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This is my timey-wimey detector.
It goes ‘ding’ when there’s stuff.
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Introduction

1.1 Accretion in Strong Gravity

Gravity is one of the four fundamental forces of nature. We can understand gravity in
the weak-field limit, that is, in flat and weakly-curved spacetime, with Newtonian and
post-Newtonian approximations. However, strong-field gravity is far more difficult to
examine, since it is not replicable within our solar system. In the general relativistic
framework, compact objects like black holes and neutron stars are dense enough to
significantly bend spacetime in their vicinity. To measure relative sizes for comparing
phenomena around neutron stars and black holes, we use the gravitational radius (r, =
GM/c?), alength unit that scales with the mass of the compact object. For a 10 Mg,
black hole, 11y = 14.7km; for a 1.4 My neutron star, 1ry = 2.1km. The strong-field
gravitational regime is invoked when an r, is within two orders of magnitude of the
size of the massive object (see Baker et al. (2015) for a comparison of tests in different
gravitational regimes).

Accretion is one of most efficient mechanisms with which to generate energy in
the universe. Low-mass X-ray binaries (LMXBs; Figure 1.1) are unparallelled labo-
ratories to probe accretion in strong gravity. In an LMXB, the compact object is in
a binary system with a low-mass stellar companion, and the companion overflows its
Roche lobe. The overflowing matter is gravitationally attracted towards the compact
object, but it has angular momentum. Since it cannot directly accrete, it forms a
disk around the compact object, which removes both energy and angular momentum
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and thus enables the matter to accrete. Most X-ray binaries are transients, and they
go into outburst, or periods of high activity and increased emission (by many orders
of magnitude). Outbursts tend to last weeks to months, and recurrence times are on
the order of years to decades. In outburst, there is a high mass accretion rate, and
viscous heating in the accretion disk causes the accreting plasma to glow brightly in
the X-rays as it falls down the potential well of the compact object. The X-rays are
dominated by emission processes from deep within the strong-field regime.

Companion star

Compact object

Figure 1.1: An artist’s illustration of an LMXB, with key components labelled. The low-mass
companion star is comparatively not luminous in X-rays, so we can assume that the observed X-
ray emission is coming from the accretion disk, hot inner flow/corona, and compact object (if it is a
neutron star). Image adapted from NASA /CXC/M. Weiss.

To all previous, existing, and planned X-ray telescopes, LMXBs appear as point
sources, since they are both very small and very far away. The inner part of the
accretion disk is less than or equal to nanoarcseconds in angular size, so spatial

resolution of the black hole event horizon or neutron star surface would require even

1

finer resolution.” Since we cannot directly image the inner regions of LMXBs to

study them closely, we turn to spectroscopy and timing to understand them better.

1For a 10 M black hole, its event horizon (2rg4) is ~30km, which at a distance of 6 kpc, would
have an angular diameter of ~ 1 picoarcsecond as seen from Earth. A canonical neutron star with
a diameter of 24km at the same distance would have an angular diameter of just less than a pi-
coarcsecond. For comparison, the Event Horizon Telescope will have an angular resolution of 25—
300 microarcseconds (Fish et al. 2016), which is ~ 10 million times larger.
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In the following sections, we will discuss phenomena and analysis techniques specific
to stellar-mass black holes and neutron stars.

1.2 Black Holes

Black holes are the most compact objects in the universe. Due to this compactness,
they significantly warp spacetime and play host to extremes of physics that are not
found elsewhere in the universe.

According to the No-Hair Theorem, the only observable properties an astrophysical
black hole can have are mass and spin (since electric charge would dissipate in an
astrophysical setting; Israel 1968; Misner et al. 1973). The event horizon of a black
hole is a mathematical surface, the size of which scales linearly with the mass of the
black hole for a given spin. Barring exotic theories like Hawking radiation (Hawking
1975), non-accreting black holes are not visible via electromagnetic radiation. In
order to study the motion of matter in the strong gravitational regime, we therefore
must observe black holes when they are actively accreting. As studied in astronomy
and astrophysics, black holes generally belong to one of two families, stellar-mass and
supermassive. In this thesis we consider stellar-mass black holes, which are the end
product of core-collapse supernovae of the most massive stars (initially 220 Mg). A
comparison of the known masses of stellar-mass black holes (and neutron stars) is
shown in Figure 1.2.

In the following sections we will review the spectral and timing properties of
accreting stellar-mass black holes.

1.2.1 Spectral properties

X-ray spectroscopy, in which we analyze the distribution of energies of the incom-
ing photons, has long been a tool to deduce the time-averaged (over an exposure)
physical properties of the system. Using X-ray spectroscopy, we can determine the
physical components in an LMXB (see Figure 1.1; for reviews, see Done et al. 2007
and Gilfanov 2010): i) a thermally-emitting, optically thick, multi-colour blackbody
accretion disk; ii) a hot Comptonizing region of optically thin thermal or non-thermal
electrons that up-scatter a source of seed photons; and iii) reflection of high-energy
photons emitted by the Comptonizing region that have been reprocessed by the ac-
cretion disk before reaching the observer. See Figure 1.3 for an example spectrum
with the three components labelled. Depending on the configuration of the Comp-
tonizing region, it is sometimes referred to as a hot inner flow if it is in the plane
of the accretion disk between the inner edge of the disk and the black hole, or as a
corona if it is halo-like above the disk and black hole. The most prominent spectral
signature of this reflection is the fluorescent iron line at 6.4-6.7 keV in the rest frame
(e.g., Ross & Fabian 2005; Miller 2007; Dauser et al. 2013). Due to classical Doppler
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Compact object masses (in M)

Known Neutron Stars #

Figure 1.2: An illustration of the known masses of stellar-mass compact objects. The merged
neutron star product is labeled with a question mark, since it is not presently known whether a
neutron star or black hole was formed. Image adapted from LIGO-Virgo/F. Elavsky /Northwestern
University.

boosting of the emission from azimuthal sections of the accretion disk, the iron line
has a double-horned profile in the spectrum. This profile is then redshifted by spe-
cial and general relativistic time-dilation effects and unevenly amplified in intensity
by relativistic beaming (Figure 1.4; see Reynolds & Nowak 2003 for a review). The
contribution from multiple radii in the disk smears the summed profile. The pre-
cise shape of the iron line profile imparts information like the size and location of
the Comptonizing region, the velocity, ionization, and gravitational redshift of the
material in the accretion disk, and the spin of the black hole.

General relativity predicts that the inner edge of accretion disk lies at the in-
nermost stable circular orbit (ISCO), which is 114 in the Kerr metric for a prograde
maximally rotating black hole, and 6,4 in the Schwarzschild metric for a non-rotating
black hole, and 9r, in the Kerr metric for a retrograde maximally rotating black hole
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Figure 1.3: An example (hard-state) energy spectrum of an accreting black hole LMXB in outburst.
The accretion disk multi-colour blackbody component, Comptonized component, and reflection com-
ponent are labelled. Image from Gilfanov (2010).

(Misner et al. 1973). In the systems we observe, the ISCO is likely somewhere in
between, depending on the spin of the black hole.

Over the course of an outburst, the energy spectrum of a black hole LMXB changes
(see, e.g., Miyamoto et al. 1991; Nowak 1995; Belloni 2004; Done et al. 2007; Belloni
2010). These different spectral states are classed as hard (when the spectrum dom-
inated by hard X-ray Comptonized emission), intermediate (both Comptonized and
soft blackbody emission), and soft (when the spectrum is dominated by soft X-ray
blackbody emission). As a further identifier, ‘high’ and ‘low’ are sometimes used,
referring to X-ray flux or count rate.

The hardness evolution is typically plotted in a hardness-intensity diagram (Figure
1.5), in which the hardness ratio (a ratio of the flux in a hard energy band to the
flux in a soft energy band) is plotted versus the X-ray flux or count rate in a broad
energy band. The outburst starts when the source rises out of quiescence into the
low-hard state, labelled ‘A’ in Figure 1.5. In the low-hard state, there is a low photon
count rate and the spectrum is dominated by hard Compton up-scattered photons.
The systems then evolve upward to the hard state (technically the high-hard state,
labelled ‘B’) , where spectral shape remains the same but the flux increases. Then
the system maintains roughly the same count rate, but the distribution of photons
changes dramatically through the hard- and soft-intermediate states (‘C’ and ‘D’,
respectively). This transition through the intermediate states to the soft state happens
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Figure 1.4: A diagram of the different effects on the iron line profile, shown versus the ratio of the
observed energy to the emitted energy. The two lines in the top three panels represent two different
disk radii. Image adapted from Fabian (2013).

on the order of days to weeks, and the transition is often not smooth, as evidenced
by the zig-zags between ‘C’ and ‘D’ in Figure 1.5. In the soft state (‘E’), the soft
X-ray emission from the accretion disk dominates the spectrum. Finally, while in
the soft state, the count rate decreases, and then the source moves back through the
intermediate states to the low-hard state at a lower overall count rate than in the rise.
Most outbursting black hole LMXBs follow similar tracks in the hardness-intensity
diagram.

The spectral evolution through the hardness-intensity diagram tracks the chang-
ing accretion flow. In quiescence, the hydrogen in the disk is not ionized, and there
is a low mass accretion rate. In a truncated disk scenario, the accretion disk would
extend inwards until ~10?-10*r,, and the region between the accretion disk and
compact object would have a geometrically thick, optically thin, hot inner accretion
flow (Esin et al. 1997; Frank et al. 2002; Done et al. 2007). Then to spur the source
into outburst, a disk instability mechanism occurs where cascading ionization of the
disk hydrogen increases viscosity, which thus drastically increases the mass accretion
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Figure 1.5: A hardness-intensity diagram of the black hole GX 339-4 during its 2012 outburst,
sometimes also called a ‘turtle head’ diagram. This data was taken using the RXTE PCA (see
Section 1.4.1 for more on RXTE). Five spectral states are labelled A-E, corresponding to the low-
hard (‘A’), high-hard or hard (‘B’), hard-intermediate (‘C’), soft-intermediate (‘D’), and high-soft
(‘E’) states. Observations from the soft-intermediate state of this outburst, near ‘D’, are used in
Chapter 2. Image adapted from Nandi et al. (2012).

rate and luminosity (Lasota 2001). While the system is in the hard state, the Comp-
tonization strongly dominates the spectrum, with little-to-no disk blackbody (Figure
1.6; e.g., Gierlinski et al. 1999; Garcia et al. 2015). Additionally, a reflection compo-
nent is often seen in the spectrum with a reflection fraction of ~0.2-0.3 (Garcia et al.
2015) to ~0.4-0.5 (Gilfanov et al. 2000). As the mass accretion rate increases, the
truncated disk scenario has the disk inner radius moving inwards towards the ISCO
(Done et al. 2007). In the intermediate states, the Comptonizing region dissipates
as the disk emission increases (e.g., Gierlinski et al. 1999). In the soft state, the
disk dominates the X-ray emission (Figure 1.6) and the inner edge of the disk is at
the ISCO. In the decline of the outburst, the disk emission and mass accretion rate
die down (and the inner edge of the disk possibly truncates), and the Comptonizing
region either re-forms or takes over again (Nowak et al. 2002). In the final low-hard
state, the Comptonizing region again dominates the X-ray emission.

Some black hole LMXBs have radio jets, which are collimated beams of relativistic
particles commonly observed via synchrotron emission in the radio to sub-mm bands
(see Fender et al. 2004 and Homan & Belloni 2005 for reviews). Black hole LMXBs
with jets are sometimes called ‘microquasars’. The jets are not constant, and their
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Figure 1.6: Example spectra in the hard state (blue) and soft state (red) from Cygnux X-1. Image
from Done et al. (2007), adapted from Gierliriski et al. (1999).

properties correlate with the spectral state of the black hole. In the hard state, the jet
is ‘on’ and the emission is persistent (e.g., Gallo et al. 2003). In the hard-intermediate
state, the jet enters the ‘ballistic’ regime, in which the emission is not constant and
the material in the jet is clumpy (see Fender et al. 2004 and references therein). Then,
in the soft-intermediate state, the jet turns off and no radio emission is detected (e.g.,
Fender et al. 2009). In the soft state, the jet is not present (e.g., Corbel et al. 2001).
Then in decline of outburst, the jet turns back on in the intermediate states, and
there is a strong jet again in hard state.

Since the jet occurs in both the rise and decline of the outburst but only in the
hard-intermediate and hard states, we infer that the radio jet does not correlate with
the count rate or luminosity (a proxy for the accretion rate), just the spectral state (a
proxy for the physical geometry of the system). Furthermore, the presence of the jet
correlates with the presence of stronger Comptonization in the spectral states, so it is
thought that the two could be physically connected. For example, the Comptonizing
region could be the base of the jet, as suggested by Markoff et al. (2005).

So, spectroscopy has informed a significant amount of what we know about the
time-averaged properties and physics processes of LMXBs. However, since traditional
X-ray spectroscopy only measures the time-averaged energy distribution of the ob-
served photons, it cannot probe rapid changes in these systems. As we will discuss
in the next section, there is rapid variability in the X-ray emission from black hole
LMXBs, and the variability also changes with outburst evolution.
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1.2.2 Timing properties

When actively accreting, the X-ray emission from black hole LMXBs can be highly
variable on a wide range of timescales (for reviews, see McClintock & Remillard 2006;
van der Klis 2006b). Timing analysis naturally gives the timescale of the variable emis-
sion, but it does not directly give the physical processes responsible for it. The timing
features in black hole LMXBs are low- and high-frequency quasi-periodic oscillations,
in addition to noise processes like observed Poisson noise and intrinsic broadband
noise. We use power spectra, the modulus squared of the Fourier transform of a light
curve, to assess the timing properties of a light curve. A power spectrum tells us the
amount of variability in a light curve at each Fourier frequency (see van der Klis 1989
for a detailed explanation of power spectral analysis). While technically the power
spectrum (or power density spectrum) represents the mean amplitude of variability
of the underlying process and the periodogram is the frequency distribution of the
variability that is measured with timing analysis, astronomers typically refer to the
measured frequency distribution itself as a power spectrum.

For an X-ray light curve z(t) expressed in counts per time bin, it has a Fourier
transform X (v) that can be computed by the discrete Fourier transform,

X, = xy exp (2wink /N) (1.1)
0

2

E
Il

for each frequency bin n and each time bin &, where the frequency in each frequency
bin f,, = n/(Ndt), N is the number of consecutive bins in the light curve, dt is the
sampling time step of the light curve, and n = 1,2,3,.., N/2. The power spectrum
P(v) is defined as

P(v)=|X()*| . (1.2)

The three normalizations for power spectra are absolute rms-squared, fractional rms-
squared, and Leahy (Leahy et al. 1983), respectively computed by

2dt

P(W)aps = P(v) X N (1.3)
P(1)rae = P(1) X N2<i’“;2 (1.4)
P()1eany = P(v) x (1.5)

N{x)

where (x) is the mean count rate of the light curve. Power spectra are typically
averaged over many sequential segments of a light curve to reduce the statistical
noise, and they can also be re-binned in frequency. The integral of the fractional
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rms-squared power spectrum (either over the whole set of positive Fourier frequencies
or over a smaller range of consecutive Fourier frequencies) is the variance. The square
root of the variance is the fractional rms (‘root mean square’), which measures the
overall amount of variability in a power spectrum in a given frequency range. For
more technical details of the mathematics of the power spectrum, we refer to van der
Klis (1989) and Uttley et al. (2014).
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Figure 1.7: Power spectra from different sources showing typical timing properties of a black hole
LMXB in outburst as it transitions through the spectral states in the first half of the outburst,
progressing left to right and top to bottom. As determined by the shape and rms of the noise in
Heil et al. (2015b), panels 1-7 are in the hard state, panels 8-11 are in the hard-intermediate state,
panels 12-15 are in the soft-intermediate state, and panels 16-18 are in the the soft state. There are
Type C QPOs in panels 8-11, and Type B QPOs in panels 13-15. Image from Heil et al. (2015b).

Quasi-periodic oscillations (QPOs) have been seen in the X-ray light curves of
accreting black holes and neutron stars since the mid 1980s (van der Klis et al. 1985).
QPOs from black hole binaries are broadly classed in two categories, low-frequency
(~0.1-30Hz) and high-frequency (2 100Hz). Low-frequency QPOs in black hole
LMXBs are further subdivided into three categories, based on their spectral and
timing properties: Type A, Type B, and Type C (Remillard et al. 2002; Casella
et al. 2005). Type A QPOs appear in the soft-intermediate and soft states with weak
broadband noise and with a very weak, broad QPO peak at around 8 Hz. Type B

10
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QPOs appear fleetingly in the soft-intermediate state, and have weak broadband noise
with a very strong QPO at around 6 Hz and relatively weak QPO harmonic. Type
C QPOs appear in the hard and hard-intermediate states, sit on top of a significant
broadband noise component, and have a QPO with a relatively strong QPO harmonic.
The Type C QPO centroid frequency tends to vary significantly over the frequency
range ~ 0.1-15 Hz, with the higher frequencies typically found in softer spectral states.
A diagram of characteristic power spectra throughout the spectral states in the first
half of an outburst is shown in Figure 1.7. Type Cs are the most common type of
low-frequency QPO detected, followed by some Type Bs and very few Type As (Motta
et al. 2015). Type B and C QPOs tend to be mostly comprised of medium-to-hard
X-ray emission (= 5keV). Type B QPOs are analyzed in Chapters 2 and 5.

Figure 1.8: An artistic depiction of an accreting black hole with a precessing hot inner flow. The
configuration of the hot inner flow relative to the inner accretion disk is shown at 0, 0.25, and 0.5 of
a QPO cycle (respectively, left to right). We see that the emission from the hot inner flow sweeps
around the inner accretion disk illuminating and heating it. Image adapted from ESA/ATG medi-
alab/A. Ingram.

High-frequency QPOs, which are found at frequencies above about 100 Hz, occur
at frequencies consistent with Keplerian motion at the inner edge of the accretion disk
(e.g., Remillard et al. 1999a,b; Strohmayer 2001; Kluzniak & Abramowicz 2001). In
black holes, high-frequency QPOs are not commonly observed and have historically
had rather poor signal-to-noise. The high-frequency QPOs that have been observed
are seen when the source is in the soft state (Belloni et al. 2012). Black hole high-
frequency QPOs are somewhat analogous to kHz QPOs in accreting neutron stars
(though not entirely; see, e.g., Motta et al. 2017), the latter of which are frequently
seen with high signal-to-noise in a variety of sources (discussed in more detail in
Section 1.3.2).

The most ubiquitous feature in a power spectrum of an accreting compact object
is flat Poisson noise. Poisson noise is due to the counting statistics of X-ray timing
observations. For a power spectrum with absolute rms-squared normalization, the
expected Poisson noise level is 2(z), for fractional rms-squared, the expected Poisson
noise level is 2/(x), and for Leahy normalization, the expected Poisson noise level is

11
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2. When plotted as power x frequency,? the Poisson noise has a power-law index of
+1. Poisson noise dominates the power spectrum at high frequencies.

Broadband noise, or band-limited noise, is weakly-peaked low-frequency intrinsic
noise (S 10Hz) that appears in the hard and hard-intermediate states. It was first
observed in the early 1970s and is often modelled with a broad Lorentzian (or combi-
nation of broad Lorentzians) and/or a broken power-law (Terrell 1972). Broadband
noise is most prominent in the hard and hard-intermediate states (see panels 1-12
in Figure 1.7) and is thought to be due to accretion fluctuations propagating inward
through the accretion disk (Lyubarskii 1997; Arévalo & Uttley 2006; Uttley et al.
2011; Rapisarda et al. 2016). There is also general low-frequency noise in the soft
spectral states that tends to be modelled with a power-law.

Low-frequency QPO models

The physical origin of low-frequency QPOs is unclear. Models of low-frequency QPOs
generally fall under one of two categories: intrinsic variability and geometric variabil-
ity.

Intrinsic models invoke an intrinsically quasi-periodic process causing overall lumi-
nosity variability in one or more spectral components. Examples of intrinsic models
include trapped oscillations in the inner accretion disk (Nowak & Wagoner 1991),
standing shockwaves in the accretion flow (Chakrabarti 1996), Rayleigh-Taylor grav-
ity waves in the inner accretion flow (Titarchuk 2003), or Comptonized oscillations
in the base of a jet (Giannios et al. 2004). Geometric models produce variations in
the observed luminosity due to geometric variations in the system. Two examples of
geometric models are general relativistic Lense-Thirring precession (Stella & Vietri
1998) and an oscillating shock causing a moving corona (Sukové et al. 2017). Often,
theoretical geometric models have a periodic geometric variation that is made to be
quasi-periodic in appearance due to accretion rate fluctuations.

Evidence points towards a geometric origin due to the dependence of QPO prop-
erties on geometric parameters of the system. Schnittman et al. (2006) found a cor-
relation between QPO amplitude and the inclination of the binary orbit with respect
to our line of sight for a sample of 7 sources with Type C QPOs. Larger studies of
this nature were carried out simultaneously by Motta et al. (2015) and Heil et al.
(2015a) and found a clear correlation between the QPO rms and the inclination of
the binary orbit with respect to our line of sight. Furthermore, van den Eijnden et al.
(2017) found a correlation between the sign of the energy-dependent QPO phase lags
and the binary orbit inclination. Interestingly, Type B and Type C low-frequency
QPOs show opposite trends in the QPO rms-inclination correlation, indicating that
they have different origins.

2Power x frequency is often plotted against frequency to make it easier to determine the relative
contribution of the variability at each frequency to the total variability in the light curve.
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One geometric model gaining traction is general relativistic Lense-Thirring pre-
cession of the entire Comptonizing region (Figure 1.8; Stella & Vietri 1998; Ingram
et al. 2009). Lense-Thirring precession, also known as frame dragging, is a conse-
quence of the Kerr metric, which describes the spacetime outside a rotating black
hole (see Misner et al. 1973). It arises when the orbital plane of a test particle orbit
is misaligned with respect to the spin axis of the black hole, and the orbital plane
precesses around the spin axis of the black hole. The frequencies for standard Lense-
Thirring precession of test particles in orbit at the inner edge of the accretion disk
around a stellar-mass black hole are marginally higher than the low-frequency QPOs
that are observed. However, in this model, the entire hot inner flow precesses like a
rigid body in and out of the plane of the accretion disk (Figure 1.8), which causes the
precession to occur at a lower frequency, matching the range of observed frequencies
of low-frequency QPOs. Hydrodynamical simulations have shown that this is possible
if the orbital axis of the inner accretion disk is misaligned with the spin axis of the
black hole Fragile & Anninos 2005; Fragile et al. 2016).

The most recent evidence of Lense-Thirring precession is a modulating iron line
energy, from a precessing hot inner flow reflecting alternately off the blue-shifted and
red-shifted sides of the accretion disk (Fragile et al. 2005; Ingram & Done 2012).
Ingram et al. (2016, 2017) applied this model to Type C QPOs, which have strong
harmonics, where the harmonic comes from the underside of the precessing flow illu-
minating the disk as well. In addition, Sobolewska & Zycki (2006), Axelsson et al.
(2014), and Axelsson & Done (2016) found via rms spectra that the Type C QPO
and its harmonic were originating from the Comptonized component (in Axelsson &
Done 2016, they found that the QPO and harmonic could be produced from differ-
ent parts of an inhomogeneous Comptonizing region). Finally, new simulations from
Liska et al. (2017) show that it is possible to get a precessing corona-like base of a
radio jet to give low-frequency QPOs in the X-ray light curve. This work, published
after Stevens & Uttley (2016), supports the physical interpretation in Chapter 2 that
a wobbling tall jet-like Comptonizing region could be responsible for the Type B QPO
we analyzed.

On the other hand, it might not be possible to have sufficient misalignment be-
tween the black hole spin axis and inner disk axis for Lense-Thirring precession to
occur with strong-enough modulation to generate QPOs in the X-ray light curves.
Much of the iron line spectroscopy and continuum fitting literature assumes that the
disk is not truncated in the hard state and extends inward to the ISCO, and that
the orbital plane of the disk is fully perpendicular to the black hole spin axis (e.g.,
Steiner et al. 2011). Likewise, Maccarone (2002, 2015) found that if there were a
misalignment when the LMXB formed, it would not last long-enough in the LMXB’s
lifetime to explain the number of observed sources with low-frequency QPOs.

Each model for the origin of low-frequency QPOs can predict QPO-phase-dependent
changes to the energy spectrum. In order to break degeneracies between QPO mod-
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els, we want to measure the spectral-timing behaviour of the QPO using a growing
arsenal of techniques.

1.2.3 Spectral-timing techniques

Spectral-timing analysis is a new pathway to understanding X-ray data that simulta-
neously examines its spectral and temporal properties to deduce underlying causal re-
lationships between different emitting components. The foundation of spectral-timing
analysis is in the understanding that photon arrival time and photon energy should
not be analyzed separately, since they are intrinsically connected by the underlying
physics. Since spectral analysis gives the physical process and timing analysis gives
the timescale, the combination can link the physical processes to timescales to better
understand the emission region. For a full description of spectral-timing techniques
with recipes and examples, see Uttley et al. (2014). Here we give a brief overview.

The cross-spectrum is a type of Fourier analysis that compares two light curves
and measures the components that are correlated between the two. On an intuitive
level, it finds the timescale(s) where two independent quantities  and y vary together.
For two independent X-ray light curves z(t) and y(¢) that have the Fourier transforms
X (v) and Y (v), the cross-spectrum C(v) is defined as

Clv) =XW)Y"(v), (1.6)

where * denotes the complex conjugate. The cross spectrum is complex, and thus
it has an amplitude and a phase at each Fourier frequency. The cross-spectrum
amplitude is the cross-spectral version of the power spectrum. It is computed as

A(v) = VRW)2 +1(v)?, (1.7)

where R(v) is the amplitude of the real component and I(v) is the amplitude of the
imaginary component of the cross spectrum C(v). It measures the amount of corre-
lated variability at each Fourier frequency. The cross spectrum is typically averaged
over segments, and can be binned in frequency (just as with the power spectrum).
The same normalizations from equations 1.3-1.5 can be applied to the cross spectrum
amplitude using \/(z)(y) as the mean count rate, where (r) and (y) are the mean
count rates of light curves z(t) and y(t), respectively. We note that the mean of the
Poisson noise in the cross spectrum is zero, since Poisson noise is by definition not
correlated between independent light curves, but the scatter on the Poisson noise does
contribute to the cross spectrum by a minor amount (Vaughan & Nowak 1997). For
an example of the cross spectrum amplitude, see Figure 4.3 in Chapter 4.

