensemble uses Aerosol-Only. E Y
If greenhouse warming response z 21
significantly modulates aerosol %
forcing, a cleaner coupled model ‘g _3
intercomparison might be b
required. i

-4
0 10 20 30 40 50 60 70 80

Latitude



Model

CESM1
CESM1

CESM1

CESM1

CanESM2
CanESM2

Simulation Name

Historical (ALL)

Historical All-but-
Aerosol (XAER)

Historical All-but-
GHG (XGHG)

Historical Aerosol
Only (AER)

Historical

Historical Aerosol
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Coupled
Anthropogenic  GHG Other
Aerosols
Historical Historical Historical
Pre-industrial Historical Historical
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Historical

Historical

Historical

Pre-industrial Historical

Pre-industrial Pre-industrial

Historical Historical

Pre-industrial Pre-industrial

Ens.
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1920-2080
1920-2080
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1950-2020
1950-2020

Model

CAM5
CAM5

CAM5

CAM5

CAM5
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CanAM4
CanAM4

CanAM4
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Simulation
Nickname
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Coupled and AGCM Experiments
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In Progress

In Progress



Decadal Variations of Anthropogenic Aerosol Forcing

Global Anthropogenic SO, Emissions
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