Lags, computed from the cross-spectrum phase, measure the frequency- and energy-
dependent phase shifts in the variability (Vaughan et al. 1994). Lag-frequency spectra
are measured between a soft and hard light curve. It measures the variability in the
hard light curve that leads or lags the variability in the soft light curve at each Fourier
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frequency. Lag-energy spectra are measured between a ‘reference’ light curve from a
broad energy band and ‘channel of interest’ light curves in many different narrow en-
ergy bands. It measures if the variability in each channel of interest leads or lags the
variability in the reference band, and has a spectral resolution corresponding to the
width of the channels of interest. The lag-energy spectrum gives indications of causal-
ity with respect to the coarse energy information and the amplitude of the time lag.
Non-monotonic structure in the lag-energy spectrum indicates that there is likely in-
teresting spectral-timing behaviour, such as spectral pivoting or phase shifts between
spectral components (as opposed to, e.g., a modulation in the overall flux normaliza-
tion). For example lag-energy spectra, see Figures 2.2, 4.4, and 5.4 in Chapters 2, 4,
and 5, respectively.

The rms spectrum measures the amount of variability in a light curve in narrow
energy bands (Revnivtsev et al. 1999). It indicates at which energies the variability
is strongest, and is best applied to signals that are thought to be from a changing
normalization of a single or unrelated spectral component(s). For examples of rms
spectra applied to low-frequency QPOs, see Sobolewska & Zycki (2006); Axelsson
et al. (2014); Axelsson & Done (2016). The covariance spectrum is the cross-spectral
counterpart to the rms spectrum (Wilkinson & Uttley 2009). It measures the ampli-
tude of correlated variability between a light curve from a narrow energy band with
a light curve from a broad ‘reference’ energy band. We note that the idea to use a
broad reference band for cross-spectra and cross-correlation (as used in Chapters 2, 4,
and 5) was first developed for covariance spectra. Yet more spectral-timing methods
include the Hilbert-Huang Transform to decompose a non-stationary time signal (e.g.,
Su et al. 2015) and spectral decomposition with principle component analysis (e.g.,
Koljonen 2015).

The culmination of spectral-timing analysis for periodic and quasi-periodic signals
is phase-resolved spectroscopy, in which the energy spectrum can be measured and
fitted at multiple phases across one period or cycle of variability. Phase-resolved
spectra can be more straightforward to physically interpret than the rms spectrum
or covariance spectrum, and makes use of both the amplitude and phase information.
For periodic signals coming from pulsars, phase-resolved spectroscopy can be done
by folding light curves on the period of the pulsation to build up an average pulse
shape. Such analyses, when applied to Fermi observations of gamma-ray pulsars,
broke degeneracies between models for pulsar emission and constrained the structure
of the magnetic field (Harding 2013). However, phase-resolved spectroscopy of QPOs
(quasi-periodic signals by definition) had been an unreachable goal, since they are not
coherent enough to phase-fold in the time domain. In Chapter 2, we introduce a new
technique for phase-resolved spectroscopy that we apply to low-frequency and kHz
QPOs in Chapters 2, 4, and 5. Our phase-resolved spectroscopy technique averages
the QPO signals in the cross-spectrum, so that the phases of the signals add while
the phases of the noise cancels. Two other techniques for phase-resolved spectroscopy
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of low-frequency QPOs are from Miller & Homan (2005) and Ingram & van der Klis
(2015). Miller & Homan (2005) combined spectra at the well-defined maxima and
minima of the QPO in the light curve. Ingram & van der Klis (2015) measured the
complex amplitude and phase of the QPO and harmonic in the Fourier transform of
the light curves in each energy channel and used this information to reconstruct the
energy-dependent QPO signal.

1.3 Neutron Stars

Neutron star LMXBs have many types of emission and variability that are similar
to those seen from black holes. However, there is an extra layer of complexity with
neutron stars, in that they have a surface.

Underneath the surface, neutron stars contain the densest form of matter known
to exist. Their average density is that of an atomic nucleus (~2.8 x 10'* gcm=3),
and given that they have a density gradient, their inner cores are up to an order of
magnitude denser than an atomic nucleus (Glendenning 2000; Camenzind 2007; Watts
et al. 2016). The regions inside a neutron star, moving radially inward, are the outer
crust comprised of an iron-rich lattice, an inner crust of neutron-rich atomic nuclei,
and a core likely comprised of superfluid neutrons with some superconducting protons
and relativistic electrons (Figure 1.9; Watts et al. 2016). The inner core composition
is unknown, with theories ranging from quark matter to various particle condensates.
Furthermore, neutron star matter is considered to be cold, since the thermal energy
of the particles is less than the Fermi energy (~ 30 MeV; Glendenning 2000). While
particle physics experiments like ALICE at CERN can probe some regimes of hot
dense matter, the cold supra-nuclear-density conditions inside neutron stars cannot
be re-created on Earth (Watts et al. 2016).

The holy grail of neutron star astrophysics research is to determine the equation
of state of the neutron star inner core. The equation of state of the cold matter in
neutron stars is expressed as a relation of pressure and density. Different neutron
star equations of state are classified as ‘soft’ or ‘stiff’, referring to whether they give
lower or higher pressure at a certain density, which then gives smaller or larger neutron
star masses, respectively, for a given radius. Since the pressure-density relation can be
derived by combining many mass and radius measurements of neutron stars, obtaining
constraints on the masses and radii will place limits on which theoretical equations
of state are plausible (see Lattimer & Prakash 2016 for a recent overview of realistic
neutron star equations of state).

To study the unique phenomena associated with neutron stars, we can analyze
the unique variability in X-ray emission from neutron stars, such as pulsations from
accretion onto the surface at the magnetic poles (see van der Klis 2000 for a review),
thermonuclear burst oscillations from a thermonuclear explosion of accreted material
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1| OUTER CRUST

2| INNER CRUST

Figure 1.9: An artistic illustration of the interior of a neutron star, with the outer crust, inner
crust, and core labelled. Image from Watts et al. (2016).

on the surface (see Galloway et al. 2008 for a review), millihertz QPOs from marginally
stable nuclear burning on the surface (see Bult et al. 2017 for a recent example), and
kilohertz QPOs from the ‘boundary layer’ accretion flow just above the surface or
inhomogeneities in the inner accretion disk (colloquially, ‘hot blobs’) orbiting the
neutron star (e.g., Wijnands et al. 2003).%> Thermonuclear burst oscillations and
kilohertz QPOs are explored in this thesis, and descriptions of each are provided in
the following sections.

1.3.1 Thermonuclear burst oscillations

When a neutron star is actively accreting, matter can accumulate on its surface.
Once the matter reaches a critical temperature and density, thermonuclear burning
(i.e., nuclear fusion) is triggered and the accreted surface layers ignite in an unstable
thermonuclear runaway (see Watts 2012 for a review). The thermonuclear burning
releases a significant burst of X-rays, and this scenario is called a Type I X-ray burst.

Some Type I X-ray bursts show oscillations in the light curve, the frequency of
which strongly corresponds to the known spin frequency of the neutron star, during
the rise and decay of the burst. A common theory (and the one assumed in this thesis)
is that the burst oscillations come from a ‘hotspot’ on the surface of the neutron star

3There are also low-frequency QPOs seen in neutron star LMXBs: horizontal branch oscillations,
normal branch oscillations, and flaring branch oscillations. There are many similarities between these
and black hole low-frequency QPOs; see, e.g., Motta et al. (2017) for a recent comparison.
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(e.g., Artigue et al. 2013). This hotspot is misaligned with the spin axis of the neutron
star, and the observed luminosity changes as the neutron star spins, which gives a
periodic light curve. This ‘lighthouse effect’ is also part of the mechanism behind
accreting X-ray pulsars. Since the X-rays emitted during the thermonuclear burst are
from the surface layers of the neutron star, the geometric parameters of the system,
including the neutron star’s mass and radius, are encoded in the burst photons (Watts
2012).

Burst oscillations can be modelled with ray tracing, in which the path of the
burst photons is computed through the curved spacetime around the neutron star
at sequential phases in the neutron star’s rapid rotation. Due to gravitational light-
bending, an observer at infinity is able to see roughly 3/4 of the neutron star surface
at once, so the hotspot is typically visible for the entire rotation. It is possible to
have an antipodal hotspot in the southern hemisphere of the neutron star, though in
Chapter 3 we only model one hotspot in the northern hemisphere. The shape of the
burst oscillation light curve is referred to as the ‘pulse profile’.

The first ray-tracing formalism for point-like emission from a Schwarzschild-metric
(i.e., non-rotating) neutron star is from Pechenick et al. (1983). This was built upon
by Miller & Lamb (1998) for a Schwarzschild metric with special-relativistic Doppler
effects, which arise from the rapid rotation of these neutron stars. Poutanen & Gier-
linski (2003) then used the ‘Schwarzschild+Doppler’ formalism with the Beloborodov
(2002) approximation for computing the photon trajectory, which improves computa-
tion time, and expanded the algorithm to include non-trivially-sized hotspots. Since
rapidly rotating neutron stars can become oblate in shape due to centrifugal forces,
and the effects of spin frequencies 2 300 Hz are evident in the shape of the pulse pro-
file, Cadeau et al. (2007) and Morsink et al. (2007) explored ray-tracing in an ‘oblate
Schwarzschild+Doppler’ framework. There are also some examples in the literature
of ray-tracing emission from neutron stars in non-Schwarzschild metrics, such as a
Kerr metric (Psaltis & Johannsen 2012) and a Hartle-Thorne metric (Baubdck et al.
2013). For more background on pulse profile simulations, see the introduction of
Stevens (2013). The Schwarzschild+Doppler and oblate Schwarzschild+Doppler ray
tracing formalisms are used in Chapter 3.

1.3.2 Kilohertz QPOs

Kilohertz (kHz) QPOs occur at frequencies ~400-1200 Hz (van der Klis et al. 1996b;
Strohmayer et al. 1996b; for reviews, see van der Klis 1998, 2000, 2006b). These
frequencies are the most rapid type of variability that has been observed in an LMXB.
kHz QPOs are most often seen in the soft and soft-intermediate spectral states (Motta
et al. 2017). In Fourier space, kHz QPOs are often double-peaked (e.g., van der Klis
et al. 1997; Méndez et al. 1998a), with the ‘upper’ and ‘lower’ kHz QPO exhibiting
different spectral-timing properties (e.g., Barret 2013; de Avellar et al. 2013; Peille
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et al. 2015; Cackett 2016). The frequencies of kHz QPOs are consistent with the
Keplerian velocity in the inner part of the accretion disk (Stella & Vietri 1999). This
region may be where the disk meets the neutron star surface in neutron stars with
weaker magnetic fields (< 101 G), or where the magnetic field truncates the accretion
disk in neutron stars with stronger magnetic fields (> 10'° G). As such, kHz QPOs are
a diagnostic tool for dynamical interactions between strong-gravity, strong magnetic
fields, a surface, and accretion flows.

Neutron stars rotate rapidly, but slower than the Keplerian velocity of the inner
disk edge. The boundary layer, where the inner accretion disk may meet the neutron
star surface, then corresponds to the region where matter slows down and hits the
surface of the neutron star. The emission from the boundary layer is spectrally mod-
elled as a thermal Comptonized component with a low-energy cutoff temperature tied
to an accretion-induced hot spot on the neutron star surface (not the temperature of
the inner disk) and a high-energy cutoff temperature at ~3keV (for a recent example,
see Armas Padilla et al. 2017). The lower kHz QPO may originate from the boundary
layer, as explored in Chapter 4.

1.4 X-ray Observatories for Spectral-Timing

The efficacy of the methods we have described to study this plethora of exotic phe-
nomena in black holes and neutron stars is heavily dependent on the quality of the
data. Since these sources are very luminous when in outburst, background emission
(i.e., non-source emission in the field of view) is largely not an issue compared to
other fields in X-ray astronomy like quiescent compact objects or distant galaxies.
However, the more photons detected, the better the statistics are, so the best X-ray
instruments have a large effective area with which to collect photons. In order to
temporally resolve the most rapid variability, very fast time resolution of the detec-
tor is necessary. In terms of spectral range, it is necessary to cover both the soft
blackbody emission and the hard Comptonized emission, preferably with fine-enough
energy resolution around the iron line to characterize the shape of the line profile.
Finally, some outbursting sources get exceptionally bright, so the ideal detector will
be able to accommodate thousands of photons per second without losing spectral or
temporal resolution. In the following sections we highlight the best past mission,
best current mission, and best two future missions for spectral-timing observations of
X-ray binaries.

1.4.1 RXTFE

The Rossi X-ray Timing Explorer (RXTE) was launched by NASA in December 1995
(see Bradt et al. 1993). The most notable instrument for our research is the Propor-
tional Counter Array, or PCA (see Jahoda et al. 1996). The PCA was comprised of
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Figure 1.10: A photograph of the RXTE PCA as it was being assembled. Image from
NASA/GSFC.

five identical proportional counter units (PCUs) that were filled with xenon gas. The
five PCUs are visible in Figure 1.10 as the red vertical strips of instrumentation. The
PCA detected X-rays in the 2-60keV energy range with a best energy resolution of
1.08keV at 6keV. Since it was built as a timing instrument, its best possible time
resolution was 1 us, though the RXTE PCA data used in this thesis has a time reso-
lution of 122 us. The PCA had a total effective area of 0.65 m?, and held the title of
largest effective area in the 2-60 keV bandpass until the launch of AstroSat in Septem-
ber 2015 (for more on AstroSat, see Singh et al. 2014 and Yadav et al. 2016). Since
RXTE was used for spectroscopy as well as precise timing measurements, there were
two types of data mode: binned mode, which was used for spectra (i.e., Standard-2
data) and for timing of some very bright sources, and event mode, which was used
for timing.

RXTE has an extensive legacy in X-ray timing of both black holes and neutron
stars. Among the more than 2,100 papers from RXTE data during its lifetime alone,*
it enabled the discovery of kHz QPOs (van der Klis et al. 1996a; Strohmayer et al.
1996a; van der Klis et al. 1996b; Strohmayer et al. 1996b), accretion-powered millisec-
ond pulsars (Wijnands & van der Klis 1998a; Chakrabarty & Morgan 1998a; Wijnands
& van der Klis 1998b; Chakrabarty & Morgan 1998b), magnetars (highly magnetic
neutron stars; Ibrahim et al. 2002), and many stellar-mass black holes (McClintock
& Remillard 2006). After a very successful 16-year mission lifetime, RXTE was de-

4https://heasarc.gsfc.nasa.gov/docs/xte/whatsnew /xte_refereed _all.html
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Figure 1.11: A picture of NICER in action onboard the International Space Station. Image from
video by NASA /GSFC/K. Gendreau.

commissioned in January 2012. Chapters 2 and 4 use RXTFE PCA data, and Chapter
3 includes simulations that represent RXTFE-like data.

1.4.2 NICER

The Neutron star Interior Composition Explorer (NICER) is a soft X-ray mission
launched by NASA in June 2017, and is attached to an external module on the
International Space Station (see Gendreau et al. 2012, Arzoumanian et al. 2014).
The NICER X-ray Timing Instrument (XTI) has 56 concentrator optics (visible in
Figure 1.11) that direct the incoming X-rays onto the CCD detector. The XTT is
capable of detecting X-rays in the 0.2-12 keV band, with a minimum energy resolution
of 180eV at 6keV and 80eV at 1keV, from the 1,500 separate energy channels of
the CCD detector. The time resolution is an unprecedented 40 ns, and the effective
area is 0.23m? (about the same as two RXTE PCUs) at 2keV. Luckily, telemetry is
not a concern, so there are no separate data modes for the observations; the photon
count event lists have 40 ns time resolution and CCD energy resolution simultaneously.
Furthermore, NICER does not have pile-up issues, so it can observe bright sources,
such as MAXI J1535-571 (see Chapter 5) at 17,000 counts per second (Gendreau
et al. 2017).

NICER is a dedicated mission for studying neutron stars. Omne of its primary
science goals is to precisely measure the pulse profiles of persistent X-ray pulsars,
and use this to constrain the neutron star matter equation of state. This is very
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similar to what was described in Section 1.3.1, except for a difference in emission
mechanism. The other component of the mission, SEXTANT, is devoted to precisely
clocking X-ray pulsars for use in interplanetary navigation. In addition to the primary
science, there is a wide array of observatory science possible with NICER, made
possible by NICER’s energy range sampling the peaks of the accretion disk multi-
colour blackbody, neutron star surface blackbody and boundary layer, fine energy
resolution around the fluorescent iron line, all coupled with its truly remarkable time
resolution. Chapter 5 uses data from NICER taken in the autumn of 2017 to study
a luminous new black hole transient.

1.4.3 Future missions

Continuing with the trend of RXTE and NICER, the instrumentation goal of X-ray
telescopes for spectral-timing analysis is to have a larger effective area and higher
spectral resolution, without losing information due to pile-up distortions or through-
put limitations. One major proposed mission that ultimately did not go forward is
LOFT, the Large Observatory For X-ray Timing, which was an ESA M3 and M4
candidate (Feroci et al. 2012). LOFT brought together the study of neutron star
dense matter and accretion in strong gravity as the two primary science cases for an
8.5-10 m? X-ray observatory. While it did not pass the final down-select, much of the
instrumentation and analysis expertise from LOFT has laid the groundwork for the
currently proposed missions eXTP and STROBE-X. A common feature of eXTP and
STROBE-X are the large-area panels of silicon drift detectors for observing hard X-
rays that were pioneered for astrophysical use by the LOF'T team. Chapter 3 includes
simulations that represent eXTP- or STROBE-X-like hard X-ray data.

eXTP

The Enhanced X-ray Timing Polarimeter (eXTP) is a proposed mission to the Chi-
nese Academy of Sciences (Zhang et al. 2016). It grew out of partnering the previously
proposed Chinese mission XTP with some of the large-area panels and the wide-field
monitor from LOFT. The two instruments ideal for our applications are the Large-
Area Detector (LAD) and the Spectroscopic Focussing Array (SFA). The LAD would
be a hard X-ray detector in the range 2-30keV (possibly up to 80keV for bright tran-
sients) with an energy resolution of 250V at 6keV. It would have an effective area
of 3.4m? at 6keV, and a time resolution of 1 us. The SFA would be a soft X-ray
detector in the range 0.5-20keV, with 180eV energy resolution at 6keV. Its effec-
tive area would be 0.6 m? at 6keV and 0.9m? at 1-2keV, with 10 us time resolution.
Since the instruments would be pointing together, we would get simultaneous coverage
from both instruments for each pointing. The primary science case for eXTP heavily
emphasizes variability from accreting stellar-mass black holes and neutron stars.

In addition, eXTP has the Polarimetry Focusing Array (PFA), a gas pixel-based

22



1.5 Outline of this Thesis

detector for linear polarization in the 2—10keV energy band. The time resolution of
the PFA is 500 us, and the effective area is 0.025m? at 2keV. While the research
in this thesis does not cover X-ray polarization, having spectral-timing-polarization
measurements opens up an entirely new axis of analysis.

STROBE-X

The Spectral- and Time-Resolved Observatory for Broadband Energy X-rays (STROBE-
X) is a proposed mission to NASA (Wilson-Hodge et al. 2017). It is currently un-
dergoing concept study in preparation for the NASA Astro2020 Decadal Survey. The
science case and instrumentation setup for STROBE-X comes from combining hard
X-ray LOFT panels with a ‘super NICER’ soft X-ray detector scheme.

Of the three instruments in the nominal configuration for STROBE-X, the Large-
Area Detector (LAD) and XRCA (X-Ray Concentrator Array) are best suited to
our research. The LAD would have 200-240 eV energy resolution across its 2-30 keV
bandpass. It would have an effective area of 7.6 m? at 10keV, and 10 us time reso-
lution. The XRCA would have an energy range of 0.2-12keV with 85-130¢eV energy
resolution, 100ns time resolution, and 3.4m? of effective area at 1.5keV. As with
eXTP, a large part of STROBE-X’s primary science case focuses on variability from
accreting stellar compact objects.

1.5 Outline of this Thesis

In Chapter Two, we introduce our new technique for phase-resolved spectroscopy of
QPOs and apply it to the Type B low-frequency QPO from the black hole GX 339—4.
This research shows how QPO-phase-resolved spectroscopy can provide a physical
interpretation for previously intriguing but unaccountable spectral-timing behaviour
in a very well-studied source, and start to break degeneracies between physical models
for low-frequency QPOs. The data for this chapter comes from RXTE observations
in 2010.

In Chapter Three, we simulate thermonuclear burst oscillation pulse profiles from
a neutron star and fit them with an evolutionary optimization algorithm for the first
time in the literature. This work shows how new-to-the-field optimization methods
are able to efficiently provide constraints in highly degenerate parameter spaces. The
simulations in this chapter represent LOFT /STROBE-X- and RXTE-quality data.

In Chapter Four, we apply our phase-resolved spectroscopy technique to the lower
kHz QPO in the neutron star 4U 1608-52. This proof-of-principle chapter shows that
kHz QPOs can be easily phase-resolved with our technique from Chapter 2. The data
for this chapter comes from RXTE observations in 1996.

In Chapter Five, we carry out spectral-timing analysis of the Type B low-frequency
QPO in the new transient black hole MAXI J1535-571. With this work, we showcase
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how momentous NICER’s capabilities are for spectral-timing of compact objects. The
data for this chapter comes from NICER observations in 2017.
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Abstract

We present a new spectral-timing technique for phase-resolved spectroscopy and apply
it to the low-frequency Type B quasi-periodic oscillation (QPO) from the black hole
X-ray binary GX 339-4. We show that on the QPO time-scale the spectrum changes
not only in normalisation, but also in spectral shape. Using several different spectral
models which parameterise the blackbody and power-law components seen in the time-
averaged spectrum, we find that both components are required to vary, although the
fractional rms amplitude of blackbody emission is small, ~ 1.4 per cent compared to
~ 25 per cent for the power-law emission. However the blackbody variation leads the
power-law variation by ~ 0.3 in relative phase (~ 110 degrees), giving a significant
break in the Fourier lag-energy spectrum that our phase-resolved spectral models
are able to reproduce. Our results support a geometric interpretation for the QPO
variations where the blackbody variation and its phase relation to the power-law are
explained by quasi-periodic heating of the approaching and receding sides of the disk
by a precessing Comptonising region. The small amplitude of blackbody variations
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suggests that the Comptonising region producing the QPO has a relatively large scale-
height, and may be linked to the base of the jet, as has previously been suggested to
explain the binary orbit inclination-dependence of Type B QPO amplitudes.
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2.1 Introduction

The origin of quasi-periodic oscillations (QPOs) in X-ray binaries is still an enigma.
They appear as Gaussian- or Lorentzian-shaped features in the averaged power spec-
trum of a light curve. QPOs in black hole X-ray binaries have been observed at
0.01 — 450 Hz, and are broadly classified into two types, low-frequency (LF; ~ 0.1 to
tens of Hz) and high-frequency (HF; ~ 100 Hz or more) (van der Klis 2005; Remillard
& McClintock 2006).

Due to the different timescales of variability, it is difficult to define a single mech-
anism responsible for the whole observed frequency range of QPOs. HFQPO frequen-
cies correspond to the dynamical timescale in the inner accretion disk of the X-ray
binary, which suggests that they are related to the Keplerian velocity of the accre-
tion flow (Strohmayer 2001; Kluzniak & Abramowicz 2001). LFQPOs correspond to
longer timescales, and have garnered explanations based on either a varying intrinsic
luminosity or a varying emission geometry. Examples of LFQPO physical models
include seismic oscillations in the accretion disk (Nowak & Wagoner 1991), shocks in
the accretion flow (Chakrabarti 1996), a precessing inner hot accretion flow (Stella
& Vietri 1999; Ingram et al. 2009), nodal modulation of dynamical disk fluctuations
(Psaltis & Norman 2000), gravity waves in the accretion disk (Titarchuk 2003), and
intrinsic variability in the base of a jet (Giannios et al. 2004).

In the past 10 years there has been increasing evidence suggesting that LFQPOs
have a geometric origin. Schnittman et al. (2006) found that for a sample of 10 sources
there is a clear correlation between binary orbit inclination and QPO amplitude, as
predicted by their precessing ring model (which was motivated by the first sub-QPO-
cycle spectroscopy by Miller & Homan 2005). This result was later expanded upon for
a much larger sample of observations by Motta et al. (2015), who determined that the
observed LFQPO amplitude has a statistically significant dependence on the orbital
inclination (see also Heil et al. 2015a).

Studying power spectra alone has not provided the ability to distinguish between
theoretical models. By combining energy spectral and timing information simultane-
ously so that spectroscopy can probe the QPO variability timescale, we are able to
look at the causal relationships between different spectral components and consider
whether the QPO is caused by accretion rate fluctuations or geometric changes. For
example, the precessing inner accretion flow model would give an observable phase re-
lationship between the blackbody and power law emission due to varying illumination
and heating of the accretion disk by the hot inner flow.

Previous spectral-timing methods used to study QPOs such as rms spectra (e.g.,
Sobolewska & Zycki 2006, Gao et al. 2014, Axelsson & Done 2016) found that the
power law component was likely responsible for the QPO emission. These methods
give the amplitude of variability as a function of energy, but do not incorporate
phase information about different energy spectral components. For broadband noise
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components, conventional cross-spectral lag studies are used to determine the phase
relationship as a function of energy and frequency (Uttley et al. 2011). However,
this type of signal is not appropriate for time-domain phase-resolved study, since
broadband noise is not coherent on any timescale. For periodic and quasi-periodic
variability, it is useful to attempt phase-resolved spectroscopy.

In this paper we introduce a novel spectral-timing technique for phase-resolved
spectroscopy of short-timescale variability, specifically applied here to Type B LFQ-
POs from the black hole binary GX 339-4. Type B QPOs are characterised by a low
level of broadband noise (correlated noise in the lowest frequencies of the power spec-
trum), so most of their variability power is contained in the QPO. This makes Type
B QPOs the cleanest QPO signal for our analysis. Our technique uses a combina-
tion of the cross-correlation function, energy spectroscopy, and simulated lag-energy
spectrum to find a model that can explain the data in both the energy and Fourier
domains. In the discussion we interpret our QPO-phase-resolved spectroscopy results
through the lens of a geometric precession LFQPO model, but we emphasise that
this model-independent technique can be used to test any physical model that pre-
dicts spectral changes on the variability timescale. We conclude with a discussion of
the results and their interpretation, with a forward look to how combining our new
technique with data from new missions will be able to further constrain models for
LFQPOs, which can constrain how matter behaves in strong gravitational fields.

2.2 Data and Basic Spectral-Timing Behaviour

GX 3394 is a black hole candidate X-ray binary (Hynes et al. 2003) with a black
hole of lower mass limit ~7 Mg (Munioz-Darias et al. 2008) and which may possess
near-maximal spin (Ludlam et al. 2015). The system also likely has a low binary orbit
inclination (~ 40°; Mufioz-Darias et al. 2013). The source exhibits X-ray variability
on a variety of timescales. In the 2010 outburst (Yamaoka et al. 2010), GX 3394 was
observed for some time in the soft intermediate spectral state, which showed strong
Type B QPOs (Motta et al. 2011).

2.2.1 Data

For this analysis we used data from NASA’s High Energy Astrophysics Science Archive
Research Center (HEASARC) taken with the Proportional Counter Array (PCA)
onboard the Rossi X-ray Timing Explorer (RXTE) in 64-channel event mode with
122 ps time resolution (E_125us_64M_0_1s).

The following filtering criteria were used to obtain Good Time Intervals (GTIs)
for analysis: Proportional Counter Unit (PCU) 2 is on, two or more PCUs are on, ele-
vation angle > 10°, and target offset < 0.02°. Time since the South Atlantic Anomaly
passage was not filtered on. The nine observation IDs with events fitting these criteria
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Figure 2.1: Power spectra in different energy bands, averaged over all available PCUs in the filtered
event-mode data. The energy bands used are 3 — 5keV (rms = 7.7%; mean rate = 1627.4ctss™1),
5 — 10keV (rms = 13.9%; mean rate = 872.3ctss™1), and 10 — 20keV (rms = 23.1%; mean rate
= 183.9ctss™1). The power spectra were geometrically re-binned in frequency with a binning factor
of 1.06. There is a Type B QPO with a centroid frequency veentroid =~ 5.2 Hz and a harmonic just
above 10 Hz. Individual observations have been shifted in frequency to correct for QPO centroid
variations, as explained in the text.

are: 95335-01-01-05, 95335-01-01-07, 95335-01-01-00, 95335-01-01-01, 95409-01-18-00,
95409-01-17-05, 95409-01-18-05, 95409-01-17-06, and 95409-01-15-06.

The data were initially binned to 7.8125ms time resolution (64 x the intrinsic
resolution of the data) and divided into 64s segments, giving 8192 time bins per
segment. After rejecting the segments with a negative integrated noise-subtracted
power (6 segments in total), there were 198 good segments of data over the nine
observations, or an exposure time of 12.672ks. Note that the Type B QPO appears
to sharply switch on and off on timescales of less than a few minutes (e.g., Belloni
et al. 2005 figures A.3 and A.4), so is not expected to always contribute to the light
curve, hence the segments with no detectable signal (and negative integrated power)
are discarded.
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2.2.2 Power spectra

We computed the average power spectrum in three energy bands (Figure 2.1) using
our own code.! The power spectra were geometrically re-binned in frequency with
a binning factor of 1.06. A power-law model of the noise level was fitted to the
higher frequency power of each spectrum (> 25Hz, by a chi-squared minimisation
with a Levenberg-Marquardt algorithm) then subtracted. There is a strong Type B
QPO with a centroid frequency Veentroid = 5.20 Hz (as determined by a chi-squared
minimisation of a Gaussian profile to the average power spectrum over all energy
channels) and a quality factor @ = 6.6 (Q = Veentroia/FWHM), and weak broadband
noise below 1 Hz. In the literature it is common to fit QPOs with a Lorentzian profile,
but since these Type B QPOs have a relatively smooth peak, they are better fit with
a Gaussian.

The QPO centroid frequency shifts slightly between observations (Veentroid ranges
from 4.87 Hz to 5.65 Hz). The frequency shift smears out the QPO signal averaged over
all observations, and thus reduces our signal to noise. To combat this, we artificially
shifted the QPO centroid frequencies obtained from each RXTFE ObsID to line up
at the centroid of the unaltered average power spectrum (5.20 Hz). To line up the
centroid frequencies, we kept 8192 bins for each segment of data but adjusted the
segment lengths, so that the width of the time bins dt changed. The segments were
adjusted by the same amount per observation. After adjusting, the average dt over all
observations is 8.153 ms, which gives a Nyquist frequency of 61.33 Hz and a Fourier-
space frequency resolution of 0.015 Hz, and changes the exposure time to 13.224 ks.
This adjustment has the same effect as the shift-and-add technique commonly used
when averaging multiple power spectra of neutron star kHz QPOs (Méndez et al.
1998a). The adjustment also corrects our phase-resolved analysis (in Section 2.3) to
ensure that we compare relative phases, allowing for more accurate phase-resolved
spectroscopy by forcing the same number of QPO cycles in one segment of data.

2.2.3 Lag-energy spectrum

We also compute a lag-energy spectrum for the QPO (by averaging the cross-spectrum
in the 4—7 Hz range), using our own lag spectrum code * following the outline in Uttley
et al. (2014). Using the same approach described in Section 2.3.2, we measure the
lags for event mode energy channels from PCU2, relative to a reference band which
includes the counts in the 3-20 keV range from all other available PCUs (excluding
PCU2). The lag-energy spectrum is plotted in Figure 2.2. Tt crosses the zero lag mark
(dashed line) at the average energy of the reference band variations. The negative time
lags denote the energy-dependent variations that lead the reference band variations,
and positive time lags denote the variations that lag the reference band.

1See Appendix 2A for URL.
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Figure 2.2: Time lag obtained from the cross-spectrum averaged over 4 — 7Hz, plotted versus
energy. The dashed line indicates no time lag with respect to the variability in the reference band.
Positive lags indicate energies which lag the reference band while negative lags lead the reference
band. There is a clear break in the slope of the lag-energy spectrum at around 6 keV. The PCA has
zero counts in detector channel 11 when in event-mode, hence the gap in the data at ~6.5keV.

A flat or smooth lag-energy spectrum would indicate a simple evolution of the con-
tinuum or one spectral component over the averaged timescale. However, in Figure
2.2 there is a bump or break at ~ 6 keV. This indicates a more complex spectral be-
haviour, such as a causal relationship between separate spectral components (Uttley
et al. 2011). Investigating the cause of this lag behaviour requires a more compre-
hensive analysis of individual energy spectra at different phases of the relative QPO
cycle, or phase-resolved spectroscopy.

2.3 Phase-Resolved Spectroscopy Technique

One of the ways to probe the physics and geometry of black hole binaries is via X-
ray spectroscopy. Traditionally this is done by analysing the mean spectrum of a
source over a set of observations, or per state of a transient outburst. However, even
looking at spectra per observation only shows the overall spectral trends, as these
timescales are much larger than those of the variability processes. A short segment of
data would be too noisy, due to insufficient counts, for drawing detailed conclusions
(see however Skipper & McHardy 2016 for a more general approach using short-
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term spectral variability). The most desirable solution is to carry out sub-variability-
timescale spectroscopy, or effectively phase-resolved spectroscopy for quasi-periodic
signals.

For periodic signals, one can do phase-resolved spectroscopy by phase-folding the
variations to stack the light curves (e.g., Wilkinson et al. 2011). However, this ap-
proach requires exactly periodic signals from sources with known ephemerides, which
is not appropriate for QPOs (quasi-periodic phenomena by definition).

Previous approaches for spectral-timing of QPOs have been carried out in the time
domain. Miller & Homan (2005) used a bright source to extract spectra at maxima
and minima of a QPO waveform in the broadband light curve. Recently, Ingram &
van der Klis (2015) developed a method to reconstruct a QPO waveform for relatively-
high-count-rate light curves per narrow energy band, then selecting different times in a
QPO cycle for all energy bands to create and compare energy spectra. These methods
yielded new discoveries, but are only applicable to bright sources with a well-defined
QPO waveform. Here, we develop a more general approach that gives some of the
benefits of phase-resolved spectroscopy without the requirements of a periodic signal
or high count rate, using the cross-correlation function.

2.3.1 Approximating phase-resolved spectra

Consider correlated light curves defined at every time £ with a sinusoidal modulation
at the same angular frequency w. A narrow energy band light curve z is determined for
every discrete energy E; with an energy-dependent amplitude a(E;) and phase 1 (E;),
while a reference band light curve y for a much broader energy range has amplitude
arer and phase . Both have noise components n(FE;) and nyef, respectively. The
light curves are then expressed as:

2 (Fy) = a(FB;) sin (wtg + ¢ (Ey)) + nk(E;) (2.1)
Yref k. = Qref sin (W tk + wref) + Nref k (22)

At the Fourier frequency corresponding to w, the cross spectrum C' with the reference
band for each energy channel is:

CEVL,FEf = A(El) AFEf €xXp (Z [¢(El) - ¢ref]) + Cnoise (23)

If the absolute rms-squared normalisation is used (e.g. see Uttley et al. 2014) the
Fourier amplitudes A(F;) and A,er scale with the rms values of the sine wave in
the energy channel and reference band. Note that a similar term is produced at the
corresponding negative frequency in the Fourier transform, which must also be kept for
the next step. The noise term is produced by the products of the Fourier transforms
of noise components with each other and with those of the sinusoidal signal.

The cross-spectrum is a Fourier pair with the cross-correlation function, or CCF,
so that if we inverse Fourier transform the cross-spectrum we obtain the CCF per
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time-delay bin 7; for each energy channel FE;:

CCFEi,ref(Tl) :-F_l (CE,i,ref) (24)
= a(E’L) Aref sin (UJ T+ [w(E’L) - 1l)rcf]) (25)
+ OCFnoiSC(Tl) (2.6)

After calculating the CCF, we normalise by the noise-subtracted integrated rms of the
reference band, to divide out the reference band normalisation a,.s. Thus, the CCF
of the signal component is of the same form as the energy-dependent and sinusoidal
original light curve of interest x, but with the phase defined as being relative to the
reference band. In this way, we can recover the phase-resolved energy dependent
signal.

The CCF of the noise component is statistically independent between time seg-
ments used to calculate the CCF, and has a mean of zero. Thus, averaging many
CCFs obtained from identical-length light curve segments can be used to suppress
the noise. However, it is important to bear in mind that the noise in the CCF is not
in general statistically independent between CCF time-delay bins, which complicates
the interpretation of the errors using our approach, as discussed in the next section.

The above demonstration is shown for sinusoidal signals, whereas the Fourier pair
of a QPO signal more closely resembles a damped sinusoid, so some caution needs to
be applied in interpreting the energy-resolved CCF in terms of phase-resolved spectra.
We therefore use this approach mainly as a guide to determine the best way to model
the energy-dependent QPO signal in terms of variable spectral components. However,
in Section 2.4.5 we show that we can independently re-create the conventional lag-
energy spectrum of the data by sinusoidally varying energy spectral parameters as
inferred from our CCF method, which suggests that our approach is valid for deriving
QPO phase-resolved spectra.

2.3.2 Cross correlation

Using the CCF we can isolate the characteristic QPO features in the time domain
by correlating with a higher count-rate light curve from a broad reference energy
band. By comparing different energy channels (“channels of interest”) with the same
reference band, we can connect the QPO’s relative flux changes using energy channel
resolution. The CCF gives the average QPO signal of a channel of interest correlated
with and relative to the reference band.

Central to this method is establishing narrow energy channels of interest and a
broad reference energy band, as outlined for cross-spectral analysis in Uttley et al.
(2014). For our RXTE PCA data, the channels of interest are taken from PCU2,
as it has a well-established calibration and is switched on for the greatest number of
observations. Since the data are filtered to have at least two PCUs on, the broad
reference band comes from any other PCUs that are on (i.e. excluding PCU2, so that
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Figure 2.3: The CCF in four energy channels (corresponding to 3.5, 6, 10.5, and 18 keV), normalised
to have units of count rate. The CCF has a larger amplitude in the lower energy channels, but the
lower energy channels also have higher mean count rates.

the reference band and channel of interest light curves are statistically independent).
The reference band corresponds to the energy range 3 — 20keV (absolute channels
6 — 48, inclusive); this range ensures plenty of photons for optimal signal-to-noise,
and fully covers the energy range used in spectral fitting in Section 2.4.3.

The time binning of the data is first adjusted per observation as explained in
Section 2.2.2, and the cross spectrum is computed per energy channel per segment of
data. Applying an inverse DFT to each cross spectrum yields the CCF in each channel
of interest per segment of data. The CCFs are then averaged together in the time
domain per energy channel over all segments. We then normalise the averaged CCF
by 2/(K oyef), where o.ef is the absolute-normalised integrated rms of the averaged
power spectrum of the reference band, and K is the number of time bins per segment
(as in Uttley et al. 2014). This gives the CCF units of count rate as deviations from
the mean count rate per channel of interest, and corrects for the mixed PCUs in the
reference band. The error is calculated for each time-delay and energy bin from the
standard error on the mean CCF in that bin.

The CCF in four energy channels is shown in Figure 2.3. Since cross-correlation
phase-locks the features of the signal in the channels of interest to the signal in the
reference band, it produces a relatively strong signal modulation, even with a relatively
low count rate in each energy channel.

This CCF phase-resolved spectroscopy technique does not make assumptions about
an underlying QPO waveform, and is applicable independent of the QPO emission
mechanism. Thus it is a powerful method to test physical QPO models that predict
specific spectral-timing behaviour. Since the reference band and channels of interest
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overlap in energy space and are taken simultaneously from independent detectors,
we assume that if a signal is present in the light curves, there will be some degree
of correlation between the channels of interest and the reference band. The Poisson
noise components are uncorrelated, so the resulting CCF contains the (correlated)
QPO signal, with less noise than the input light curves. Our technique yields a count
rate per energy channel in each time-delay bin, as deviations from the mean count
rate per energy channel. After adding the CCF to the mean count rate per energy
channel, these effectively-phase-resolved spectra can be loaded into a spectral fitting
program like XSPEC.

As already briefly mentioned in the previous section, statistical fluctuations be-
tween CCF time-delay bins for a given energy channel are correlated with one another.
This effect arises from the component of the noise resulting from the multiplication
of the Poisson noise by the intrinsic signal, resulting in ‘structure’ in the noise across
phase bins, the strength of which depends on the shape of the intrinsic signal power
spectrum (see Bartlett 1955; Box & Jenkins 1976 for a detailed description of the
errors in the CCF associated with autocorrelated processes). Thus the phase-resolved
spectra produced by our method are not strictly independent in time, although they
are independent in energy (since different energy bins have independent Poisson noise
terms). Therefore one cannot easily interpret the results of conventional fitting tech-
niques, such as x?, which are used to simultaneously fit the spectra from multiple
phase bins. To compensate, we will implement bootstrapping (Section 2.4.4) and
lag-energy spectral comparison (Section 2.4.5) to determine accurate errors on our
description of the modulation of spectral parameter values and check the appropri-
ateness of the spectral model.

2.4 Results

2.4.1 Energy-dependent CCF

The CCF can be plotted in a two-dimensional colour plot (Figure 2.4), to show the
simultaneous time variability and energy spectra. The colour map shows the ratio
of the CCF amplitude to the mean count rate of each energy channel, because the
lower energy channels have larger CCF amplitudes but also higher mean count rates.
The energy range shown along the y-axis, 3 — 20keV, is the same range used for the
reference band in Section 2.3 and for spectral fitting in Section 2.4.3. Although the
mean count rates are higher at lower energies, the amplitude of the QPO signal in
the CCF is largest at ~10keV. The CCF of the QPO has the approximate shape
of a damped sinusoid in each energy channel, so henceforth we will refer to a QPO
phase in the same way that one can consider a sinusoidal phase. As noted in Section
2.2.2, we correct for variations in the QPO centroid frequency between observations
by artificially adjusting the length of the light curve segments, such that the same
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Figure 2.4: Cross-correlation function (CCF) plotted in two dimensions. The colour map shows
the ratio of the CCF amplitude in each bin to the mean count rate of the energy channel. The zero
time-delay bin is indicated by the solid black outline. The PCA has zero counts in detector channel
11 when in event-mode, hence the gap in the data at ~6.5keV as indicated by the blue bar.

number of QPO cycles are obtained in each data segment used to calculate the CCF.
In doing this and then interpreting the results as a phase-resolved spectrum, we
implicitly assume that time-delays between energy bands are constant in phase and
not constant in time, so that the intrinsic phase relationships between energy bands
are preserved and not blurred out by the adjustment process. This approach will
be borne out by the success of our phase-resolved spectral model in reproducing the
shape of the lag-energy spectrum, whether it is adjusted for QPO frequency changes
or not (see Section 2.4.5).

2.4.2 Time-averaged energy spectrum

The time-averaged spectrum obtained from the RXTE PCA Standard-2 data mode,
shown in Figure 2.5, was used for identifying the general energy spectral features and
considering which spectral models to fit for the phase-resolved data. This data mode
has finer energy binning than the high time resolution event-mode data used for the
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Figure 2.5: The time-averaged spectrum of the data in Standard-2 data mode, unfolded through
the instrument response matrix and fit with the model PHABS X (SIMPL * DISKBB + GAUss). The solid
black line with star points represents the data, the dashed blue line represents the total model, the
dash-dotted red line is siMPL convolved with DISKBB (since it is a convolution model, there is only
one output curve), and the dotted line is cAauss representing the iron Ka emission line. This is a
simple phenomenological spectral fit, with x2/d.o.f. = 229.2/37.

rest of the analysis.

The spectrum shows a soft blackbody-like component, a hard power law compo-
nent, an iron Ko emission line, and neutral hydrogen absorption. We fit this with
PHABS X (SIMPL * DISKBB + GAUSS), a simple phenomenological model containing the
key components. While the presence of the iron line indicates that a broad reflec-
tion continuum should also be included, we expect that there would be degeneracies
between an upscattered power law and the reflection components, particularly for
the coarser energy binning of event-mode spectra. Since our main interest was the
possible variability of the soft and hard spectral components and any phase delays
between them, any reflection variability was accounted for with the power law and
Gaussian components. As later noted, we find that the Gaussian iron line is not re-
quired by our fits to vary on the QPO timescale so we do not expect variable reflection
to contaminate the inferred variation of other spectral components.

2.4.3 CCF phase-resolved spectroscopy

To carry out phase-resolved spectroscopy using the energy-dependent CCF, we select
energy spectra at each time-delay bin of the CCF covering one QPO cycle. Since we
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focus on relative phases instead of absolute phases for simplicity, we define the QPO
phase to be zero when the CCF in channel 15 is at a minimum; this is in time-delay
bin -10. By selecting until the next minimum in channel 15 at time-delay bin +13, we
have 24 time-delay bins in total for one QPO cycle. This time range of data covers
the largest maximum and minimum in CCF amplitude so that we can see the most
prominent differences in energy spectra. The instrument response matrix uses the
calibration of PCU 2, since the channels of interest are taken from that detector.

Figure 2.6a shows the deviations from the mean spectrum at four QPO phases,
plotted in E F(E) units. Figure 2.6b shows the total energy spectra at the same
four QPO phases, which are the deviations shown in the upper panel added to the
mean spectrum. For visualisation here, the energy spectra have been “fluxed”, i.e.,
divided by the effective area of the instrument response (as in Vaughan et al. 2011).
In this figure, the QPO phase of ~0°s at time-delay bin -10, ~90°is at time-delay
bin -5, ~ 180°is at time-delay bin +1, and ~ 270°is at time-delay bin +6. Time-delay
bins within one QPO cycle will be referred to as phase bins. In the remainder of this
paper, we only focus on the spectral-parameterisation of variations during the central,
highest-amplitude cycle seen in the CCF. However, we note here for completeness that
an analysis of additional cycles yields consistent parameter variations (with similar
phase relations to the strongest cycle), albeit with decaying amplitudes of variability,
as expected due to the damped sinusoidal shape of the CCF.

For the full phase-resolved spectroscopy, we simultaneously fit energy spectra from
time-delay bins -10 to +13 (inclusive, and including 0), giving 24 spectra in total; the
5.2 Hz centroid frequency corresponds to a timescale of 0.192s, so the 8.153 ms time
binning gives 23.5 phase bins per QPO cycle (rounded to 24, to give complete coverage
of a QPO cycle). Our aim is to obtain the simplest possible parameterisation of the
QPO spectral variability in terms of a spectral model with variable components. We
therefore systematically untied and froze different combinations of parameters to find
an optimal fit without over-fitting, such that the resulting model makes physical
sense. We tested spectral models which all include constant neutral absorption, a
soft blackbody component, a hard power law component and an iron Ko line. These
components are clearly required by the time-averaged spectrum (Figure 2.5).

The power law is likely to be produced by Compton-upscattered disk photons.
To model this component, we use SIMPL. SIMPL is a convolution model intended as a
simple parameterisation of Comptonisation from Compton-thin plasmas by scattering
a fraction (fscatt) of the input seed spectrum to make a power law of photon index
I' (Steiner et al. 2009). For a given, constant seed spectrum, fscatt is thus a proxy for
the normalisation of the power law component. In this spectral model, the power law
lower-energy cutoff follows the low energy shape of the seed spectrum, which in our
case is a multi-colour disk blackbody. SIMPL outputs the sum of the scattered power
law and the unscattered seed photon spectrum, so it contains a built-in anticorrelation
between the normalisation of the power law and the normalisation of the observed
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Figure 2.6: a: Deviations from the mean spectrum at four QPO phases discussed in the text. The
black dashed line denotes zero deviation from the mean spectrum. The red circles are for a QPO
phase of 0°, orange X’s for 90°, green triangles for 180°, and blue squares for 270°. The PCA has
zero counts in detector channel 11 when in event-mode, hence the gap in the data at ~6.5keV. It is
evident that the shape of the spectrum, in addition to the normalisation, changes with QPO phase.
b: Energy spectra at the same four QPO phases, generated by adding the above deviations to the
mean spectrum. Data points have the same meaning as in the top panel. For visualisation in both
plots, the spectra have been divided by the instrument’s effective area as mentioned in the text.
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part of the seed spectrum. To remove this effect, we created a new model SIMPLER
where the output seed spectrum is the same as the input. This would correspond
to the case where the Compton scatterer does not obscure the observer’s view of the
seed spectrum, as would be expected for an inner hot flow that is physically separate
from the accretion disk. As is the default for SIMPL, only upscattering is accounted
for (indicated by freezing the model scattering switch U = 1 in Tables 2.2-2.4).

Using XSPEC version 12.8.2 (Arnaud 1996) we fitted the phase-resolved energy
spectra in the energy range 3 — 20keV, ignoring detector channel 11 (which has zero
counts in RXTE PCA event-mode). The solar abundance table was set to vern
(Verner et al. 1996) and the photoionization cross-section table was set to wilm (Wilms
et al. 2000). The systematic error was set to 0.5 per cent.

The models we tested are PHABS X (SIMPLER * DISKBB + GAUSS) (“model 17),
PHABS X (SIMPLER * DISKBB + BBODYRAD + GAUSS) (“model 27), and PHABS x
(SIMPLER * DISKPBB + GAUSS) (“model 3”); they are summarised with their best pa-
rameterisations in Table 2.1. These models represent the simplest possible system
geometries: a power law-emitting region and a blackbody-emitting accretion disk;
a power-law emitting region, a blackbody-emitting accretion disk, and a secondary
blackbody from the power-law heating a smaller, single-temperature region; and a
power law-emitting region and a blackbody-emitting accretion disk with a different
(compared to the standard disk) and possibly varying radial dependence of tem-
perature. Details about the fits and motivations are given in subsections 2.4.3,
2.4.3, and 2.4.3, respectively. The neutral hydrogen column density was frozen to
Ng =6 x 10! cm~2 (Reynolds & Miller 2013).

For carrying out the QPO phase-resolved spectroscopy, we began with every spec-
tral parameter tied across QPO phase. We then systematically stepped through the
parameters, untying each individually so that it can vary across phase, and assessing
the fit. If untying a parameter gave a lower x? and physically reasonable parameter
values, it remained untied and we investigated whether a second parameter should be
untied. This continued until there was no significant improvement in x? and/or the
parameter values became physically unreasonable.

As mentioned in Section 2.3.2, although the count rates in energy bins within a
single phase-resolved spectrum are statistically independent, the phase-resolved spec-
tra are not statistically independent from each other, in that there is some correlation
in errors between different phases of the same energy bin. Therefore the x? fit statis-
tic returned by fitting the phase-resolved spectra together does not have the same
meaning as a conventional Y2 statistic. The correlation between phase bins effec-
tively means that ratio between the x? and degrees of freedom is reduced, so we use
the following procedure only as a guide to find the best parameterisation of each
model, rather than using an explicit goodness-of-fit test. We found during our fits
that the plausible best-fitting models converged to x?/d.o.f. ~ 130/500. Assuming
that this y? corresponds to a reduced x2 ~ 1, a significant improvement in the fit
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at the 3-o level should correspond to a Ax? of 46 x 130/500 ~ 12, where 46 is the
formal A2 improvement corresponding to a 3-¢ significance improvement in a nested
model for 23 additional free parameters, i.e. equivalent to freeing a spectral model
parameter in our simultaneous fit of 24 spectra. In Sections 2.4.3, 2.4.3, and 2.4.3
we use this Ax? > 12 criterion for a significant improvement to investigate which
spectral parameters vary with QPO phase. However, in view of the fact that our
approach is merely a guide to search for a spectral model parameterisation of the
phase-dependent QPO variability, and is not statistically rigorous, in Sections 2.4.4
and 2.4.5 we assess the statistical significance of the parameter variations and their
phase lags with bootstrapping and direct comparison of our best-fitting QPO spectral
models with the lag-energy spectrum.

Spectral model 1

The first energy spectral model tested was PHABS X (SIMPLER * DISKBB -+ GAUSS).
This is the simplest possible model to explain the features in Figures 2.5 and 2.6,
where the blackbody component is intended to capture all possible soft blackbody
emission. To test which parameterisation best fits the 24 sequential energy spectra
from one QPO cycle, we began with all parameters tied (and Ny frozen and the
upscattering-only flag set), which gave x? = 7114.5 for 569 d.o.f. For all fits, the
power-law photon index I' was allowed values in the range 1.0 — 3.1, disk maximum
temperature Tyisc was allowed values in the range 0.5 — 1.0keV, the Gaussian line
centroid energy Eiine was allowed 5.5 —7.0keV, and all other parameters were allowed
the full range of values (unless frozen).

We then untied each parameter one at a time to see which was required to vary
given our simple Ax? criterion. Untying the scattering fraction fscats gave a significant
improvement to the fit with x? = 393.0 for 546 d.o.f. This is also physically motivated:
untying Tyisc, the disk blackbody normalisation Ngjs., or any Gaussian line parameters
did not account for the large hard continuum variations clearly seen in Figures 2.4
and 2.6. By next untying I', we saw a large improvement in the fit to x? = 176.5
for 523 d.o.f. This changing power law slope is also visibly evident in Figure 2.6a
when comparing phases 0° and 180° (the red and green points) above ~ 6.5keV.
A third parameter that significantly improved the fit when allowed to vary with
phase is Tyisc, which when untied gave x2 = 141.4 for 500 d.o.f. Variations in the
blackbody component are required to account for the variations of the lower-energy
‘soft excess’ feature, seemingly out of phase with the harder power-law continuum,
which are seen in Figure 2.6a. Untying Ny, FEline, O 0line as the third varying
parameter returned worse fits. An untied Gaussian normalisation Ny, yielded a
smaller x? /d.o.f. (132.8/500) than an untied Tyisc, although the improvement was
not formally accepted according to our significance criterion. However, examining the
returned parameter values and resultant spectra showed that the broadened iron line
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component was subsuming the role of the higher temperature end of the blackbody
emission. The fit pushed Ej, to the lowest value of the allowed range (5.5keV)
and gave the line width oy > 1keV, which we believe is unphysical. To mitigate
this degeneracy, we froze oy = 0.97 in the final parameterisation. The value of oyjpe
was found using the XSPEC steppar command on the mean event-mode spectrum; the
best-fitting value was ojine = 1.0, so to push the value of oji,e away from the boundary
we decided on the lowest value while keeping within the 1-o fit region, ojine = 0.97.
In general, the smaller the width of the iron line, the more physically consistent the
model fit is. Untying a fourth parameter was not able to both significantly improve
the fit and return physically reasonable parameter values.

While the fits somewhat preferred untying the disk blackbody temperature to
the disk blackbody normalisation, the two parameters were highly degenerate. To
disentangle this degeneracy and ensure that any temperature variations in the boot-
strapping were not due to a different normalisation, Ngisc was frozen at 2505.72 (the
best-fitting value).

Component Parameter Value Notes
PHABS Ny (x10%' em=2) 6.0 Frozen
SIMPLER r 2.52t Untied
SIMPLER fscatt 0.156 1 Untied
SIMPLER U 1 Frozen
DISKBB Taisc(keV) 0.8307 t Untied
DISKBB Ndisc 2505.72 Frozen
GAUSS Eline (keV) 6.28 = 0.03 Tied
GAUSS Oline (keV) 0.97 Frozen
GAUSS Nine 2.28 £0.08 x 1072 Tied

Table 2.2: Values of the best-fitting parameterisation for model 1 as explained in Section 2.4.3.
Mean values are listed for the untied parameters, indicated by . Errors on the tied parameters
were computed for the 90% confidence interval with xspEc’s MCMC error routine. XSPEC gives a fit
statistic of x2 = 143.9 for 502 d.o.f.

The best parameterisation for model 1 has fscatt, ', and Tyisc untied, and Ngjsc
and ojipe frozen. The value of each parameter is listed in Table 2.2, with the mean
value quoted for the untied parameters. Note that the x? /d.o.f. in the table caption
corresponds to the fit with Ngjse and oyjjne frozen. The same four spectra shown in
Figure 2.6 are also shown in Figure 2.7, unfolded through the instrument response
matrix and through models with the best-fitting spectral parameter values. The
value of each untied parameter per phase bin is shown in Figure 2.8. The errors on
the values of the untied spectral parameters in each bin, and on the phase of their
variations, were determined via bootstrapping the data (see Section 2.4.4). The phase

43



2 Phase-Resolved Spectroscopy of Type B QPOs

0.2 + — —_— —H
1.05 4+l

keV?2 (Photons cm™ st keV?)

_|_

ratio

095 [ T T H

5 10 20
Energy (keV)

Figure 2.7: Phase-resolved energy spectra with model fits at four relative QPO phases, unfolded
with the instrument response matrix and plotted in EF(FE) units. The colours have the same meaning
as in Figure 2.6. The ratio of the data to the model is shown below the spectra. Since the iron line
values are frozen or tied, the iron line components of each spectrum stack perfectly. The PCA has
zero counts in detector channel 11 when in event-mode, hence the gap in the data at ~6.5keV.

differences between the untied parameter variations are discussed in Section 2.4.4.
The equivalent width of the iron line varies with the opposite phase of the power-
law continuum during a QPO cycle in the range 0.35 — 0.48 keV. Note that since the
iron line flux is constant, these equivalent width variations are due to the observed
power-law continuum variations (which as we later show are likely due to geometric,
not intrinsic, changes). Therefore, in this interpretation, the varying equivalent width
does not represent a changing intrinsic disk reflection, but we report it here for the
sake of completeness.

As an extension of model 1, we considered a variant on the DISKBB model with a
free spectral hardening factor (Shimura & Takahara 1995) that changes the apparent
peak temperature of the disk without changing the integrated disk flux, to represent
variable scattering in the disk atmosphere. Our fits showed that the data also required
a variation of DISKBB normalisation and/or temperature, i.e. the disk flux is required
to change and hardening factor variations alone cannot explain the modulation of
the blackbody emission. Effectively, hardening subsumes only part of the effect of
an intrinsic temperature change (the change in spectral shape), without producing
variations of disk flux which are also required by the data. As these results did not
contribute any additional interpretation to the data beyond that of model 1, they are
not reported further here.
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Figure 2.8: Best-fit values for untied spectral parameters at each phase in a QPO cycle for spectral
model 1. The (1-0) error bars were determined using bootstrapping (see Section 2.4.4). The top
panel shows I' values in red, the middle panel shows fscatt values in green, and the bottom panel
shows Tgjsc values in blue. The error bars represent 1o errors (see Section 2.4.4 for details). The
fractional rms amplitude variation of I' is 4.2 per cent, of fscatt is 24 per cent, and of the blackbody
flux is 1.4 per cent (from luminosity oc 7% with constant blackbody normalisation). The best-fitting
function (Equation 2.7) of each parameter is shown in solid black (the parameters of the best-fit
function for the untied parameters in each spectral model are listed in Table 2.5). The phase of the
maximum of each fit function is marked with a dashed gray line, the thickness of which represents
the 1-0 error. The normalised phase difference between fscatt and I' is 0.01 4 0.02, and between
fscatt and Tygisc is 0.32 £ 0.02; this is discussed further in Section 2.4.4.
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Spectral model 2

In the final best-fitting parameterisation of model 1, Ty;sc Was required to vary, but
the values had a very small variation (0.8254 — 0.8354 keV). For the model component
DISKBB, which has a fixed radial temperature profile, this variation implies that the
whole disk blackbody is changing in effective temperature. It seems more physically
plausible that a patch of the disk is varying, e.g. due to heating by the varying
power law, while the intrinsic disk emission remains constant (particularly since the
temperature variation is so small). To model the temperature variations required by
this model parameterisation, we next tested a spectral model with an added single-
temperature blackbody component BBODYRAD that is allowed to vary between phase
bins, while both the DISKBB normalisation and temperature are tied across phase.
Following that, in the next subsection, we tested a varying radial temperature depen-
dence with the disk blackbody model DISKPBB (spectral model 3).

Our spectral model 2, incorporating an additional single-temperature blackbody, is
defined to be PHABS X (SIMPLER * DISKBB + BBODYRAD + GAUSS). To determine the
most effective parameterisation we followed the same procedure as in the previous
section. For all fits, Tyisc was allowed 0.6 — 1.0keV, T}, was allowed 0.1 — 1.0keV,
and all other parameters were allowed the same range of values as in model 1 (unless
frozen).

Starting with all parameters tied across QPO phase (and Ny frozen), we found
X2 = 7079.5 for 567 d.o.f. As with model 1, the first and second spectral parameters
that needed to be untied were fscatt (X2 = 392.2 for 544 d.o.f.) and I' (x? = 157.5 for
521 d.o.f.). By then untying 7T}, we see further improvement of the fit, to x? = 125.7
for 498 d.o.f. Again, an untied Ny, gave a slightly better statistical fit (x? /d.o.f. =
123.3/498) than an untied Thp, but it also returned an implausibly low value for
the line energy. So, we selected the untied T}, as the best fit for this set and froze
Oline = 0.82 (the best-fitting value found using steppar on the mean event-mode
spectrum) in the final parameterisation. The fits slightly preferred untying Ty, to
untying Npp. In order to break the degeneracy between Ty, and Ny, we froze Npp
at 8857.68 (the best-fitting value). The best parameterisation for model 2 and the
values of each parameter are stated in Table 2.3. The value of the untied parameters
at each phase bin is shown in Figure 2.9. The iron line equivalent width varied in the
range 0.23 — 0.32 keV with the opposite phase of the power-law variations, due to the
varying power-law continuum.

Spectral model 3

We also considered a different radial temperature dependence or temperature pro-
file of the disk. Typically for a standard disk, and assumed by DISKBB, the radial
temperature dependence of the observed multicolour disk blackbody is T'(r) oc r—P
where p = 0.75. In the DISKBB model component, this value of p is fixed. How-
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Figure 2.9: Same meaning as Figure 2.8, for model 2. The top panel shows I'" parameter values
in red, the middle panel shows fscatt parameter values in green, and the bottom panel shows T,
parameter values in blue. The fractional rms amplitude variation of I' is 4.9 per cent, of fscatt is 23.5
per cent, and of the blackbody flux is 3.5 per cent (or 1.4 per cent in total blackbody flux, allowing
for the constant disk blackbody component). The normalised phase difference between fscatt and I’
is 0.019 £ 0.009, and between fscatt and T},p is 0.28 £ 0.02.
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Component Parameter Value Notes
PHABS Ny (x10%* em™2) 6.0 Frozen
SIMPLER r 2.44 ¢ Untied
SIMPLER fscatt 0.179 1 Untied
SIMPLER U 1 Frozen
DISKBB Taisc (keV) 0.94 +0.01 Tied
DISKBB Nisc 1090 490 Tied
BBODYRAD Ty, (keV) 0.49279 ¢ Untied
BBODYRAD Ny 8857.68 Frozen
GAUSS Ehine (keV) 6.40 + 0.05 Tied
GAUSS Oline (keV) 0.82 Frozen
GAUSS Nine 1.424£0.08 x 1072 Tied

Table 2.3: Values of the best-fitting parameterisation for model 2, with symbols and errors the
same as in Table 2.2. xsPEC returned a fit statistic of x2 = 128.4 for 500 d.o.f.

ever, as discussed in Kubota & Makishima (2004) and Kubota et al. (2005), gen-
eral relativistic effects, electron scattering, and/or advection can give a different
value of p. Heating by the power-law component may also cause the disk black-
body to deviate from the standard temperature profile. So, for a varying tempera-
ture dependence caused by, e.g. a varying illumination pattern, we tested the model
PHABS X (SIMPLER * DISKPBB + GAUSS). In the component DISKPBB, the exponent of
the radial dependence of the disk temperature p is a free parameter. Since DISKBB
is a multicolour blackbody, and p changes how strongly the spectrum weights the
component blackbodies, a smaller p increases the effect of the inner disk radii black-
bodies on the total disk blackbody spectrum. Using DISKPBB also affects values of
fscatt: since the spectrum of DISKPBB is flatter than DISKBB for p < 0.75, i.e. there
are more lower energy photons, the Comptonising component modelled by SIMPLER
must scatter a smaller fraction of the seed spectrum to produce the same shape as in
models 1 and 2. For all fits, parameters were given the same value ranges as in model
1, and p was allowed the default range.

The starting x?/d.o.f. was 7113.9/568 with all parameters tied. As with the
first two models, untying fscatt and then I' gave the most significant improvements
to the fit (x? = 387.3 for 545 d.o.f., and x? = 167.0 for 522 d.o.f., respectively).
The next parameter that, when untied, gave the most significant improvement to
the fit is p, returning y? = 127.9 for 499 d.o.f. Supervising the fitting, it became
clear that reducing p effectively lowered Tyiskp and fscatt. We note that untying Nyipe
instead of p did not reduce the x? contrary to what was seen for models 1 and 2.
Untying additional parameters did not significantly improve the fit. For the final
parameterisation, oji,e was frozen at 0.76 and Ng;sp was frozen at 560.907 (the best-
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Component Parameter Value Notes
PHABS Nyu (x10%* em™2) 6.0 Frozen
SIMPLER r 2.44 % Untied
SIMPLER fscatt 0.130 1 Untied
SIMPLER U 1 Frozen
DISKPBB Taiskp (keV) 0.947 4+ 0.003 Tied
DISKPBB P 0.507 t Untied
DISKPBB Naiskp 560.907 Frozen
GAUSS Ehine(keV) 6.49 + 0.05 Tied
GAUSS Oline (keV) 0.76 Frozen
GAUSS Niine 1.23%5:00 x 1072 Tied

Table 2.4: Values of the best-fitting parameterisation for model 3, with symbols and errors the
same as in Table 2.2. xsPEC returned a fit statistic of x2 = 126.8 for 501 d.o.f.

fitting values) following the same motivation as with models 1 and 2. A summary of
the best parameterisation for model 3, with the value of each parameter, is shown in
Table 2.4.

For model 3, the untied parameters are I' (the power law photon index), fscatt (the
power law scattering fraction), and p (the exponent of the disk’s radial temperature
dependence). The value of the parameters in each phase bin is shown in Figure 2.10.
Comparing the values of the untied parameters in this model with the previous two
models, ' has the same value as in model 2 and is lower than in model 1, fscatt iS
lower here than in models 1 and 2, Ty;skp is the same as Tqyisc in model 2 and is higher
than the mean Tyisc in model 1, and Ngjgkp is much lower than Ngjs. in models 1
and 2. These differences in the values are consistent with what we expect from the
model component DISKPBB with p < 0.75. The iron line equivalent width varied from
0.21 — 0.29keV.

2.4.4 Parameter variation fitting

In order to study how the spectral parameters inferred from the CCF vary and to
what significance, we must account for any error that is introduced due to the spectral
data not being independent in time. Since the spectral fitting software assumes that
the simultaneously fit data and errors on the data are fully independent, we cannot
trust the errors from our spectral analysis. Therefore, to estimate the accuracy of the
untied parameter variations, we implemented bootstrapping from our data set. Boot-
strapping requires selecting (with replacement) M times from M segments of data.
For our data set, 198 segments requires 5537 bootstrap iterations to converge on the
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Figure 2.10: Same meaning as Figure 2.8, for model 3. The top panel shows I' in red, the middle
panel shows fscatt in green, and the bottom panel shows p in blue. The fractional rms amplitude
variation of I' is 5.0 per cent and fscatt is 26 per cent. The normalised phase difference between
fscatt and I' is 0.02 + 0.01, and between fscatt and p is —0.10 4= 0.04.
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true error distribution.? Each bootstrap iteration consisted of selecting CCF seg-
ments to make a new average energy-dependent CCF, through to the phase-resolved
spectroscopy. Each bootstrapped average energy-dependent CCF was used to deter-
mine a set of phase-binned spectral parameters for each spectral variability model,
in the same way as for the data. The standard deviations for each parameter were
determined from the distributions obtained from all bootstrap iterations and are used
to determine the errors plotted in Figures 2.8, 2.9 and 2.10.

Even though the untied spectral parameters are free to have any value within the
physically allowed ranges given previously, and despite the apparently complex form
of spectral variability seen in Figure 2.6, the parameters appear to vary in a roughly
sinusoidal fashion. The function fitted to the variations is

y(t) = Ay - sin (27wt + ¢1) + Ag - sin (4wt + ¢2) + D, (2.7)

where A; and As are amplitudes, ¢ and ¢, are phase offsets, and D is a y-axis offset.
The function is fixed so that the second part is a harmonic, with twice the frequency
of the first part. We refer to this function as a whole as the “fit function”. The fit
parameters Ay, As, ¢1, ¢2, and D were found for each bootstrap iteration by a least-
squares fit (using scipy.optimize.leastsq) to the untied parameter value variations.

If there is a strong harmonic present in the QPO data, the CCF erases any phase
offset between the fundamental and the harmonic. This is because the CCF picks
out only the relative offset of the channel-of-interest fundamental and harmonic with
the reference band fundamental and harmonic respectively. So, any harmonic content
is added into the CCF such that its phase is relative to the reference band phase
of the harmonic and thus the phase dependence of spectral parameters need not be
aligned with those of the fundamental. The GX 339-4 data used in this analysis has a
weak harmonic in the 3-5 keV power spectrum, but more harmonic content at higher
energies (Figure 2.1). We do not exclude the possibility that the stronger harmonic
at higher energies could give a harmonic in the untied parameter values, and so we
included a harmonic with all parameters free in the fit function. Overall we found
that As is at least a factor 4 times smaller than A; for all variable parameters and is
only formally significant for fscats.

Phase relationships of the spectral parameters

The parameters of the fit function for each untied parameter per model are shown
in Table 2.5. The phase differences between the untied parameters were measured
from the maximum of the fit function ¢y ax for each parameter, with the errors cor-
responding to the standard deviation obtained from bootstrapping. Since fscatt was
the best-constrained untied parameter, we computed the phase difference of the two

2Using M - (In(M))? (Feigelson & Babu 2012).
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other untied parameters with respect to it. The difference in phase between the vari-
ations in the untied parameter values are also quoted in Table 2.1. The phases of
fscatt and I' are very close: 0.01 + 0.02, 0.019 &£ 0.009, and 0.02 £ 0.01 for models
1, 2, and 3, respectively (normalised to the range 0 to 1; 1-o errors). The phase
difference for model 1 between fycaty and Tyisc is A¢ = 0.32+0.02. For model 2, fscats
and Ty, and have A¢ = 0.28 4+ 0.02. For model 3, fscatt and p are out of phase by
A¢p = —0.10 £ 0.04. As previously noted, lowering p gives the same effect as raising
Taiskp and fseats, S0 these results are consistent with the previous two models finding
that the blackbody increases before the power law increases. If we instead compare
the phase of the maximum of fs..¢t with the phase of the minimum of p, we see a
phase difference of 0.33 + 0.02, consistent with the phase lead seen for the blackbody
temperature variations in models 1 and 2. In all three models, the blackbody parame-
ter values have a small variation, but as evidenced by the systematic spectral analysis,
they are required to vary. Before considering the physical interpretation of the results
in Section 2.5, we first checked that the QPO spectral parameter variations inferred
from our CCF method can also reproduce the shape of the lag-energy spectrum.

2.4.5 Comparison with the lag-energy spectrum

The last step of the analysis was to use the best-fitting energy spectral models to
simulate lag-energy spectra and compare them to the data. This was done as a
secondary check on the models in the Fourier domain, where the QPO can be selected
directly in frequency and the errors are better-behaved.

We selected untied parameter values from the smooth fit function at each of the 24
QPO phases, and simulated a PCU2 event-mode spectrum for each phase bin using
the XSPEC command fakeit, with the same instrumental response matrix as the data.
The spectra are simulated without Poisson errors, to provide an idealised model. We
then tiled the spectra to make a light curve with the same length as a segment used
to calculate the CCF, and turned the spectra into photon count-rate light curves in
each energy channel. From here, the simulated models were treated in the same way
as the data for lag-energy spectral analysis.

In Figure 2.11a we show simulated lag models plotted with the data from Figure
2.2 (model 1, in dark blue, gives x? = 37.9; model 2, in purple, gives x? = 45.5; model
3, in orange, gives x? = 47.2; all have 24 d.o.f.). While all three of the QPO spectral
models can match the overall ‘broken’ shape of the lag-energy spectrum quite well,
models 2 and 3 slightly deviate from the slope of the observed lag-energy spectrum
at low (<4keV) and high (> 16keV) energies.

For comparison, in Figure 2.11b, we also plot the simulated lag-energy spectra
from some alternative parameterisations of model 1. The first, in dark red, has only
fscatt and I' untied. It is clear from the plot that this model cannot re-create the
slope below 5keV or the break in the lag at ~6.5keV. Likewise, the second and third
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parameterisations vary FEjne and Njne, respectively, in addition to fseatt and I' and
with the iron line width frozen at ojne = 0.97. Neither can reproduce the slope below
5keV, and the second cannot make a bump with the right shape at the right energy.
All three of these lag models have the same high-energy slope as model 2 from panel
a. These poor matches are reflected in the fits to the data: y? = 175.6, x* = 149.1,
and x? = 82.1, respectively, each for 24 degrees of freedom.

The bootstrapping technique accounts for statistical error, but it is possible that
some systematic error is unaccounted for. However, since simulations from the bootstrapping-
verified parameter variations can reproduce the lag-energy spectrum of the data well,
our phase-resolved spectroscopy technique does not seem to introduce a systematic
bias to the spectral-timing properties of the data.

The lag-energy spectra simulated from the QPO phase-resolved spectral models
further support a spectral model for QPO variability consisting of a varying blackbody
preceding (by relative phase ~ 0.3) a varying power law, however the lags show a better
fit with model 1 (as opposed to the phase-resolved spectral fits, which preferred models
2 and 3). As demonstrated here, it is very important to account for the Fourier-domain
cross spectra as well as the time-domain energy spectra when fitting a model to the
data, as both spectral and timing information are pertinent. Furthermore, our results
show that it is possible to reproduce the lag-energy spectrum of a Type B QPO by
sinusoidally varying spectral parameters with different relative phases.

2.5 Physical Interpretation

We fitted three spectral models to phase-resolved spectra of the Type B QPO from
the 2010 outburst of GX 339-4 which we determined using our CCF method. All of
our models consisted of a blackbody-like disk component and a power law component
produced by Compton up-scattering of the disk blackbody photons, but parameterised
the blackbody contribution in different ways: either variations of an entire multiple-
temperature disk blackbody, variations of a single-temperature blackbody on top of
a constant disk blackbody, or variations in the radial temperature profile of a multi-
temperature disk blackbody. All three models showed that the blackbody must vary
as well as the power law on the QPO timescale: the varying blackbody temperature
leads the varying power law scattering fraction fscatt by a relative phase of ~ 0.3,
and the varying power law photon index I" is very close in phase to the variations in
fscatt (with a model-dependent relative phase lead of up to ~ 0.02). These results
are checked with and supported by bootstrapping analysis and simulated lag-energy
spectral models compared with the data.

In terms of variability amplitudes, the power-law component dominates the QPO
variability, showing fractional rms variations in scattering fraction of ~ 25 per cent,
when calculated directly from the sinusoidal fit function applied to each model. In
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comparison, the blackbody temperature in model 1 shows a fractional rms of only
0.35 per cent, corresponding to a flux variation of only 1.4 per cent. The total black-
body flux variation is similar for the other models (e.g. after including dilution of the
larger single blackbody rms variability by the constant disk blackbody contribution
in model 2). These results are consistent with the findings of Gao et al. (2014) that
the power law dominates the Type B QPO emission in GX 339-4 (and, more gener-
ally, is consistent with the findings of Remillard & McClintock 2006; Sobolewska &
Zycki 2006 and Axelsson et al. 2014 for LFQPOs). However, despite the dominant
role of the power-law emission in the observed QPO variability, the large phase-lag
of the power-law relative to the blackbody has a significant effect on the lag-energy
spectrum, causing the distinctive ‘break’ feature, as shown in Figure 2.11.

Although our spectral models allowed for different types of blackbody variability,
all point to a very similar phenomenological picture of the QPO spectral variability.
The parameter variations show large changes in the power law index and normalisation
(measured by I' and fscatt) and small changes in the blackbody emission. For model 1,
the Tyisc variations represent the entire disk blackbody modestly varying in effective
temperature, suggesting that it is not only the hottest region of the disk which varies.
This picture is supported when we keep Tgisc constant with phase in model 2 and allow
a separate single blackbody component to vary, resulting in modest variations of the
single blackbody Ti, but with a lower temperature than the inner disk temperature.
Allowing the disk radial temperature profile to vary in model 3 also supports this
view, with the variations in profile mimicking the variations in the disk spectrum
down to lower energies that are seen in the other two models.

We now consider the broad physical implications of our results. The simplest
explanation for linked blackbody and power-law variability is that the blackbody
drives the power-law variation by varying the seed-photon flux which illuminates the
Compton scattering region. This interpretation suffers from the problem that the
observed phase lag corresponds to a light-travel time of ~60ms or a distance of
~1.8x10*km: ~ 17001, for a 7 Mg, black hole. This distance is much larger than the
disk inner radius inferred from the disk blackbody normalisation of ~ 100-260km,?
so any model seeking to explain the lag in terms of light-travel times must assume an
unfeasibly large height of the Compton-scattering region above the disk. Furthermore,
if the observed photon index fractional rms variation of ~ 5 per cent is produced by
changes in the seed to heating luminosity ratio in the Compton scattering region,
the required variations in seed luminosity would need to be much larger than the
observed disk variability (e.g. as much as ~ 30 per cent, applying the equation from
Beloborodov 1999).

Another possibility is that quasi-periodic variations in accretion rate are produced

3Here we assume a disk spectral hardening factor f ~ 1.7 (see Shimura & Takahara 1995),
inclination 40 degrees (Mufioz-Darias et al. 2013) and calculate values for the conservative distance
range of 6-15kpc (Hynes et al. 2004).
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in the accretion disk and propagate inwards to produce a lagging power-law compo-
nent from an inner corona, as seems to be the case for the hard state broadband
noise variability in GX 339-4 and other black hole systems (Uttley et al. 2011). This
interpretation also seems unlikely, since for the Type B QPO the disk blackbody vari-
ations are much smaller than the power-law variations (unlike the situation for the
broadband noise). It might be possible that the accretion rate variation originates
only in the innermost radii of the disk and so modulates only a small fraction of the
blackbody emission, but then the lag would likely be washed out by variable heating
effects of the strong power-law variations (see below).

An alternative possibility is that the fluctuations in blackbody emission are driven
by X-ray heating from intrinsically varying power-law emission. According to model 1,
the average total power-law flux is between 40 and 60 per cent of the total disk black-
body flux (assuming a power-law high-energy cut-off > 20keV). If the power-law
emitting region is isotropically emitting and the disk albedo is 0.3 (e.g. Gierliniski
et al. 2008), then given the observed 25 per cent power-law rms variation, the cor-
responding disk rms variability should be (0.07-0.1) X feoy, where feoy is the fraction
of the sky covered disk as seen from the power-law. The observed disk variability
could then easily be produced by X-ray heating even for modest covering fraction of
~0.2. However, we then would expect the blackbody variations to be in phase with
those of the power-law, or at least lag by a (small) light-travel time, which is not the
case. Therefore we are left with the simplest explanation for our results, which is that
the variation in power-law emission is not intrinsic but geometric, in which case the
observer and the disk need not see the same power-law emission, and large phase lags
can be produced by the varying system geometry. This interpretation is consistent
with the idea that the inner power-law emitting region is precessing, perhaps via the
Lense-Thirring mechanism (e.g. Stella & Vietri 1999). We will therefore consider
this scenario in more detail. However, we do not rule out the possibility that other
models not considered here can explain the observed energy spectral changes, and we
stress again that the phase-resolved spectroscopy technique presented in this paper is
applicable regardless of the physical interpretation of the results.

First, we should consider that as seen from the disk, a precessing power-law emit-
ting region should (quasi-)periodically illuminate different azimuthal regions of the
disk, producing a local enhancement of the blackbody emission due to X-ray heating.
Even if the power-law emission is intrinsically constant, an observer will see periodic
blackbody variations as a result, due to the Doppler boosting and deboosting of the
region of enhanced blackbody emission as the power-law emitting region illuminates
the approaching and receding sides of the disk as seen by the observer.

Type C QPOs, which occur on timescales very similar to Type Bs but are observed
across a wider range of outburst states, might arise from Lense-Thirring precession
of a hot inner flow inside the inner edge of the accretion disk (Fragile & Anninos
2005; Ingram et al. 2009; Axelsson et al. 2014; Ingram & van der Klis 2015; Fragile
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et al. 2016). A hot inner flow would have a small scale height, and the precession
would effect more significant changes in illumination and heating of the inner edge of
the accretion disk than in the cooler parts of the disk. Since the inner edge of the
accretion disk shows the strongest Doppler boosting, the varying illumination pattern
should show a large blackbody modulation. For example, at a disk radius of 101,
and assuming a disk inclination of 40 degrees, the maximum Doppler factor for gas on
the approaching side of the disk is 1.13, so that allowing for boosting and deboosting,
the peak to trough apparent temperature shift should be 27 per cent compared with
2.4 per cent observed for model 2 (which shows the most extreme temperature change).
Even a large emitting radius in the disk of 1001, will produce a peak-to-trough shift
of 10 per cent. However, this variation assumes that only a small range of azimuths
on the disk is illuminated, to maximise the observed temperature shift.

The problem can therefore be solved by assuming that the illuminated region of
the disk is large and only undergoes small shifts due to precession, such that the
observed Doppler boost is an average over many azimuths and changes only by a
small amount in response to the changing illumination pattern. Such an effect might
be obtained if the precessing power-law emitting region which produces the Type B
QPO has a relatively large scale height compared to the inner disk radius (up to tens
of ry), i.e. it is more jet-like than disk-like (as for the Type C QPOs). This picture is
consistent with the findings of Motta et al. (2015), that the Type B QPO integrated
rms is larger for more face-on binary systems and the Type C QPO integrated rms is
larger for more edge-on systems, implying that the emission geometries are different.

Detailed modelling of the effects of a variable illumination pattern on the disk
blackbody emission is beyond the scope of this work, but we illustrate our interpre-
tation by showing in Figure 2.12 the illumination footprint on the disk at four key
phases (separated by 0.25 in relative phase). At phase a, the apparent blackbody
temperature is at a maximum when the power law is preferentially illuminating the
Doppler-boosted approaching side of the accretion disk, while at phase ¢ the oppo-
site, deboosted side of the disk is preferentially illuminated, leading to a minimum in
apparent temperature. Linking the power-law emission to the illumination pattern is
less-clear since it depends on the orientation-dependence of the power-law emission.
Here we assume that the illumination pattern precesses in the same direction as the
orbital motion, so that for a jet-like power-law emitting region, we might expect the
jet to point more towards the observer at phase b and more away from the observer
at phase d. Comparing with our observed pattern of disk and power-law parameter
variations (e.g. in Figure 2.8 for model 1), the peak in power-law emission and photon
index would coincide roughly with the time when the jet-like emitting region points
towards us at phase b, suggesting that Doppler boosting of the emitting region may
play a role in the observed power-law flux variability, which might be expected if the
emitting region is jet-like in geometry.

Note that in the above scenario we do not necessarily expect the peak in blackbody
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emission and power-law emission to be separated by exactly 0.25 in relative phase,
which is close to but significantly different from the phase difference we observe.
The difference will also be influenced by the shape of the illuminating region on the
disk and hence the relative weighting of emission from different parts of the disk,
and we would also anticipate that light-bending effects should play a role. Such
effects can be predicted in future using ray-tracing simulations. Our toy model also
does not simply explain the tight relation (and very small phase offset) between
the scattering fraction (or effectively, power-law normalisation) and photon index,
although this result suggests that the spectral shape of the power-law emission is also
orientation-dependent. Also we do not observe the variations in the iron line energy
(or flux) on the QPO timescale that are predicted by Fragile et al. 2005 and Ingram
& Done 2012 for LFQPOs produced by precessing hot flows in XRBs. Since the disk
blackbody varies by only a very small fraction, if this effect were due to variable
illumination combined with Doppler boosting, we would expect a similarly small
fractional amplitude of variation in the iron line emission. Such a variation would
not be detectable given the lack of sensitivity to a very small iron line flux variation
and the coarse energy resolution at the expected iron line energy (5.5-7.0keV).

An obvious interpretation of our toy model geometry is that the jet-like power-law
emitting region is actually the base of the larger-scale radio-emitting jets seen in the
hard and intermediate states of black hole X-ray binary systems. A jet-base origin
for the X-ray power-law emission in X-ray binaries was first proposed by Markoff
et al. (2005). A number of works support the possibility of a connection between
Type B QPOs and jets. Type B QPOs are only seen at the crossover between the
soft and hard spectral states, in the soft intermediate state (Belloni 2010; Heil et al.
2015b). During this transition in previous outbursts, there are observations of radio
flaring and evidence of the radio-emitting jet switching off (Fender et al. 2004, 2009).
Moreover, Kalamkar et al. (2016) have reported the discovery of an infra-red LFQPO
in GX 339-4, coincident with an X-ray Type C QPO at the first harmonic of the
IR QPO. Their results suggest that low-frequency quasi-periodic phenomena such as
precession could extend to or affect the IR—producing part of the jet, which would
make it plausible that precession also affects the X-ray emitting jet base in the case
of the Type B QPO.

2.6 Conclusions

We have demonstrated a new spectral-timing technique for phase-resolved spectroscopy
using the cross-correlation function, to enable deeper understanding of the QPO mech-
anism in black holes and neutron stars. The technique allows us to quantitatively
probe how the spectrum of a source changes as a function of QPO phase. For the
Type B QPO in GX 339-4’s 2010 outburst observed with RXTE, the spectral shape
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Figure 2.12: A simplified depiction of the illumination footprint on the inner portion of the accretion
disk by a large-scale-height precessing Comptonising region as it sweeps around. The grayscale
colour-mapping of the disk shows the intensity of the emission; light shading means higher observed
intensity (which varies as a function of Doppler blueshift and intrinsic emission). The accretion flow
is orbiting in a counter-clockwise direction. The illuminated region of the accretion disk is shown
in magenta, orange, green, and blue for phases a, b, ¢ and d respectively in a QPO cycle (which we
assume are each separated by 0.25 in relative phase).

changes on the QPO timescale. Specifically, we find that the power-law normalisation
has a ~ 25 per cent fractional rms amplitude variation, the power-law photon index has
~ 5 per cent rms variation, while the blackbody varies significantly, but with an rms
variation in flux of only 1.4 per cent. Crucially, the varying blackbody-like component
leads the varying power law component by ~ 0.3 of a QPO cycle. This combination
of large power-law variability with small blackbody variability, combined with a large
phase lag of the power-law relative to the blackbody variation, implies that the QPO
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flux variations are not primarily intrinsic to the emitting regions but geometric. The
spectral and flux variability and lag suggest a large-scale-height Comptonising re-
gion (such as the base of a jet) which illuminates and heats different but overlapping
regions of the inner accretion disk as it precesses during a QPO cycle.

Regardless of the physical interpretation, our method may be used as a guide to
understand quasi-periodic variability in terms of the different spectral components.
The statistical errors across phase-bins are not statistically independent however, so
caution should be applied when interpreting the detailed results, with bootstrap-
ping or other Monte Carlo methods applied to determine uncertainties on spectral
parameter variations. Furthermore, the spectral component variability inferred from
our method should always be compared with statistically robust spectral-timing prod-
ucts, e.g. derived from the cross-spectrum. Looking further ahead, more sophisticated
fitting techniques (e.g. using the error covariance between phase bins) could be de-
veloped to carry out more robust fitting of the phase-resolved spectra. Alternatively,
direct frequency-domain fitting of the QPO cross-spectrum offers be a simple and
robust approach, but may suffer from the problem that variable spectral modelling
in the frequency domain is not intuitive, compared to time-domain fitting which may
be more easily related to conventional spectral-fitting of time-resolved spectra.

Our results highlight the power of the combination of high count-rates and im-
proved spectral and timing resolution in understanding the innermost regions of ac-
creting compact objects. Unfortunately, telemetry constraints limited RXTE PCA
observations of brighter sources than GX 339—4 to data modes with even coarser en-
ergy binning than the event mode data we use here. However, the recently launched
ASTROSAT mission (Singh et al. 2014) suffers no such constraints on data from its
Large-Area X-ray Proportional Counter (LAXPC) experiment, which offers full event
telemetry for much brighter sources (and with larger effective area than the PCA).
Similarly, we anticipate important breakthroughs from applying these techniques to
data from the forthcoming Neutron Star Interior Composition Explorer (NICER, Ar-
zoumanian et al. 2014), since NICER will obtain the first data with a soft X-ray
response and CCD-level spectral-resolution for Crab-level and higher fluxes, without
significant deadtime or instrumental pile-up effects. Thus NICER will allow us to
probe the quasi-periodic variability of Fe K shape due to its superior energy resolu-
tion, and distinguish between different models for blackbody variability, thanks to its
soft X-ray response.

Since the signal-to-noise of X-ray binary spectral-timing measurements scales lin-
early with count rate (Uttley et al. 2014), future large-area X-ray observatories with
dedicated timing capability and large (> few m?) collecting areas at iron line energies,
will enable our technique to perform detailed phase-resolved tomography of the Fe K
line, even for weak QPO signals. In fact, our CCF method was originally conceived
to demonstrate tomography of the much weaker HFQPO signatures in data from
the proposed Large Observatory for X-ray Timing (LOFT, Feroci et al. 2012), which
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could directly reveal the orbital motion in strong field gravity of emission structures
producing the HFQPOs.* Thus the phase-resolved spectroscopy of QPOs offers a
powerful probe of the behaviour of matter in the most strongly curved space-times
and we encourage further development of spectral-timing techniques to reveal the
inner workings of QPOs.

Acknowledgements

A.L.S. acknowledges support from NOVA (Nederlandse Onderzoekschool voor As-
tronomie). We thank Adam Ingram, Lucy Heil, Victoria Grinberg, Michiel van der
Klis, and the participants of ‘The X-ray Spectral-Timing Revolution’ Lorentz Center
workshop (February 2016) for useful discussions that contributed to the development
of this paper. We also thank the anonymous referee for their helpful comments.

This research has made use of data and software provided by the High Energy
Astrophysics Science Archive Research Center (HEASARC); NASA’s Astrophysics
Data System Bibliographic Services; NumPy v1.9.3 and Scipy v0.16.0 (Jones et al.
2001); Astropy v1.0.4 (Astropy Collaboration et al. 2013); Matplotlib v1.4.3 (Hunter
2007); iPython v3.2.0 (Perez & Granger 2007); and the AstroBetter wiki.

Appendix 2A: Software

The software developed for the phase-resolved spectroscopy technique presented in
this paper will be made publicly available 6 months after this paper’s publication.
The repository links are as follows:

e power spectra:
https://github.com/abigailStev/power_spectra

e lag spectra:
https://github.com/abigailStev/lag_spectra

e cross-correlation:
https://github.com/abigailStev/cross_correlation

e phase-resolved spectroscopy:
https://github.com/abigailStev/energy_spectra

e SIMPLER XSPEC model:
https://github.com/abigailStev/simpler

e simulating spectral-timing data:
https://github.com/abigailStev/simulate

4See Figure 2-17 in http://sci.esa.int/loft/53447-1oft-yellow-book/#
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Abstract

The equation of state of cold supra-nuclear-density matter, such as in neutron stars,
is an open question in astrophysics. A promising method for constraining the neu-
tron star equation of state is modelling pulse profiles of thermonuclear X-ray burst
oscillations from hotspots on accreting neutron stars. The pulse profiles, constructed
using spherical and oblate neutron star models, are comparable to what would be
observed by a next-generation X-ray timing instrument like ASTROSAT, NICER, or
LOFT. In this paper, we showcase the use of an evolutionary optimization algorithm
to fit pulse profiles to determine the best-fit masses and radii. By fitting synthetic
data, we assess how well the optimization algorithm can recover the input parameters.
Multiple Poisson realizations of the synthetic pulse profiles, constructed with 1.6 mil-
lion counts and no background, were fitted with the Ferret algorithm to analyze both
statistical and degeneracy-related uncertainty, and to explore how the goodness-of-fit
depends on the input parameters. For the regions of parameter space sampled by our
tests, the best-determined parameter is the projected velocity of the spot along the
observer’s line-of-sight, with an accuracy of < 3% compared to the true value and
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with < 5% statistical uncertainty. The next best-determined are the mass and radius;
for a neutron star with a spin frequency of 600 Hz, the best-fit mass and radius are
accurate to < 5%, with respective uncertainties of < 7% and < 10%. The accuracy
and precision depend on the observer inclination and spot co-latitude, with values of
~ 1% achievable in mass and radius if both the inclination and co-latitude are > 60°.
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3.1 Introduction

Neutron stars are an astrophysical laboratory for studying cold supra-nuclear-density
matter. Accreting millisecond X-ray pulsars, a particular subset of neutron stars in
low-mass X-ray binaries (LMXBs), are rapidly spinning accretion-powered neutron
stars with spin periods of a few milliseconds (e.g., SAX J1808.4-3658, Wijnands &
van der Klis 1998b). Their pulsed X-ray emission originates from material striking
the surface of the neutron star during regular accretion and warming an area on the
surface so that it emits blackbody radiation. Then, as the neutron star rotates, it
gives periodic oscillations in brightness as the emitting region faces towards and away
from the observer. Since these photons originate from the surface of the neutron star
itself, physical properties like its mass and radius are encoded in the detected pulse
profile. Fitting these pulse profiles with realistic models can then yield neutron star
mass and radius estimates (Watts et al. 2016).

In addition to regular pulsed X-ray emission, some neutron stars in LMXBs exhibit
thermonuclear (Type I) X-ray bursts (Watts 2012) . In a fraction of thermonuclear
X-ray bursts, we observe brightness oscillations, where the frequency corresponds
strongly with the spin frequency of the neutron star; these are referred to as ther-
monuclear burst oscillations. The pulse profile models that we discuss in this paper
refer specifically to models of these burst oscillations.

The emission area on the surface of the neutron star is referred to as the hotspot
or spot. Theories suggest two different surface hotspot models: one that ignites
nuclear burning at one point and spreads across the whole neutron star, and another
that ignites at one point and begins to spread but remains limited to a smaller area
(referred to as a “persistent hotspot”) (see Watts 2012 and references therein). The
persistent hotspot on the surface of a rotating neutron star has been demonstrated to
be an effective model for Type I X-ray bursts from the source 4U 1636-536 (Artigue
et al. 2013), and so we use a persistent spot model with no size variation over the
course of the burst. The fixed spot model is used for convenience here; a changing spot
model could be incorporated for observations that show evidence for such behaviour.

The spectral model depends on the physics of the spot production and includes
both the energy and angular dependence of the emitted radiation. In the case of
rotation-powered X-ray pulsars (Bogdanov 2013), a hydrogen atmosphere model is
appropriate (e.g., Heinke et al. 2006). The hydrogen atmosphere model depends on
the spot’s temperature and the local surface gravity. Since the surface gravity only
depends on the mass, radius, and spin of the star (AlGendy & Morsink 2014), the
local temperature is the only additional free parameter introduced by the spectral
model.

For accretion-powered X-ray pulsars, an empirical model including a blackbody
plus Comptonized photons has been used, motivated by spectral observations (Pouta-
nen & Gierliriski 2003; Leahy et al. 2009, 2011; Morsink & Leahy 2011). The Comp-
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tonization model includes photon power law indices as well as a parametrized fan-
beaming model. These models required two free parameters, one for the energy de-
pendence and the second for the angular dependence of the emitted radiation. One
of the issues seen with fitting the data from the accretion-powered X-ray pulsars is
that the extra degree of freedom in the radiation’s angular dependence leads to extra
degeneracies amongst the geometric parameters. The result is fairly large regions
of parameter space allowed by the fits, which do not strongly constrain the neutron
star’s equation of state.

Since thermonuclear X-ray burst oscillations can be well-reproduced with a simpler
spectral model, we can fit models in a reduced but still physically motivated parameter
space. Fewer free parameters gives fewer degeneracies among the parameters, and
therefore allows for better constraints on the neutron star’s mass and radius.

In the setup of our models, we assume that the inner boundary of the accretion disk
is the neutron star’s co-rotation radius (Ghosh & Lamb 1979). From this assumption,
the accretion disk would block emission from a possible second antipodal hotspot
(from an observer’s perspective), so we only test models for one spot in the northern
hemisphere of the neutron star. If the signature of an antipodal spot is detected, our
code can be easily adapted to include a second hotspot.

We created synthetic data for a variety of different neutron star and spot param-
eters. Fitting multiple Poisson realizations for each synthetic pulse profile allows us
to disentangle what uncertainty is due to random statistical fluctuations and what is
due to inherent degeneracy between the parameters; understanding both is crucial for
placing proper constraints on neutron star masses and radii. The pulse profile fitting
was carried out with the Ferret optimization algorithm (Fiege 2010) to determine the
acceptable range of masses and radii.

In this paper we show that evolutionary optimization algorithms are a powerful
method of fitting neutron star pulse profiles, and we test the effects of changing various
input parameters on how well we can recover the true neutron star mass and radius.
In Section 2 we explain the details of constructing the pulse profiles, our parameter
choices, and the Ferret algorithm. The results of the pulse profile fitting are described
and examined in Section 3, and the conclusions are discussed in Section 4.

3.2 Pulse Profile Models

We construct the pulse profiles within the Schwarzschild + Doppler (S+D) approxima-
tion (Miller & Lamb 1998; Poutanen & Gierliniski 2003) and the Oblate Schwarzschild
(OS) approximation (Morsink et al. 2007). In the S+D and OS approximations, the
metric exterior to the rotating neutron star is approximated by the Schwarzschild
metric as described by Pechenick et al. (1983), adding the appropriate Doppler boost
factors arising from the rotation of the star. In the S+D approximation, the surface of
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the star is a sphere, while in the OS approximation the surface is an oblate spheroid.
Cadeau et al. (2007) compared the S+D and OS results with pulse profiles generated
from the exact metric and showed that the OS approximation is a good approximation
for stars spinning with frequencies above 300 Hz. However, we continue to use the
S+D approximation in many of our models in order to further explore the effect of
using the wrong shape on the fits. At spin frequencies higher than 600 Hz, it may be
necessary to use higher order approximations that make use of the star’s quadrupole
moment (Psaltis & Ozel 2014), however this level of approximation is not necessary
for the stars studied in this paper.

Pulse profiles can be constructed once 8 geometric parameters and a spectral emis-
sitivity model are specified. The 8 geometric parameters are the neutron star’s mass
M; equatorial radius R; spin frequency vspin; the observer’s inclination angle i (as
measured from the spin axis); the hotspot’s co-latitude 6; the angular radius of the
spot p; the distance to the star d; and a phase offset ¢. In practice, the star’s spin
frequency will always be known, so there are only 7 geometric parameters. It is pos-
sible to add parameters describing a more complicated shape for the spot (Poutanen
et al. 2009), but in this paper we only consider the simplest spot models, which are
circular spots with uniform temperature. Due to the approximately universal nature
of a spinning neutron star’s shape (Morsink et al. 2007; Baubdock et al. 2013), inclusion
of the star’s oblate shape does not require any additional free parameters.

Thermonuclear X-ray burst oscillations can be spectrally modelled as a single-
temperature blackbody with limb-darkening (Artigue et al. 2013). Once a prescription
for the angular dependence has been selected, such as the Chandrasekhar (1960) limb-
darkening model (approximated by the Hopf function), the only free parameter is
the hotspot’s temperature. The reduced parameter space required by this spectral
model results in less degeneracy with the geometric parameters. For this reason,
the oscillations from Type I X-ray bursts will be a major target for large-area,
high-time-resolution X-ray telescopes like ASTROSAT (Singh et al. 2014), the soon-
to-be launched NICER mission (Arzoumanian et al. 2014), and a future LOFT-like
mission (Feroci et al. 2012).

The geometric parameters M, R, i, and # have inherent degeneracies, so it is useful
to refer to less-degenerate combinations of these parameters. In the spherical S+D
approximation, ¢ and # only appear in the formulae in the combinations sin sin § and
cosicosf. As a result, in all fits there is a simple degeneracy that allows i and 6
to be switched. Likewise, M and R are somewhat degenerate, so the dimensionless
compactness ratio M/R can be better-constrained. These parameter combinations
factor into the approximate bolometric pulse amplitude Amp (Beloborodov 2002),

(1—2M/R)sinisinf

A =
P 2M/R+ (1 —2M/R) cosicosf’

(3.1)
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and the dimensionless projected velocity of the spot 3,

g i g, (3.2)
V1-2M/R
in geometric units (G = ¢ = 1). Due to the reduced degeneracy, it is possible to fit
for sinisinf, cosicosf, M/R, Amp, and § better than the individual parameters.
In our models, we consider an infinitesimally small spot for simplicity. However, the
1 — 0 degeneracy can be partially broken for models with a large spot, in which case
the spot would span a range in # but not in 3.

Equation (3.1) is only an approximate relation for the bolometric pulse amplitude.
In reality, the pulse amplitude depends both on the emitted energy spectrum and the
energy bands at which the observations are made. There is no simple formula for the
dependence of the pulse amplitude on energy, but it can be computed numerically.
Since the pulse amplitude Amp depends on the observed photon energy, observations
of the burst oscillations in two or more energy bands can provide stronger constraints
than suggested by equation (3.1); for this reason, two energy bands are used in this
work. Additional information could be extracted with more energy bands, but we
were unable to accommodate more bands. The projected velocity 8 controls the
asymmetry in the pulse profile through the Doppler boosting effect, as well as the
phase lags between the hard and soft energy bands. For higher values of (3, the
pulse profiles are more asymmetric in rise and fall times, showing the effects of higher
harmonics.

Previous work (Morsink & Leahy 2011; Stevens 2013; Lo et al. 2013; Baubock
et al. 2015) has shown that for smaller spots, it is sufficient to compute the pulse
profile assuming a point-source spot instead of an extended region. By adopting the
point-source approximation, we simplify the calculation and do not make use of the
angular radius parameter p, reducing the number of free geometric parameters to
6. Furthermore, we normalize the synthetic pulse profiles to have a mean of 1 to
remove the dependence on the distance d, giving five free geometric parameters for
each model.

Our goal is to constrain the neutron star’s mass and radius based on fitting models
to the pulse profile, and determine how the shape of the pulse profile affects how well
we can constrain its M and R. By fitting synthetic data, the input parameters are
known, so we can analyze how well the fitting can recover the true M and R. In
this paper we investigate two sources of error in the constraints: degeneracy-related
uncertainty and statistical uncertainty. Although the two types of uncertainties are
coupled we have introduced two measures of the uncertainties ogegen and owhich
are affected differently by the degeneracy and the statistics. The degeneracy-related
uncertainty oqegen arises from parameter degeneracies in each fit, whereas the standard
deviation ¢ is examined by simulating multiple Poisson realizations of a model and
determining the mean and standard deviation over all the fits. We explore how ¢ and
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Odegen are affected by the values of Amp and 3 for each synthetic pulse profile. We
also quote the accuracy of the fit in M and R, comparing the mean best-fit value for
each model with the true value.

3.2.1 Properties of Test Models

We computed pulse profiles for a set of nine test models with the parameter val-
ues listed in Table 3.1. The properties that were kept the same for all test mod-
els are the spot’s temperature, the phase offset ¢, the observer’s inclination angle 4
and the distance to the star d. The spot emission model is a 2keV blackbody (in
the frame comoving with the neutron star’s surface) with a limb-darkening atmo-
sphere, approximated by the Hopf function (Chandrasekhar 1960), appropriate for a
Thompson-scattered atmosphere. Since for real data we would independently have
the spot temperature at infinity instead of in the star’s comoving frame, this pa-
rameter should be allowed to vary within a narrow range (explored in Section 3.3.7),
where the appropriate range would be determined by the temperature at infinity. The
model assumes that any emission from the surface of the neutron star outside the spot
is negligible. The observers inclination angle ¢« = 60° and the phase offset ¢ = 0 for
all cases. The computed pulse profiles are normalized to an average flux of 1, so that
the distance d to the star does not affect the pulse profiles.

The parameters that were changed for different test models are M, R, @, the star’s
shape (spherical or oblate), and vgpin. For oblate neutron star models, R is defined
to be the radius of the neutron star at the spot. The formalism for the oblate model
is detailed in Morsink et al. (2007), and does not require the addition of any extra
parameters.

The parameters for the fiducial model, Model A, were chosen to be representative
of the masses and radii of accreting millisecond neutron stars. Our fiducial mass
M = 1.6Mg is larger than the mass M = 1.4Mg typically measured for slowly
rotating radio pulsars, since we expect the neutron star has been spun up by and
gained mass from accretion. The radius of 12 km is consistent with other radius
estimations (Leahy 2004; Steiner et al. 2010). Rapid rotation with vepin > 550 Hz is
seen in burst oscillations for at least seven neutron stars that exhibit Type I X-ray
bursts (Watts 2012). We have chosen vgpin, = 600 Hz for the fiducial model since it
is representative of these rapid rotators. The angles were chosen to provide a pulse
amplitude (Amp = 0.373) comparable to the largest pulse amplitudes seen, in order
to reduce the parameter degeneracy. In particular, the neutron star 4U 1636-536
has rms pulse amplitudes as high as 0.25 after subtracting the pre-burst emission
(Strohmayer et al. 1998; Galloway et al. 2008), where Amp = /2 rms. The full set of
theoretical parameters are given in the row labelled “A” in Table 3.1. The resulting
pulse profiles in two energy bands are shown in Figure 3.1 with black and red solid
curves labelled “True”. Our fiducial model is similar to the model described as “low
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3.2 Pulse Profile Models

inclination” by Lo et al. (2013), except that they consider a slightly smaller R and a
slower Vspin. As will be shown in Section 3.3.5, small changes in R do not qualitatively
change the results of this paper. Our choice of a faster vg,i, improves the accuracy
of the fits, but the faster vgpin is also more appropriate for the neutron stars that we
hope to apply this method to.

Theoretical pulse profiles were calculated for the nine different test models. Each
theoretical pulse profile was converted to a set of twenty synthetic observations by
adding noise from a Poisson distribution to the pulse profile. The standard case (a low-
noise model) assumes 25,000 photon counts per phase bin and no background count
rate, as if the background were negligible in comparison with the hot spot emission.
By not including a background, we are underestimating the Poisson fluctuations, and
thus underestimating the error bars. This is done so we can test the suitability of
evolutionary optimization on the best possible quality of synthetic data.

For a variation on the model 64y, a higher noise level was used: 050Cg250 assumes
6250 photon counts per phase bin with no background. In total, there are ten sets of
twenty simulated observed pulse shapes.

Each of the 200 simulated pulse profiles was then fit using the Ferret algorithm
(described in the next subsection) which searches for different values of the free pa-
rameters in order to minimize the x? fit statistic. Five parameters were allowed
to vary within physical ranges: 1.0Mgy < M < 25Mg, 6.0km < R < 16.0km,
0° < (4, 8) <90°, and ¢ defined cyclically from 0 to 27. The star’s shape (spherical
or oblate) was fixed to be the same in the fitting procedure as in the theoretical
waveform. The temperature is kept fixed at 2 keV since it has been shown by Lo
et al. (2013) that observations in multiple energy bands allows for a good determi-
nation of the gravitationally-redshifted spot temperature. We do not allow the spot
size to vary, as explained in the previous subsection. For applications to real data, it
would not be difficult to add variations in spot size (and shape), temperature, and
to use unnormalized fluxes to allow for a distance measurement. However, the addi-
tion of the extra free parameters for the number of synthetic waveforms considered
in this study would be impractical. We carried out preliminary trials (summarized in
Section 3.3.7) allowing these parameters to vary but did not find much change in our
final results.

Since there are two energy bands with 32 phase bins each, and five free parameters,
there are 59 degrees of freedom (dof). The fitting yielded best-fit model parameters
and also allowed computation of confidence regions in the M-R plane, from which we
can assess the effect of various parameters on the uncertainties in parameter determi-
nation.
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3.2.2 Parameter Fitting using Evolutionary Optimization

Evolutionary optimization algorithms provide a useful but heuristic approach to
search through large parameter spaces, to optimize the fit of a model to data. Such
algorithms use principles inspired by biology to evolve a population of candidate
parameters sets, over many generations, toward an optimal solution. The heuristic
nature of the search aims to sample the parameter space efficiently, but not com-
pletely, since exhaustive search is not practical for problems involving many parame-
ters. Therefore, it cannot be guaranteed that the true, globally optimal solution has
been found, although this would also be true for any other optimization algorithm,
besides exhaustive search. Evolutionary algorithms have been well studied and found
to be useful in many fields of science and engineering.

The oldest, and most commonly known, type of evolutionary optimizer is the
genetic algorithm (Holland 1975; Goldberg 1989, 2002). Classic genetic algorithms
encode their search parameters on a (usually) binary string (genotype), which is de-
coded into a model (phenotype). A population of candidate parameter sets is normally
initialized as a set of random bit strings, which are expressed as a model, and in turn
evaluated by a fitness function. This information is used to probabilistically select
good parameter sets (individuals) to propagate to the next generation, in analogy to
the “survival of the fittest” principle of Darwinian evolution. Parameter sets undergo
random bitwise mutations to help perturb solutions into previously unexplored re-
gions of parameter space. Information is shared between individuals by means of a
crossover operator that cuts a pair of bit strings at a random position, and recombines
them into a new “offspring” configuration, in analogy with sexual reproduction. This
process of evaluation, selection, mutation, and selection is performed iteratively, over
many generations, until a convergence criterion terminates the search. The genetic
algorithm can be viewed as a directed stochastic search, which makes use of random
noise to evade local minima, while a mostly deterministic selection operator pushes
solutions toward an optimal solution.

In this paper, we used versions 5.3-5.5 of Ferret from the Qubist Global Opti-
mization Toolbox for MATLAB (Fiege 2010; Rogers & Fiege 2011), a commercially
available software package, to find the best fits to our synthetic data. This is an
alternative to the Markov chain Monte Carlo approach in Lo et al. (2013) to fit pulse
profiles. Ferret’s development began in 2002, as a variant of the multi-objective ge-
netic algorithm, which made use of a real-valued parameter encoding and real-valued
mutation and selection operators, rather than the traditional binary encoding dis-
cussed above. Numerous other features have been added to Ferret since then, which
go beyond the usual genetic algorithm paradigm. Most notably, the code contains
a unique linkage-learning algorithm, which detects a certain type of non-linearity
(linkage) between parameters, with the goal of dividing a large parameter space into
several smaller and nearly independent subspaces, thus greatly simplifying the prob-
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lem. This capability is discussed at length in the software user’s manual (Fiege 2010).
Ferret also contains an algorithm that allows several of its most important control
parameters, including the typical strength of mutation and crossover events, to be
automatically adapted and optimized during a run. This auto-adaptation capability
is similar in spirit to the self-adaptation used in Evolution Strategies (ES) codes, al-
though ES codes do not typically employ a crossover operator. Ferret does not adhere
to the strict definition of a genetic algorithm, due to these enhancements and others,
but the code still remains closer to the genetic algorithm paradigm than to others
within the family of evolutionary optimizers.

As an example of Ferret’s inner workings, consider the parameters ¢ and 6. Ferret
selects sets of values from the allowed region of parameter space (0.01° < ,6 < 90°)
for the population of a generation, and fits pulse profile models. It then keeps the
best-fitting parameter sets and selects new sets to explore more of the parameter
space. Within a few generations, Ferret discovers the degeneracy between i and
6, since their values can be swapped with minimal impact on the x2 fit. A more
detailed explanation of Ferret in relation to pulse profile modelling can be found in
Stevens (2013) Chapter 4. Evolutionary optimization algorithms have also been used
in gravitational lensing (Rogers & Fiege 2011, 2012), medical physics (Fiege et al.
2011), star formation (Franzmann 2014), and X-ray spectral fitting (Rogers et al.
2015) applications.

Our problem is quite easy for Ferret, which consistently finds the global minimum
x? fit statistic within a few generations. We note that the true global minimum
is known, since our results are based on artificial data tests. After finding the y?
minimum, the algorithm was allowed to run for approximately 100 generations, as
Ferret accumulated solutions within the confidence region. No specific convergence
criterion was implemented; rather, we terminated the run manually when it was
evident from the software’s graphical user interface that no further improvements
were being made to the minimum y2, and enough solutions had been accumulated
within the confidence region to make contours maps of acceptable quality. Ferret was
executed in MATLAB R2011a on 12-core AMD Linux servers (dual socket Opteron
2439 SE, with 32Gb RAM, running Red Hat version 4.1.2), using Ferret’s built-in
parallel computing features. Each fit took approximately 8-20 hours.

3.3 Results

Pulse profiles were simulated as a set of Poisson realizations of a theoretical pulse
profile model with known input parameters (see Section 3.2.1). Each Poisson realiza-
tion was fit with Ferret to produce a set of best-fit parameters for the pulse profile
along with confidence regions for the parameters. Since each theoretical pulse profile
has multiple Poisson realizations, the average and standard deviation for the best-fit
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parameters of each theoretical pulse profile are computed.

Here we discuss the fit results of the pulse profiles, which illustrate the effects of
changing different system properties. Table 3.2 shows a summary of the fits to the 20
different Poisson realizations for each of the input models. The first row of each pair
of rows shows the input parameters of the theoretical pulse shape model. The second
row shows the means and standard deviations of the best-fit values from the fits to
the 20 different Poisson realizations of each model. In addition to the fit parameters
(M, R, i, 0, and ¢), other useful measures of the model (M/R, sinisin@, cosicosé,
Amp, and ) are given.

A brief overview of the entire set of fits is given first. Some parameters are well-
determined and others poorly-determined. The standard deviation of any given pa-
rameter for each set of Poisson realizations is given as the error o of that parameter.
We take the difference between the mean of a parameter for each set and the input
parameter as a measure of the accuracy of that parameter fit. The means and stan-
dard deviations are listed in Table 3.2, from which the percent error for precision and
accuracy can be determined. The Ferret algorithm also computes contour regions
as a measure of the degeneracy-related uncertainty oqegen. The o errors are some-
times smaller than the 1-0qegen region as shown in figures in the following subsections.
These two values of error are measures of the degeneracy (adcgcn) and the statistical
fluctuations (o), but they need not be the same. The 1-04egen contours determined
by Ferret are models with different i, 8, and ¢ parameters that all provide an equiv-
alently good fit for that M and R. In this way, the 1-04egen limit can be thought of
as a measure of the degeneracy of the parameter space near the best-fit model. The
standard deviations o computed from the ensemble of Poisson realizations provide a
measure of the error from the statistical fluctuations. However, the strong parameter
degeneracy is certainly still an important factor in the standard deviation computa-
tion, and as such the reported o values cannot be assumed to be purely statistical
error.

We find that the projected velocity S is generally the most accurate and precise,
with accuracy of 0.5-3% and precision of 1-6%. M and R are the next best, with with
accuracy of 1-8%, but R has worse precision (1-21%) than M (1-13%). Compactness
(M/R), sinisin@, and Amp all have similar accuracies (~ 1-8%) and precisions (~ 1-
16%). The accuracy of cosicosf is ~4-30% and precision is ~2-20%. The least-
well-determined are ¢ and 6, with accuracies of ~4-30% and precisions of ~5-50%
due to the degeneracy in angles.

In the following subsections we discuss in detail the results from fitting the fiducial
model A, and then discuss trends we find by comparing the fits from model A with
the fits for the models with modified parameters.
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Figure 3.1: Topr: Pulse profiles for model A in two energy bands. The solid black and red curves
(labeled “True”) correspond to the theoretical model A given in Table 3.1. The black and red points
(labeled “A1”) with error bars correspond to the addition of noise to model A with one Poisson
realization assuming an average count-rate of 25,000 per phase bin. The blue dashed and dotted
curves correspond to the best fit to model A1 with parameters given by the values in row “A1” in
Table 3.3. This best fit has x2 = 58.2 for 59 dof. BorToMm: x2 contours in the M — R plane for
fitting synthetic data from model A1l. The best-fit model is shown with a star and corresponds to
the row labelled “1” in Table 3.3. The “true” values of mass and radius are 1.6 M and 12km. The
contours show the 1-, 2-, and 3-0gegen confidence regions. From this figure, it can be seen that the
1-0gegen error region for radius corresponds to approximately 1.9km, while the 1-0qcgen limit for
mass spans 0.18 M. The contours for 1-, 2-, and 3-0qegen correspond to values of Ax? (above Xﬁﬁn)
of 2.3, 6.2, and 11.8 respectively.
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Figure 3.2: Normalized low-energy band pulse profiles for four neutron star models showing the
observer inclination—spot co-latitude degeneracy for spherical and oblate stars. The solid black
curve represents Model A, while the overlapping dashed red curve represents a star with the same
parameters as Model A, but with inclination ¢ and co-latitude 6 swapped. The black dot-dashed
curve represents Model AO, the oblate version of Model A. The red dotted curve represents a star
with the same parameters as Model AO, again with inclination ¢ and co-latitude 6 swapped.
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Figure 3.3: LerT: Histogram of best-fit values of R for model A. RicHT: Best fit values of M and
R for model A. Each dot is one fit to a Poisson realization, as shown in Table 3.3. The black cross
shows the average with 1-o error bars.
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3 Neutron Star Mass-Radius Constraints

3.3.1 Model A: Fiducial Model

Twenty realizations of the Poisson noise were made to simulate observations of the
fiducial Model A. The resulting flux values with error bars for the first Poisson re-
alization of the data are shown as black and red points labelled “A1” on Figure 3.1.
The data points with Poisson errors were used as input to Ferret, which searched
for the best fit to the Al dataset by minimizing x2. In the case of the Al dataset,
the pulse profiles that best fit the data are displayed with blue dashed and dotted
curves in Figure 3.1. The parameters corresponding to the best fit of the Al dataset
(x*> = 58.2) are shown in the row labelled “1” in Table 3.3. For reference we have
included the derived quantities M /R, sinisiné, cosicosf, Amp, and § to this table.

The best fit model (star) and contours of constant x? = x2, +Ax? (black curves)
for the A1 dataset are shown in the M — R plane in Figure 3.1. The contours cor-
respond to values of Ay? = 2.3,6.2, and 11.8, corresponding to 1-, 2-, and 3-0degen
confidence levels respectively in mass-radius space for two free parameters, M and R.
This plot uses the profile likelihood (Murphy & Van Der Vaart 2000) to eliminate the
nuisance parameters i, 6, and ¢; a grid is defined in M and R, and for each (M, R)
grid point, Ferret finds the lowest x? within each grid cell, allowing for any values
of i, 8, and ¢. The 1-0qegen confidence region (calculated by finding the maximum
and minimum values on the 1-0gegen contour and dividing by 2) gives an approximate
1-0degen error of 1.9km for the radius and a 0.18 M, error for the mass. Note that
since the contours are not ellipses, these are only approximate 1-0qegen limits.

Ferret was used to fit each of the 20 Poisson realizations of model A. The inde-
pendent best fit results for the 20 different realizations are shown in Table 3.3. The
average and standard deviation for each parameter are displayed at the bottom of
Table 3.3, and also appear in the second line of Table 3.2. For the individual angles
¢ and 6, it can be seen from Table 3.3 that the determinations of these angles are
very poor. This is due to the already well-known degeneracy (for spherical stars;
Poutanen & Gierliriski 2003) which occurs since the equations for light-bending and
the Doppler effect only depend on the combinations sinésiné and cosicosf and not
on their individual values. The i — 6 degeneracy can be seen in Figure 3.2, where the
normalized low-energy band pulse profiles for model A, and another model with ¢ and
0 swapped (both labelled “Sphere”) are indistinguishable. For many of the Poisson
realizations, the best-fit values for ¢ and 6 shown in Table 3.3 are swapped from their
true values, and as a result, the average and standard deviations for the individual
angles are really not meaningful, except to illustrate that it is the trigonometric com-
binations of the angles that can be reliably determined. However, since there are
independent methods for constraining 7 and 6 through optical (Wang et al. 2013) or
gamma-ray (Venter et al. 2012) observations, it is still useful to discuss these two
angles separately.

To ensure that a suitable number of independent realizations of the data were
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3.3 Results

made, a histogram of the best-fit radii is plotted in Figure 3.3. The resulting his-
togram is approximately Gaussian (70% are within 1 standard deviation, 95% within
2 standard deviations, 100% within 3 standard deviations), indicating that 20 trials
are sufficient to illustrate general trends. A scatter plot, also shown in Figure 3.3,
shows the values of mass and radius (red crosses) for the 20 different random realiza-
tions of the data. The large black cross indicates the average and standard deviation
values for the mass and radius fits.

As previously stated, parameter degeneracy plays a major role in all aspects of
uncertainty in our results, even the standard deviation. By testing 20 different real-
izations of the data for each model (a relatively small number), we still find that some
models converge on the true parameter values while others do not. The models with
stronger parameter degeneracy have larger standard deviations on the parameters.
This provides an initial assessment of which types of models and pulse profile shapes
have stronger degeneracies. Even with very small error bars on the pulse profile,
there would still be relatively large standard deviations over many models due to the
inherent degeneracies.

3.3.2 Effect of Changing Spot Co-latitude

In this section, we examine the effect of changing the hotspot’s co-latitude # on the
accuracy and precision of the pulse profile fits. By changing 6 while keeping M, R,
and ¢ constant, we alter the projected velocity 8 and the approximate pulse amplitude
Amp (see Table 1). Models A (with § = 20°), 037, and 0o have increasing values of
0, 8, and Amp. Due to the i-0 degeneracy, this is also equivalent to keeping 6 fixed
and varying 7.

The 6371 pulse profile (i.e., for the first Poisson realization of the 637 model) is
shown in the top panel of Figure 3.4 and the constant y? contours are shown in
the bottom panel. This case is one of the “outlier” pulse shapes (of the 20 Poisson
realizations) with a very large best-fit R that only includes the true R at the 3-
Odegen level. The 1-0gegen error regions for the 371 model (from the bottom panel of
Figure 3.4) are smaller than the A1 model, close to 1.1km for R and 0.11 Mg, for M.
The 1-04cgen regions for this particular Poisson realization are somewhat larger than
the standard deviation 1-o computed for the ensemble of f37 models.

Similarly, the 0491 pulse profile (first Poisson realization of the gy model) is shown
in the top panel of Figure 3.5 and the constant y? contours are shown in the bottom
panel. The 1-04egen error regions for the g1 model are 0.7 km for R and 0.06 M, for
M, larger than the ensemble standard deviation 1-o by a factor of about 6.

We find a strong trend as 6 increases: the average M and R fit values are closer to
the true values and the standard deviation is smaller. For example, ¢ in M decreases
from 0.11 to 0.08 to 0.01 Mg, for models Models A, 037, and 6gy. This improvement in
fitting accuracy is due to models 037 and g9 having a larger Amp and § than model
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A. This is consistent with the general trend seen by Lo et al. (2013) in individual
model fits.

During an X-ray burst, 6 is expected to change. This set of models roughly
approximates this process, which has been explored in detail by Mahmoodifar &
Strohmayer (2016). If a series of different burst oscillation pulse shapes are found
for a neutron star during the same burst, future work could include a simultaneous
multi-epoch fit, allowing 6 (and spot size p) to be dependent on epoch.

3.3.3 Effect of Oblateness

Rotation alters the shape of a neutron star, making it an oblate spheroid. Although
the change in shape is small for stars spinning at rates seen in accreting systems, the
alteration in the star’s shape changes the positions on the neutron star’s surface for
which photons can reach the observer (Morsink et al. 2007), leading to large changes
in the pulse profile. As an example, a 1.6 Mg neutron star with an interior given by
the APR equation of state (Akmal et al. 1998) has an equatorial radius of 11.7 km
and a ratio of polar to equatorial radii of 0.93. This oblate geometry has a larger
effect on the pulse profile than other effects due to rotation, such as frame-dragging,
as has been discussed in detail in, e.g., Morsink et al. (2007).

In this section, we investigate the effect of the oblate shape on the accuracy and
precision of pulse profile fitting and reproducing the input parameters. To do this we
construct oblate versions of two models, A and #37. The oblate versions, designated
with the letter “O” are constructed so that the radius of the star at the location of
the spot is the same as for the corresponding spherical model. This means that the
values of the star’s compactness M /R and the projected velocity 3 are the same for
the spherical and oblate models. As a result of this definition for the radius, the star’s
equatorial radius is larger than that listed in Table 3.1. The general trend is for the
oblate neutron star’s pulse profile to have a smaller pulse amplitude than the spherical
neutron star with the same parameters (when ¢ and 6 are in the same hemisphere),
since the visibility condition makes it easier to see the far side of the neutron star
when the star is oblate (Cadeau et al. 2007; Morsink et al. 2007). In cases where
the spot is visible for all phases (as in both models A and 637), consider the emission
when the spot and the observer have the same azimuthal angle. At this moment, the
light from the spherical star is emitted close to the normal to the surface. For the
oblate star, the light is emitted in the same direction in space, but it is at an angle
further from the surface’s normal, due to the tilt of the surface. Since the intensity
of light is proportional to the cosine of the angle between the original direction of
emission and the normal to the surface, the spherical star’s spot appears brighter at
this phase. The opposite is true when the spot is on the opposite side of the star
from the observer. In this case the light is emitted close to the tangent to the surface
for the spherical star, and closer to the normal for the oblate star, making the spot
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appear dimmer for the spherical star at this phase. The overall effect is to create a
less modulated pulse profile for the oblate star.

In model AQO, the neutron star’s equatorial radius is 12.7 km, while the radius
at the spot’s latitude is 12km. As a comparison with the spherical model, the low-
energy band pulse profiles for both AO and A are plotted as black dot-dashed and
solid curves respectively in Figure 3.2. The high energy band (not shown for clarity)
has a similar decrease in modulation. In model 6370 the equatorial radius is 12.5 km,
and has a lower pulse amplitude than model #37. Since the pulse profiles and M — R
confidence regions for models AO and 6370 look quite similar to those for models
A and 037, they are not shown here. The mean and standard deviation of the best
fit parameters for the 20 realizations for each oblate model are given in Table 3.2.
For most parameters, the o and accuracies are smaller for the oblate case than for
the fiducial spherical case (we also found that the 1-0gegen regions were smaller by
about a half). A similar improvement in the precision of the results was also noted
by Miller & Lamb (2015), however since they only considered one Poisson realization
of the data they could not rule out the possibility that this was due to a statistical
fluctuation. In our case, since we are comparing a sample of Poisson realizations for
each model, the increase in precision and accuracy is most likely due to the properties
of the oblate model pulse profiles.

The improvement in the accuracy and precision in the determination of most of the
parameters for oblate models is most likely due to the partial lifting of the degeneracy
between 7 and 6. For an oblate star, the direction that the normal to the surface points
in depends on the shape of the star which is a function of #, but is independent of
1. This introduces small differences between the normalized pulse profiles for models
with ¢ and @ switched, while for spherical stars, the normalized pulse profiles are the
same when the angles are switched. This is illustrated in Figure 3.2 where the two
oblate models representing the swapped inclination and spot angles, shown with black
dot-dashed and red dotted curves, are clearly different from each other. However, since
they are still fairly similar to each other, there is still a partial degeneracy when the
angles are swapped.

There is a similar but much smaller lifting of degeneracy for large hot spots on
spherical stars. A large spot extends over a range of 6 values while the observer’s
inclination 7 is just one fixed value, so swapping the two angles if the spot is large
will not yield the same pulse shape. However, the magnitude of the effect is much
smaller than the magnitude of the change that occurs when the angles are swapped
on an oblate star.

We also tested the effect of using the wrong shape model by using the oblate
data corresponding the 20 AO models as input and fitting them with pulse shapes
for spherical stars. In this case, x? increased a small amount but the best-fit values
for M and R became very inaccurate. For the set of fits to the Poisson realizations,
the average fit returned x? = 64.7, M = 1.91 Mg, and R = 12.3km (which should
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be compared with the values in the 4th row of Table 3.2). The average M and R fits
are accurate to 19.4% and 2.5%, respectively. Similar results were found by Miller
& Lamb (2015). In practice, this is not a problem, since we know that the stars
are actually oblate, so the correct shape can be used. The spherical shape model
is computationally somewhat cheaper, hence it is used for the other models tested
in this paper. Furthermore, the oblate shape model used is still an approximation.
It would be worthwhile, in future research, to compare the slightly different shape
models that have been used in this paper with other models used by other groups
(such as Baubock et al. 2013; Miller & Lamb 2015).

3.3.4 Effect of Photon Count-Rate

The average photon count-rate per phase bin of 25000 is the expected best case sce-
nario, assuming typical burst flux, large detector effective area, and long observation
time (Feroci et al. 2012), and similar to the count-rate used in other pulse profile
analyses (Lo et al. 2013; Psaltis et al. 2014). The pulse profile is noisier when fewer
counts are detected. We tested the effect of statistical noise on model gy by gen-
erating different Poisson realizations, assuming a reduced count-rate, of the same
theoretical pulse profile. Comparing model 05y with the reduced count-rate model,
050Cs250, allows us to explicitly compare the degeneracy-related uncertainty versus
error. The average counts per bin are 25000 and 6250 for models gy and 6g0Cé250,
respectively.

The pulse profile for model 0g9Cg250 looks very much like that for model 6y but
with larger errors, so it is not shown. The y? contours for model 50Cgo501 are
shown in Figure 3.6. The size of the 1-04cgen contours in Figures 3.5 and 3.6 are very
similar, suggesting that the confidence contours for one particular mock observation
are mainly dominated by the parameter degeneracy.

From Table 3.2, the standard deviations of the parameters for the low count-rate
model are ~2-3 times as large as those of model 0gy. The factor of two is expected
purely on statistics (from the factor 4 reduction in counts). The actual degradation is
somewhat worse, likely because partial degeneracy between the parameters makes the
parameter determination degrade more rapidly than the errors. Model 0g9Cpga50 still
gives well-determined parameters even at the lower count-rate value. The accuracies
in M and R determination are 2% and 4% respectively, for the low count-rate case.

3.3.5 Effect of Compactness

Changes in the compactness ratio (M/R) are expected to impact the quality of the fits,
since the compactness affects the pulse amplitude Amp (evident in equation (3.1)).
Increasing the compactness decreases Amp, which might be expected to decrease the
precision and/or accuracy of the fits. To test this effect, we generated models with
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differing values for the compactness ratio, but the same values of the projected spot
velocity 5.

We created two models similar to model A with a larger and smaller compactness
ratio, (M/R)p; and (M/R),,, and generated a set of pulse shapes with Poisson noise.
The results of the fits can be seen in Table 3.2. All three models with the same value
of B have similar accuracy and precision for most of the parameters. For instance, the
accuracy of determining the mass ranges from 4-5%, while the precision ranges from
6-7%, so the change in compactness does not greatly affect the fits. However, while
there is little change in the precision of the radius measurement (9-10%), in the case
of the low compactness model the accuracy was improved.

As a further test on the effect of compactness, model Sy;(M/R)y; was created to
compare with the high spot co-latitude model 65y. The parameters were the same
except that 0 was adjusted to give the same 3 as model fg9. This also necessitated that
Amp was somewhat lower than model 0gg (see equations (3.1) and (3.2)). Previously
for model 6gp, the accuracy and precision for both M and R were better than 1%; by
fitting model Bp;(M/R)pi, we found that increasing the compactness degrades both
the accuracy and precision in M and R, but only so that they range from 1-3%.

From these results, given a value of 3, it appears that the accuracy and precision
to which the other parameters can be determined does not strongly depend on the
compactness ratio of the star. Thus, our fit results would not be significantly different
if we had chosen a different M and R for the fiducial model A.

3.3.6 Effect of Spin Frequency

The last parameter we adjusted to be different from the fiducial model was vgpin. We
compared model A (vgpin = 600 Hz) with a 400 Hz model, labelled v409. Model vago
has all parameters the same as model A except vgpin, and hence a different projected
spot velocity (3) (see Table 3.1). This model has parameter values very similar to
the “low inclination” model presented by Lo et al. (2013).

The fits results are summarized in Table 3.2. The precision (standard deviations)
and accuracy (difference of mean and true values) are worse for model vy, as ex-
pected. For M, R, M/R, and Amp, the precisions are about twice as large for the
400 Hz model as for the standard 600 Hz model. However, S has the same absolute
precision for the 400 Hz model as for the 600 Hz model.

3.3.7 Effect of Incorrect Model or Additional Free Parameters

Along with the sets of trials summarized in the previous subsections, we tested some
of the model assumptions used in the fits. These tests include the assumptions we
have made about the spectral emissivity, spot size, presence of a constant background
flux, and the star’s shape. Errors are not reported for the tests of this subsection since
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fits were only carried out on the A1l synthetic data set, the first Poisson realization of
the Model A theoretical curve.

We first tested the effect of using the wrong atmosphere model in the fits. To do
this, we used the synthetic data corresponding to the Al model (see Figure 3.1) as
input to Ferret. The synthetic data were generated using the Hopf limb-darkening
function, but Ferret was run assuming a perfectly isotropic blackbody spectrum. The
algorithm was unable to find a good fit after 300 generations (about double the number
of generations normally required) and the best fit had y? = 316.6 for 59 dof. The
best-fit M and R were 1.21 Mg and 11.3km, which are quite inaccurate (24.4% for
M, 5.8% for R). As was seen by Lo et al. (2013), one does not get a good fit using
an incorrect atmosphere model.

We next tested fitting a variable spot size model to a pulse profile that was gener-
ated with an infinitesimally small spot. The infinitesimal size of the spot is a necessary
assumption due to the large number of trials carried out in this work. In order to
model a larger spot, the spot has to be cut into a number of segments, and separate
computations of the deflection angles must be computed, increasing the run time lin-
early with the number of segments. The pulse shape for a large spot tends to have a
lower pulse amplitude than a small spot centred at the same latitude, due to the effect
of averaging over many latitudes. As a test of this assumption, we used the Al data
set as input to the Ferret algorithm, but added the angular radius p of the spot as a
free parameter that was allowed to vary between 1°and 60°. The resulting best fit has
X2 = 59 (for 58 dof) and converged on an angular radius of p = 1°, the smallest angle
allowed. The best-fit M and R for this case are 1.51 My and 11.6 km. While these
values are less accurate (5.6% and 3.3%, respectively) than the best-fit value shown
in the first row of Table 3.3 corresponding to a fit with an infinitesimal spot, they are
within the 1-o limits computed for the set of model A fits. Since using multiple spot
segments leads to a significantly longer computation time, it was not feasible to use
variable spot sizes in this paper. However, in future work when real data are being
fitted, it will be necessary to allow the spot size to vary, and to compute the observed
flux from multiple spot segments.

We also tested the effect of allowing the temperature of the spot to be a free
parameter in the fitting program. The theoretical model was constructed with a spot
temperature of 2 keV (as measured in the comoving frame at the star’s surface).
The Ferret program was used to fit the data with the addition of a local temperature
parameter that was allowed to vary between 1 and 3 keV. The best fit returned
x? = 57.9 (for 58 dof), M = 1.67 Mg, R = 11.8km, and a temperature of 2.1 keV.
The accuracies in M and R are 4.8% and 1.7%, respectively. Although these M and R
values are within the 1-o limits for this data set, the addition of the extra parameter
does degrade the accuracy. This is most likely due to the degeneracy introduced since
we measure the redshifted temperature with the light curves. For the case of real
data, it would be important to allow the temperature to vary in the fits, since the
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temperature of the spot in the comoving frame is unknown. Furthermore, making use
of multiple energy bands would improve the accuracy of the temperature measured
at infinity.

The effect of an unknown background flux has been investigated in detail by Lo
et al. (2013), and for comparison we test it for one simple case. The synthetic data
set Al was constructed without a background count rate. We used this as input
and allowed Ferret to add two new parameters corresponding to a constant (in time)
background flux in each energy band. These background values were allowed to vary
between 0 and 1 (recall that our pulse profiles are normalized to 1). The resulting
fit had x? = 57.7 (for 57 dof), and the best-fit M and R were 1.52 Mg and 11.7 km.
M and R were accurate to 5.0% and 2.5%, respectively. It is possible to add a more
realistic background model by adding emission at a lower temperature from the rest
of the star (Lo et al. 2013; Elshamouty et al. 2016) or by adding light scattered from
the disk (Morsink & Leahy 2011), but at this point it is not obvious what the most
realistic model would be. Real data are also likely to contain non-negligible emission
from the surface of the neutron star outside the spot region and from the accretion
disk.

The effect of these tests on the best-fit values of M and R are summarized in
Table 3.4. These tests highlight the importance of having as realistic an atmosphere
model as possible, since fitting with the wrong model drastically affected the quality
and accuracy of the fits. Thus, this method provides a sensitive test for atmosphere
models. Adding a free parameter for the temperature, unknown background flux, or
spot size did not significantly detract from the accuracy in M and R, and our code
was able to replicate the additional parameter quite well. Ideally, for real data we
would allow these parameters to also vary in the fits, even if it is not feasible to do
so in the present study.

3.4 Discussion and Conclusion

We calculated pulse profiles for simulated thermonuclear burst oscillations from a
rapidly rotating neutron star as would be detected by a next-generation X-ray timing
observatory, such as ASTROSAT, NICER, or LOFT. The input neutron star param-
eters include mass M, radius R, emitting spot co-latitude 6, and observer inclination
i. We created 20 Poisson realizations of each test pulse profile, which allows us to
determine the errors in the derived model parameters, focusing on M and R. The re-
sulting pulse profiles were fitted with Ferret to analyze how well the input parameters
could be recovered (in both standard deviation and degeneracy-related uncertainty).

We find that the best-determined parameter is the projected velocity § of the spot
along the observer’s line-of-sight. The next best-determined are M and R. Compact-
ness (M/R), sinisinf, and the pulse amplitude Amp are also well-determined, but
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cosicosf, i, and @ are poorly determined. It is clear that more rapidly rotating neu-
tron stars produce pulse profiles with strong harmonics, which yield better constraints
on their parameters. Also, neutron stars viewed at larger i with spots at a larger
produce more modulated pulse profiles and therefore better constraints. However,
we also found that count-rate is important, so the best targets will be those systems
which have the optimal combination of large vspin, large 6 and ¢, and bright pulsa-
tions. For our best cases presented here, M and R were determined to 1% accuracy
and precision, but even for many of the less optimum cases M and R were determined
to ~ 5% accuracy and precision, which is a very valuable result.

We carried out a number of parameter comparison tests, to see how different input
parameters can affect the constraints on M and R. The more asymmetry and larger
pulse amplitude, the better the accuracy and precision in M and R from pulse profile
fitting. The asymmetry in the pulse profile is controlled by ; a larger 8 results from
increases in 6, 4, and vepin. A larger 6 or ¢ also gives a larger Amp. Compactness
(M/R) has a small effect on parameter determination; for more compact stars it is
somewhat more difficult to determine parameters. This is caused by the increased
visibility of the surface by the observer and the resulting decreased pulse amplitude.
Including oblateness in the pulse profile model improves the accuracy and precision
of M and R determinations. This is due to a reduced ¢ — € degeneracy in the oblate
models.

Photon count-rate has a critical effect on parameter determination. On simple
grounds, increasing the counts by a factor of four reduces the error by a factor of
two. However, in practise we found a factor of three improvement in parameter
determination. The extra gain is likely the result of reduced parameter degeneracy
for data with smaller errors.

We assumed the spot temperature to be a known definite quantity. In practice, this
is determined by a spectral fit to the data using multiple energy bands. We calculated
the simulated pulse profiles using only two energy bands, so we have underestimated
the uncertainties in M and R that enter through the uncertainty of the temperature.
In principle, it is not difficult to use more energy bands (e.g., Lo et al. 2013). However,
there is a trade off that the signal-to-noise in each energy band falls as more, and thus
smaller, energy bands are used. Determining an optimal number of energy bands that
allows a determination of the spectrum while providing enough statistics to constrain
the star’s properties should be the topic of a future study.

We also took the background count rate to be negligible in comparison with the
count rate from the neutron star hot spot. For a real observation, the background
comes from three sources: instrument background, sky background, and source con-
tribution to background. Instrument background depends strongly on the instrument
design and mode of observation. Source background can consist of emission from the
surface of the neutron star outside of the spot region and from the accretion disk.
However, subtracting the persistent pre-burst emission from the X-ray burst flux is
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not an appropriate source-background subtraction. As shown in Worpel et al. (2013),
the persistent emission can be different during the burst, possibly due to an increased
accretion rate onto the neutron star. A method such as weighted-photons Bayesian
Blocks (Worpel & Schwope 2015) should be incorporated into the analysis pipeline to
subtract the appropriate level of source-background emission.

A limitation of our study is that we did not include the effect of frequency drift,
which is normally seen during the rise of an X-ray burst (Watts 2012). When dealing
with real data, it would be important to either remove sections of the data where
frequency drift is observed, or to use a reliable method for modelling the pulse shape
with phase offsets to account for the drift. An additional complication for the sources
that also have accretion-powered pulsations is that the pulsations may contaminate
the X-ray burst oscillations. At this time these are open problems associated with
modelling X-ray burst oscillations.

In this paper we have demonstrated that an evolutionary optimization and pa-
rameter search methods can be used to effectively constrain the mass and radius of a
neutron star with pulsed emission. We focussed on burst oscillations seen in Type I
X-ray bursts, however the routines can also be used to model accretion-powered pul-
sations or rotation-powered pulsations once the appropriate spectrum and beaming
functions have been changed. In particular, the rotation-powered pulsars that will be
studied by NICER (see Ozel et al. 2016) can be analyzed using the methods discussed
in this paper.
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Figure 3.4: Topr: Pulse profiles for model 037 in two energy bands. BorToMm: X2 contours in the
M — R plane for fitting synthetic data from model #371. Symbols and lines have the same meaning
as in Figure 3.1. The best fit values for mass and radius for this Poisson realization are 1.71 Mg
and 15.29 km, with x2 = 58.7 for 59 dof. The approximate 1-0degen limits for mass and radius are
0.11Mg and 1.1km.
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Figure 3.5: Top: Pulse profiles for model fgp in two energy bands. Borrom: x2 contours in the
M — R plane for fitting synthetic data from model fgp1. The symbols have the same meaning as in
Figure 3.1. The best fit values for mass and radius for this Poisson realization are M = 1.63 My and
R = 12.1km, with x? = 49.6 for 59 dof. The approximate 1-0gegen limits for mass and radius are
0.06 M and 0.7 km.
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Figure 3.6: X2 contours in the M — R plane for fitting synthetic data from model 0goCe2501. The
symbols have the same meaning as in Figure 3.1. The best fit values for mass and radius for this
Poisson realization are M = 1.62Mg and R = 12.0km, with x? = 53.8 for 59 dof. The approximate
1-0degen limits for mass and radius are 0.06 Mg and 0.8 km.
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Phase-Resolved Spectroscopy of the
Lower kHz QPO in 4U 1608-52

A. L. Stevens, P. Uttley, and D. Altamirano

To be submitted to Monthly Notices of the Royal Astronomical Society

Abstract

Kilohertz quasi-periodic oscillations (kHz QPOs) are the most rapid (quasi-)coherent
kind of variability that have been detected in the light curves of accreting neutron
star X-ray binaries. They often appear in pairs, with the lower kHz QPO the more
coherent signal. Whereas the upper kHz QPO may arise from Keplerian motion in the
inner accretion disc, the origin of the lower kHz QPO remains unclear. One way to
investigate the lower kHz QPO is with spectral-timing, in which the energy and time
variability of the photons are simultaneously analyzed. Previous work using the rms
spectrum revealed that the variable emission is a Comptonized blackbody, consistent
with that expected from the boundary layer between the accretion flow and neutron
star surface. Furthermore, the lag-energy spectra and covariance spectra indicate that
the lower kHz QPO arises from a more complex energy-dependent variability than
just an overall modulation in the flux normalization. To better interpret the spectral
variability, we present phase-resolved spectroscopy of a kHz QPO for the first time,
using a method based on the energy-dependent cross-correlation function (CCF). The



4 kHz QPO Phase-Resolved Spectroscopy

best-fitting spectral parameterisation requires the power-law index, high-energy cut-
off temperature and seed blackbody temperature of the Comptonized emission to vary
with QPO phase. Additionally, the variations in these three parameters show small
but non-zero phase differences, which together can explain the previously observed
lag-energy dependence. We suggest that these spectral variations could be explained
by a “breathing” oscillation in the Comptonizing boundary layer; this possibility can
be explored in greater detail with current and future X-ray missions such as AstroSat,
NICER, eXTP, and STROBE-X.
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4.1 Introduction

4.1 Introduction

Low-mass X-ray binaries (LMXBs) show a range of variability types and time-scales
in their X-ray emission, with quasi-periodic oscillations (QPOs; van der Klis et al.
1985) being particularly enigmatic. LMXBs containing neutron stars are known to
exhibit QPOs in the frequency range 300 — 1200 Hz, known as kilohertz (kHz) QPOs
(van der Klis et al. 1996b; Strohmayer et al. 1996b). The frequencies of kHz QPOs
are consistent with the dynamical timescale of Keplerian orbital motion at the inner
edge of the accretion disc, where the accretion flow interacts with the surface of the
neutron star at the so-called boundary layer (e.g., Gilfanov et al. 2003). Dissecting the
kHz QPO signal could tell us about the nature of accretion in the strong gravitational
field closest to the neutron star, and potentially constrain the physical properties of
the neutron star itself.

Often ‘twin’ kHz QPOs are observed simultaneously (with some weakly varying
separation in peak frequency, see, e.g., van der Klis 2006b for a review), leading to
a distinction between so-called upper and lower kHz QPOs. These types can also
be seen individually and identified according to characteristic properties, such as
their coherence. The upper kHz QPOs are relatively incoherent, with quality factors
(QPO centroid frequency divided by the Full Width at Half Maximum, corresponding
roughly to the number of cycles over which the oscillation remains coherent) Q < 20
while lower kHz QPOs are more strongly coherent (see, e.g., Berger et al. 1996;
Meéndez et al. 1998b; Méndez & van der Klis 1999; Méndez et al. 2001; Di Salvo et al.
2001, 2003; Méndez 2006; Barret et al. 2005, 2006), showing @ as high as 250, once
random walk variability of the QPO frequency on minutes time-scales is accounted
for (see Barret & Vaughan 2012, and references therein).

The first theoretical models for the origin of kHz QPOs assumed orbital motion
of bright blobs of accreting material at the inner edge of the accretion disc (e.g.,
Stella & Vietri 1999; Lamb & Miller 2001). However, it is difficult to explain the very
high coherence of the lower kHz QPO with orbital motions of blobs, which would be
difficult to maintain in a turbulent accretion flow over the hundreds of orbits required
(e.g., Barret et al. 2005, and references therein). Models that do not invoke orbital
motion involve quasi-periodic perturbations in the soft photon flux that are Compton
up-scattered (e.g., Lee et al. 2001; Kumar & Misra 2014, 2016 and for a more detailed
review of kHz QPO models, see van der Klis 2006a,b; Kumar & Misra 2014 and
references therein). However, while potentially explaining some of the characteristics
of the QPO emission, such models cannot naturally explain the origin of the oscillation
signal itself.

Comparison of the spectral and timing evolution of neutron star LMXBs shows
that kHz QPOs arise in intermediate states where both disc and Comptonized emis-
sion components are strong (e.g., van Straaten et al. 2003; van der Klis 2006b; Altami-
rano et al. 2008; Zhang et al. 2017, and references therein). Further insight into the
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origin of the kHz QPOs can be gained from studying their spectral-timing properties
which reveal the timing properties as a detailed function of energy (see Uttley et al.
2014 for a review of spectral-timing methods). For example, Gilfanov et al. (2003)
measured the Fourier-frequency resolved rms spectrum of both upper and lower kHz
QPOs to show that it is the Comptonized emission, associated with the boundary
layer, which is varying at the QPO frequency, and not the disc. More recently, Peille
et al. (2015) and Troyer & Cackett (2017) used the more sensitive ‘covariance spec-
trum’ approach to demonstrate that the shape of the variable spectrum appears to
be harder than that of the time-averaged spectrum, perhaps suggesting an oscillation
arising in a specific region of the boundary layer.

Besides studying the spectral shape of the QPO emission, causal information can
be obtained using Fourier time-lags, which reveal that for the lower kHz QPO, soft
photons lag hard photons (Vaughan et al. 1997, 1998; Kaaret et al. 1999; Barret
2013; de Avellar et al. 2013; Peille et al. 2015; de Avellar et al. 2016; Troyer & Cackett
2017) while there are either the opposite hard lags or no clear lag-energy dependence
for the upper kHz QPO (de Avellar et al. 2013; Peille et al. 2015; de Avellar et al.
2016). The soft lags have been variously explained as due to X-ray reverberation of
Comptonized emission from the blackbody emitting disc (Barret 2013) or as due to
Compton scattering including a substantial back-heated component of seed photon
emission (Lee et al. 2001; Kumar & Misra 2014, 2016). Detailed modelling of the
expected reflection spectrum appears to rule out a reverberation origin (Cackett 2016),
but that explanation may still hold for the hard lags seen for the upper kHz QPO
(Peille et al. 2015).

The Fourier-frequency domain spectral-timing methods described above have pro-
vided some useful insights into the kHz QPO phenomenon, but their results can be
difficult to interpret in the absence of any specific model predictions. Furthermore,
these methods treat the variability amplitude and lag information separately. For
quasi-periodic signals, phase-resolved reconstruction of the spectrum provides a more
intuitive approach to studying the spectral variability, since it combines both ampli-
tude and causal information in a manner that is consistent with the (quasi-)coherent
nature of the signal. Recently, techniques have been developed to reconstruct the
spectral evolution of the QPO signal as a function of its phase, either via reconstruc-
tion of the waveform through measuring the QPO phase within a coherence time
(Ingram & van der Klis 2015; Ingram et al. 2016), or by using the cross-correlation
function (CCF) to ‘phase-lock’ the QPO variations in narrow energy channels to a
broader reference band (Stevens & Uttley 2016).

The latter CCF approach was first used at lower-frequencies to study the Type B
QPO in the black hole LMXB GX 339-4, but it is particularly suited to the study of
high-frequency QPOs where coherence times are too short to accurately recover the
QPO phase via the method of Ingram & van der Klis (2015). The relative coherence
and strength of the lower kHz QPOs in neutron star LMXBs makes them particu-
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larly suitable targets for such a phase-resolved study, which could shed light on this
enigmatic variability signal. Therefore, as a test case for the study of kHz QPOs, in
this paper we adapt the CCF method of Stevens & Uttley (2016) to determine, for
the very first time, the spectral evolution of a neutron star LMXB on the lower kHz
QPO time-scale, as a function of the QPO phase.

In Section 4.2, we explain the data selection and the timing and spectral properties
of the data. We then outline our analysis technique for phase-resolved spectroscopy
of the lower kHz QPO in Section 4.3 and present our results in Section 4.4. The
interpretation and implications of these results for understanding the kHz QPO are
discussed in Section 4.5, and our conclusions are found in Section 4.6.

4.2 Timing and Spectral Properties of the Data

The target of our study is 4U 1608-52, a neutron star LMXB transient that regularly
goes into outburst (e.g., Christian & Swank 1997), is X-ray bright, and often shows
kHz QPOs. It is classified as an atoll source due to the shape of the tracks it follows on
the colour-colour diagram (Hasinger & van der Klis 1989). The distance to 4U 1608—
52 is estimated to be 3.2 £ 0.3 to 4.1 £ 0.4kpc (via X-ray burst photospheric radius
expansion measurements; Murakami et al. 1980; Nakamura et al. 1989; Galloway et al.
2008) to 5.87%:0 kpc (via interstellar extinction modelling; Giiver et al. 2010).

We use data from the March 3 1996 Rossi X-ray Timing Explorer (RXTE; Bradt
et al. 1993) observation of 4U 1608-52 (obsID 10072-05-01-00), obtained with the
Proportional Counter Array (PCA; Jahoda et al. 1996). This observation is partic-
ularly useful for the study of the lower kHz QPO, since the source was relatively
bright during this time and the QPO is relatively stable in frequency, hence it has
already been used as a test case for the study of spectral-timing and we can compare
our results with the previous works (e.g., Berger et al. 1996; Cackett 2016). The
observation consisted of three RXTE orbits, during which all 5 Proportional Counter
Units (PCUs) were switched on and the PCA collected data in 64-channel event-mode
with 122 us time resolution (E_125us_64M_0_1s). No thermonuclear bursts are seen
in the data, and only the lower kHz QPO, is detected during this time. We obtained
Good Time Intervals (GTIs) corresponding to times when all of the following crite-
ria are satisfied: five PCUs are on, elevation angle > 10°, target offset < 0.02°, and
time since the South Atlantic Anomaly passage > 30 minutes. The background was
minimal compared to the source and was not fully subtracted.

To compute the dynamical power spectrum and cross spectrum, the data were
split into 32s segments, which gave 195 segments in total (6.24ks). We generated
a 3-20keV (event-mode energy channels 6-35 inclusive) dynamical power spectrum
of the 5 PCUs combined (Figure 4.1) using our own code.! The sudden drop in

1See Appendix 4A for URL.
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QPO frequency at around segment 30 is due to the gap between the first two orbits
that is not shown. The dynamical power spectrum was re-binned to 1 Hz frequency
resolution to have adequate signal-to-noise, before being fitted to obtain the QPO
centroid frequency per segment. We then used the fitted QPO centroid frequency
to determine how much to shift each segment Fourier transform by to line up the
QPOs at 835 Hz (the unshifted average centroid frequency; see Méndez et al. 1998a
for the shift-and-add technique). The shifting was done by zero-padding the array for
each segment in the frequency domain. The effects of our frequency-shifting approach
on the QPO power spectrum is shown in Figure 4.2, which shows the time-averaged
power spectrum before (in red) and after (in black) the frequency shift is applied.
The shifted QPO signal is stronger, narrower and more symmetric than the unshifted
signal, making it more suitable for our spectral-timing analysis. The quality factor of
the QPO in the shifted power spectrum of all 5 PCUs is Q = 192.

860
855 7
850 £
62
5845 %,
>840 ° 3
c 0]

(O]

3835 4'§
2 5
w 830 3 c
©
825 )
&

820

815

25 50 75 100 125 150 175
Segments

Figure 4.1: Dynamical power spectrum of the lower kHz QPO with all 5 PCUs combined in the
energy range 3—20keV. Each segment of data is 32 seconds long. The colour mapping shows the
amplitude of the power spectrum with Leahy normalization. The QPO centroid frequencies in each
segment were fitted for in XspEc, and are indicated with the white circles. We see that the QPO is
fairly narrow in each segment of data, and rapidly changes frequency throughout the observation.
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Figure 4.2: Unshifted (red) and shifted (black) time-averaged power spectra, for all 5 PCUs in the
energy range 3—20 keV. The vertical orange line corresponds to the assumed QPO centroid at 835 Hz.
The quality factor of the shifted QPO shown here is Q = 192.

We applied the same shifting to the segments of the cross spectrum in each energy
channel. By shifting each segment of the data to line up the QPOs before averaging
the segments together, we are assuming that any interesting spectral-timing behaviour
is dependent on the relative phase of the QPO cycle, not on the frequency value. Fol-
lowing the spectral-timing approach of Uttley et al. (2014) we improve cross-spectral
signal-to-noise by crossing individual ‘channels of interest’” with a broad reference
energy band, for which (following Stevens & Uttley 2016) we use a different set of
detectors, to ensure complete statistical independence. Thus, the channels of interest
use data from PCUs 2—4 and the reference band data is from PCUs 0-1. Figure 4.3
shows the shifted and averaged cross spectrum amplitude in each channel of interest,
with Leahy normalization (Leahy et al. 1983). Each channel’s cross spectrum was lin-
early re-binned to a frequency resolution of 0.25 Hz (from 0.03125 Hz) to improve the
signal-to-noise. We see in Figure 4.3 that the lower kHz QPO amplitude is strongest
relative to the noise level at around 8-9keV. Furthermore, the QPO amplitude is
weak compared to the noise outside 3-20keV, the energy range in which we fit the
energy spectra in Sections 4.2.2 and 4.4.
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Figure 4.3: Cross spectrum amplitude of the lower kHz QPO per detector energy channel, using
PCUs 0-1 for the reference band and PCUs 2-4 for the channels of interest. The averaged cross
spectra per energy channel have been shifted per segment using the offset computed from the dy-
namical power spectrum. The horizontal white line indicates 835 Hz, the value to which the QPO
centroids were lined up. It is evident that the shift-and-add computed from the dynamical power
spectrum appropriately lines up the QPO peaks in the cross spectrum, too.

4.2.1 Lag-energy spectrum

We computed the lag-energy spectrum for the QPO over 825-845 Hz using our own
code,! following the outline in Uttley et al. (2014). The lag-energy spectrum indicates
the phase information of the cross-spectrum, so it compliments the basic amplitude
information shown in Figure 4.3. For completeness, we note again that each segment
of the cross spectrum per energy channel was shifted to a centroid value of 835 Hz.
The lag-energy spectrum, plotted in Figure 4.4, crosses the zero lag mark (dashed
line) at the average energy of the QPO signal in the reference band. The observed
lags are in the sense that soft photon variations lag those at harder energies and are
consistent with those shown in Vaughan et al. (1997, 1998), Barret (2013) and Cackett
(2016) for this same observation. We will come back to the lag-energy spectrum in
Section 4.4.3, where we check our phase-resolved spectroscopy results by simulating
the corresponding lag-energy spectra and comparing them with the data shown here.
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Figure 4.4: Lag-energy spectrum over the frequency range 825-845 Hz, computed from the shifted,
averaged cross spectrum. A positive sign indicates that the variation in that energy channel arrived
after the variation in the broad reference band.

4.2.2 Time-averaged energy spectrum

We extracted the time-averaged energy spectrum from the three orbits in obsID 10072-
05-01-00 in 64-channel event-mode energy binning. We elected to use the event-
mode data for fitting the time-averaged energy spectrum since it has the same energy
binning as the phase-resolved spectra fitted in Section 4.4.

For fitting the time-averaged and phase-resolved energy spectra we consider two
variants based on the 3-component spectral model from Lin et al. (2007) (see Armas
Padilla et al. 2017 for the most recent use of this type of model applied to 4U 1608-52
data). Model 1 has a straightforward multi-colour disc blackbody (DISKBB; Mitsuda
et al. 1984), a power-law with a low- and high-energy cut-off for the Comptonized
emission (NTHCOMP; Zdziarski et al. 1996; Zycki et al. 1999), and a broad iron line
(gAUSS). Model 2 contains all the components of model 1 and adds to it a single-
temperature blackbody (BBODYRAD) with a temperature that is tied to the low-energy
cut-off temperature of NTHCOMP.

Physically, the Comptonized component is thought to correspond primarily to
the emission from the boundary layer rather than a more diffuse ‘corona’, since it
has a distinctly lower-energy cut-off than the Comptonized components seen in black
hole systems and in lower-accretion rate states of accreting neutron stars (Done &
Gierliniski 2003; Done et al. 2007). The additional single-temperature blackbody com-
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#  Time-averaged spectral model %/ d.o.f.

1 TBNEW __GAS X (DISKBB + NTHCOMP + GAUSS) 13.58/20
2 TBNEW_ GAS X (DISKBB + BBODYRAD + NTHCOMP + GAUSS) 13.30/19

Table 4.1: A summary of the model fits to the time-averaged event-mode spectrum. The spectra
are plotted with the different models and components in Figure 4.5.

ponent in model 2 is included to allow for the possibility of some visible component
of accretion-driven thermal surface emission from the neutron star (e.g., providing
the source of seed photons for the boundary layer Comptonizing region). For sim-
plicity, we only include a single Gaussian component to model iron line emission,
likely from the disc, but we note that it should be accompanied by a hard reflection
continuum. XSPEC models corresponding to reflection of a low-temperature Comp-
tonization continuum do not yet exist, and so rather than including reflection for an
incorrect continuum, we choose to neglect this component but note that its variability
in the phase-resolved spectra (if any) can be inferred from variations of the iron line
modelled by the Gaussian component. Where appropriate, we will comment on the
effects on our phase-resolved results of neglecting the reflection continuum.

Using XSPEC version 12.9.11 (Arnaud 1996) we fitted the energy spectra in the en-
ergy range 3-20keV. The solar abundance table was set to vern (Verner et al. 1996)
and the photoionization cross-section table was set to wilm (Wilms et al. 2000). The
absorption component used is TBNEW _GAS version 2.3.2.2 Here and in Section 4.4,
the neutral hydrogen column density Ny was frozen at 1.07 x 10?2 (as determined
by Armas Padilla et al. 2017 for a recent soft-state observation of the source). The
systematic error was set to 0.6 per cent as in Cackett (2016). To ensure proper con-
volution with the broad PCA instrument response, we used the energies command
to evaluate the models in the range of 0.5-50keV in 1000 logarithmically-spaced bins.

A summary of the models and their fits to the time-averaged spectra are in Table
4.1. The spectrum of model 1, total fitted model with components, and ratio of the
data to the total model (to show residuals) is plotted in Figure 4.5. We find that
models 1 and 2 show residuals without any clear structure. Model 2 requires a negli-
gible contribution from the single-temperature blackbody component, implying that
the seed photon source for the Comptonized region is not directly visible. However, to
allow for the possibility that the single-temperature blackbody component is required
once phase-variations are considered, we will continue to apply both models in the
phase-resolved spectral fits.

The RXTE PCA spectral correction curve PCACORR (Garcia et al. 2014), which
reduces spectral systematic errors to ~ 0.1 per cent, is not available for data taken
during Gain Epoch 1 of RXTE’s operation, so we could not apply this correction

2Developed by J. Wilms et al.: http://pulsar.sternwarte.uni-erlangen.de/wilms/research/tbabs/
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Figure 4.5: The time-averaged event-mode spectrum fit with model 1, showing the ratio of the total
model with the data. The data are shown as black open circles, and the combined model is in solid
black. The errors on the data represent the statistical 1o confidence interval. The disc multi-colour
blackbody is in dotted red, the boundary layer power-law is in dash-dotted purple and the Gaussian
component associated with reflection from the disc is in dashed green. Since for model 2 the surface
single-temperature blackbody is negligibly small, the fitted spectrum and residuals are not visibly
different than model 1.

directly to our spectra. Due to the instrument requirements for gain shifting, specific
event mode channels may not be assigned any counts, thus it was necessary for Stevens
& Uttley (2016) to ignore detector channel 11 (at ~4.3keV in Gain Epoch 1). In the
present analysis we can include all detector channels, since we combine data from
multiple detectors. Note however that channel 11 still records systematically lower
counts than adjacent channels, as can be seen in Figures 4.3 and 4.6.

4.3 Method

We followed a similar method to obtain phase-resolved spectra as in Stevens & Uttley
(2016), with some differences needed to best apply this technique to the lower kHz
QPO from 4U 1608-52, which we highlight here. For further details and explanation
of the method, we refer the reader to Stevens & Uttley (2016).

As explained in Section 4.2, we used the dynamical power spectrum of all 5 PCUs
to determine the QPO centroid frequency in each 32-second segment of data. Using
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these centroids, we then computed the offset needed to shift the QPO to 835Hz in
each segment and applied it to the cross spectrum in each energy channel. We then
averaged the segment cross-spectra together per energy channel to produce a mean
cross spectrum per energy channel that has the QPOs lined up. The software to
reproduce this can be found at the URL in Appendix 4A.

4.3.1 Filtering

The shifted and combined lower kHz QPO is a very narrow feature in frequency
space that stands out from the uncorrelated Poisson noise component in a narrow
frequency range (see Figure 4.2). However, to make use of the full time resolution
of the data, the CCF method requires that cross spectra are obtained up to high
frequencies (4096 Hz). Since the CCF is the inverse transform of the Fourier cross-
spectrum, it includes all frequency information, meaning that the kHz QPO signal
in the CCF is dominated by the strong Poisson noise component associated with the
higher frequencies. Therefore, in order to reduce the noise, we filtered the averaged
cross spectra in each energy channel to keep only the lower kHz QPO. Note that this
step is additional to the approach used by Stevens & Uttley (2016) to study the Type
B QPO in GX 339-4. This is because in the CCF the lower frequency Type B QPO (at
5.2 Hz versus 835 Hz here), dominated over the noise at the 7.8125 ms time-resolution
studied, so that no filtering was required.

The cross spectra were re-binned to a frequency resolution of 0.25 Hz for fitting
purposes, and a Leahy normalization was applied to the cross spectrum amplitude
(Leahy et al. 1983). We fitted the cross spectrum amplitude in XSPEC over the fre-
quency range 700 — 1000 Hz (Arnaud 1996), with a power-law plus single Lorentzian
component. The power-law index was fixed at 0 to match the flat noise level due to
Poisson noise (which is close to zero in cross-spectral amplitude, subject only to the
small bias noted by Vaughan & Nowak 1997), the Lorentzian centroid energy was
fixed at 835 Hz, the Lorentzian width was tied across each cross spectrum, and the
power-law normalization and Lorentzian normalization were free.

With the resulting fits, we constructed a ratio at each Fourier frequency of the
Lorentzian amplitude to the entire model amplitude, for the shifted and averaged cross
spectrum in each energy channel. Then taking this ratio as our filter, we multiplied
it by the complex cross spectrum at full (0.03125 Hz) resolution to get a filtered cross
spectrum. At this stage, we apply a normalisation to the raw cross-spectrum of
2/N, where N is the number of time bins per light curve segment used to measure
the cross-spectrum (262144). This ensures that our cross-spectrum is in units of
(count s~1)2 /Hz. We checked that in the filtered cross spectra, the integrated rms of
the QPO is preserved in each energy channel. This shifted, averaged, filtered cross
spectrum per energy channel was then used to compute the cross-correlation function.
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4.3.2 Cross-correlation function

To get the cross-correlation function (CCF), we took the inverse discrete Fourier
transform of the filtered cross spectrum, as outlined in Stevens & Uttley (2016). The
CCF was normalized by the integrated absolute rms of a Lorentzian model of the QPO
in the shifted, averaged reference band power spectrum. This normalization removes
the contribution of the reference band amplitude to the CCF, so that the CCF contains
only contributions from the energy channels of interest relative to the reference band.
To obtain the reference band QPO rms, we fitted the reference band power spectrum in
XSPEC with the model POW + LOR. As with the cross-spectral fitting in Section 4.3.1,
the power-law index was fixed at 0, the Lorentzian centroid energy was fixed at 835 Hz,
and the Lorentzian width, power-law normalization, and Lorentzian normalization
were left free. It was not necessary to tie any parameters across spectra from different
channels of interest since we only fitted the single reference band power spectrum
here.

As discussed in Stevens & Uttley (2016), the CCF yields a count rate per energy
channel in each time-delay bin, as deviations from the mean count rate per energy
channel. The energy-dependent CCF is plotted in Figure 4.6 as the CCF amplitude
divided by the mean count rate per energy channel, i.e.,equivalent to the fractional
deviation from the mean spectrum. It shows the now-periodic (since it is locked in
phase to the reference energy band) signal of the QPO clearly as a series of flux rises
and falls. The amplitude of the variation is much smaller at lower energies than
at higher energies, consistent with what is known from the fractional rms spectrum
(Berger et al. 1996).

The final step is to add the energy-dependent CCF values in each time-delay bin
to the mean energy spectrum in the same count-rate units, to produce phase-resolved
spectra that can be fitted using standard spectral models in XSPEC. The fits to the
phase-resolved spectra are described in Section 4.4.

4.3.3 Parameter variation fitting and bootstrapping

In fitting the phase-resolved spectra in Section 4.4, we found that a combination of
untied spectral parameters give a statistically and physically meaningful result. These
untied spectral model parameters are not the same as the flux variations inferred from
the CCF, but their variations can still be approximated with a sinusoidal curve, which
can be used to estimate the amplitude and relative phase of the parameter variations.
Following the protocol of Stevens & Uttley (2016), we fitted those parameter variations
with a curve including a fundamental and its harmonic:

y(t) = Ay sin(2nt + ¢1) + Agsin(dnt + ¢2) + D, (4.1)

where t is time, A; and A; are amplitudes, ¢; and ¢, are phase offsets, and D
is a y-axis offset. We obtain values of A1, As, ¢1, o, and D, and further use these
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Figure 4.6: The energy-dependent cross-correlation function (CCF). The colour map shows the
fractional deviation of the CCF amplitude from the mean count rate in each energy channel. The
QPO signal is clear, with a period of 9.8 time-delay bins corresponding to the centroid QPO frequency
of 835 Hz (~ 1.2 ms period).

parameters to determine an rms amplitude of the model curve for each untied spectral
parameter. Note that, since there are only 9.8 phase bins per QPO cycle and the
curves can vary steeply within a bin, we fit the average value of the model curve in
each phase bin, rather than the model evaluated at the bin centres. Later, we use the
model curves to determine a phase offset between varying parameters, and we use the
rms of the curves to determine the amplitudes of the parameter variations.

As emphasized in Stevens & Uttley (2016), the statistical fluctuations between
CCF time-delay bins are correlated with one another in a given energy channel. As
such, we cannot interpret the 2 fit statistic returned from the fits in the usual manner
(though we report it for completeness), meaning that we cannot estimate parameter
uncertainties from our model fits and uncertainties on the resulting sinusoidal fits to
parameter variations, in the usual way. To remedy this in a statistically rigorous way,
we follow our approach from Stevens & Uttley (2016) and use a bootstrap analysis to
determine the errors in model parameters and sinusoidal fits. Our bootstrap analysis
procedure entailed randomly selecting (with replacement) 195 CCF segments of the
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195 available to average together, constructing and fitting the phase-resolved spectra
with the designated model, and fitting the untied parameter variations as mentioned
above. For our 195 segments of data, we carried out 5422 iterations of this process,?
yielding errors and confidence contours on fit parameters and rigorous estimates of
the uncertainties on the relative phases of the model-parameter variations.

4.4 Results

We selected energy spectra at each time-delay bin of the CCF (hereafter, “phase bin”)
to fully cover four QPO cycles. Since the lower kHz QPO has a centroid frequency of
835 Hz and the data has a time resolution of 27135 (~ 122 us), one QPO cycle covers
9.8 phase bins. We used phase bins -20 to +20 (inclusive and including 0), giving 41
phase-resolved spectra (hereafter, “phase spectra”). The zero mark was defined to be
at phase bin -20, when the QPO is at a maximum in the CCF (see Figure 4.6). Note
that the choice of this zero mark is arbitrary, since only the relative phases of the
model component variations are physically relevant. For all phase spectra, the RXTE
PCA instrumental response matrix was determined for the combination of PCUs 2—4
(all layers and anodes) to match the data selection used for the channels-of-interest.

To fit the phase spectra in a systematic way, we followed the procedure explained in
Stevens & Uttley (2016), which we briefly re-cap here. We loaded the phase spectra to
fit simultaneously in XSPEC and began with all spectral parameters tied across phase
spectra. Then we systematically untied each parameter individually and assessed the
fit. The parameterisation with the lowest y? remained untied, and we investigated
whether a second parameter could be untied. This continued until the improvement
in x? was less than the change in the degrees of freedom (d.o.f.) of the fit. Note that
although x? cannot be used in a statistically rigorous way due to the correlation of
errors between phase bins, here we use it simply as a guide to whether a fit is improved
relative to the errors or not and hence set a criterion as to when to stop fitting. See
Table 4.2 for a summary of the best-fitting parameterisations to the phase spectra.
The details of the best parameterisation of each model are discussed in the following
subsections.

4.4.1 Model 1

Model 1, which in XSPEC terms is TBNEW _GAS X (DISKBB + NTHCOMP + GAUSS), is
the simplest of our two models. To effectively constrain the fits for so many spectra,
we chose constrained parameter ranges informed by our fits to the time-averaged
spectra. The disc blackbody temperature Tgisc was tied across all phase spectra and
was left free to fit in the range 0.5-1.5keV. In initial fits to the time-averaged event-

3Using M - (ln(M))Q, where M is the number of segments (Feigelson & Babu 2012).
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mode spectrum, we found that the parameter space had many local minima with
different Ngjsc values, so it was initially frozen at 265 (the estimated normalization
for an inner disc radius of 7GM/c?, binary inclination of 40°, and a distance of
7.8kpc), all the other parameters fitted, then Ngjs freed to fit in the range 150-750
and then all parameters fitted again. The power-law index I' was allowed the range
1.5 to 3.0, the high-energy cut-off temperature T, was allowed the range 2—-20keV,
the low-energy cut-off temperature T}, was allowed the range 0.7-3.5keV, the input
seed spectral type was frozen at 0 for a single-temperature blackbody seed spectrum
and the power-law normalization Npr, was left to be completely free. The iron line
centroid energy Fline was free in the range 5.5-7.5keV (given such a broad range
around the 6.4 keV rest energy because the GAUSS model doesn’t account for Doppler
shifting), the iron line width oji,e was free in the range 0.1-1.0, and the iron line
normalization Ny, was free in the range 0-1.

The full table of the systematic fitting for model 1 is shown in Appendix 4B in
Table 4.5. In this procedure, we tied all the free parameters together across the phase
spectra (Table 4.5 model ID 1.0.1), then stepped through untying one parameter and
fitting the spectra (model IDs 1.1.1-1.1.9). Then, we selected the best fit for one free
parameter (model IDs 1.1.5), kept that parameter untied, and stepped through the
other free parameters untying them one at a time (Table 4.5 model IDs 1.2.1-1.2.8).
Since the parameter space has many local minima, we repeated this procedure for the
second best fit with one free parameter (Table 4.5 model ID 1.1.6), shown in model
IDs 1.2.9-1.2.15. From there, we selected the best fit with two free parameters (Table
4.5 model ID 1.2.4), and stepped through untying a third parameter. We continued
adding untied parameters to the fit until the reduction in degrees of freedom was
greater than the improvement in the y?2 fit statistic. The best-fitting parameterisation
for model 1, model ID 1.3.3 from Table 4.5, has T}y, T, and I untied. The values of
each parameter for this best parameterisation are listed in Table 4.3.

To illustrate how the untied parameters vary between phase spectra, we plotted
their values in Figure 4.7. Figure 4.8 (left panel) shows two example spectra with
model-decomposition and data/model ratios, for the phase bins closest to phases
0 and 0.5 (respectively maxima and minima in the flux cycle). The spectra show
that the flux maximum corresponds to a harder spectrum, with I' at a minimum
in the parameter variation curve, and vice versa for the flux maximum. The other
parameters, Ty, and T, are also correlated with the variations in I'.

As outlined in Section 4.3.3 and shown in solid black in Figure 4.7, we fitted the
parameter variations with a curve to determine the phase of the parameter variation.
The first maximum of the curve, within the normalized phase 0-1, is marked with
a dashed black line, and the darker gray lines to either side of the black line mark
the error region from the fitted curve phase of the bootstrap samples. Our bootstrap
samples of the fitted parameter variations show that phases of different parameters are
correlated, thus it is more important to consider the phase differences (obtained from
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Component Parameter Value Notes
TBNEW GAS Ny (x10*2cm~2) 1.07 Frozen
DISKBB Taisc (keV) 0.8970 0% Tied
DISKBB Niise 2707 Tied
NTHCOMP r 2.024F Untied
NTHCOMP T, (keV) 2.7097 Untied
NTHCOMP T, (keV) 0.8697 Untied
NTHCOMP Npry, 0.20 £0.01 Tied
GAUSS Fine (keV) 7.071508 Tied
GAUSS line (keV) .09, Tied
GAUSS Niine 47704 x 1073 Tied

Table 4.3: Values of the best-fitting parameterisation for model 1. Mean values are listed for
the untied parameters, indicated by {. Errors on the tied parameters were computed for the 90%
confidence interval with xspEc’s MCMC error routine. XSPEC gives a fit statistic of x2 = 1981.2 for
1060 d.o.f. (fitting 41 phase spectra simultaneously).

the best fit to the data) and their distribution (which we obtain via our bootstrap
sample of parameter curves). For completeness sake, however, we show the histograms
of the curve phase and the maximum phase in Appendix 4B in Figures 4.16 and 4.17.

We found that the variation in Ty leads the variation in T' by 0.026 (1o confi-
dence interval from bootstrapping, centred on the median value: [0.015-0.047]), the
variation in Typ leads the variation in T, by 0.039 [0.031-0.06], and the variation
in T' leads the variation in 7, by 0.013 [0.011-0.018]. Histograms of the phase off-
sets between I' and Ty, and T, and I' are plotted in Figure 4.9. These distributions
show that the phase offsets between the physical parameters are significant. We will
show in Section 4.5 that these phase offsets are crucial for understanding how the
energy-dependent lags are related to the measured spectral variations.

We further computed the rms amplitude of each fitted curve, and found the fol-
lowing (measured from our best-fit curve, with 1o confidence interval from the distri-
bution of bootstrap sample rms): T' has an rms amplitude of 9.3% [8.2%-10.8%], T
has an rms amplitude of 8.1% [7.4%9.5%]|, and Tj,p, has an rms amplitude of 2.1%
[1.9%2.4%).

The error bars on T}, are quite large, but our systematic fitting procedure shows
that Ty, is indeed required to vary with QPO phase (see Table 4.5), and the large
error bars are due to degeneracy of the mean value of Tj}, with the value of Tyisc
which is tied across phase spectra. The parameter degeneracies for this and other
parameter combinations are demonstrated for a single phase bin (bin 5) in Figure 4.10.
Similar correlations are found between parameters in other phase bins. Due to these
degeneracies, absolute uncertainties on parameter values can be relatively large, but
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Figure 4.7: The varying parameters of model 1 that best fit the phase-resolved spectra across four
QPO cycles. Error bars are obtained from standard deviations of the bootstrapped distribution of
parameter values in each phase bin. In all three panels, the parameter variations are fitted with a
curve, shown in solid black, and the phase of the maximum of that curve is marked with a dashed
black line. The dark gray lines to either side of the black dashed line mark the lo error region on
the phase.
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Figure 4.8: Spectra with models at normalized phase 0 (in green circles) and 0.5 (in orange triangles)
overplotted in each window for models 1 (LEFT) and 2 (RIGHT). Lines of the model components have
the same meanings as in Figure 4.5. In model 2, the BBODYRAD component has a maximum of ~ 2%
that could not be shown on a scale that appropriately displayed the other components for comparison.
These spectra visually demonstrate the parameter variations explained in Sections 4.4.1-4.4.2.

the relative variations between parameters remain well-constrained, as shown by the
small but significant phase offsets that we are able to measure between the parameter
variation curves.

Despite the large degeneracy between Ty;sc and T, there is only a minimal correla-
tion between the fractional rms of the Ty, variation and the value of Ty, (Figure 4.11),
indicating that the fractional amplitude of T, variations does not depend strongly
on the specific realisation of model parameters. The same applies to the phase dif-
ferences, i.e., in response to changes in best-fitting Tyisc the T curve is shifted in
normalisation but not in phase, therefore the phase offset between blackbody seed
temperature and other parameters remains well-constrained.

Thus we conclude that, according to the model 1 parameterisation of the data, the
electron temperature, photon index and seed photon temperature of the Comptonizing
region all vary with QPO phase and are positively correlated with one another (i.e.,
close to being in phase), but with seed photon temperature varying first followed by
the photon index and then a change in electron temperature.

4.4.2 Model 2

Model 2, which in XSPEC terms is TBNEW _GAS X (DISKBB + BBODYRAD + NTHCOMP +
GAUSS), builds on model 1 by also including a separate seed blackbody for the neu-
tron star surface (BBODYRAD). In this sense, the model assumes that some part of
the blackbody component providing seed photons in model 1 is also visible to the
observer. The seed blackbody normalization Ny, was free to fit in the range 0-100,
and all other parameters were given the same ranges as in model 1. As with model
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Figure 4.9: Distribution of bootstrap sample phase offsets between parameter variations of untied
parameters for the best parameterization of model 1 (out of 5421 good bootstrap samples). The
phase offset between T, and Ty is the sum of the offset between T, and I' and between I' and
Tbb. As measured from the best-fit to the data, I' leads Te by 0.013 (1o confidence interval from
bootstrapping, centred on the median value: [0.011-0.018]), T}, leads I' by 0.026 [0.015-0.047], and
Tip leads Te by 0.039 [0.031-0.06].

1, initial fits with model 2 to the time-averaged event-mode spectrum showed that
the parameter space preferred a small Ngisc, so we initially froze Ngisc at 265, fitted
the rest of the parameters, then freed it and fitted again. The seed blackbody tem-
perature of the power-law was tied to the surface blackbody temperature within each
phase spectrum. The full table of systematic spectral fitting for model 2 is given in
Table 4.6.

The spectral parameter values for the best-fitting parameterisation of model 2
are listed in Table 4.4 (model ID 2.3.4 from Table 4.6). The values of the untied
parameters (Tpp, I', and T,) at each phase bin are shown in Figure 4.12, with example
spectra and data/model ratios from phase bins closest to 0 and 0.5 shown in Figure 4.8.
We note again that the error bars on spectral parameter variations can be large,
particularly on the values of Tiy,. This is due to similar degeneracies with the disc
temperature Tyisc as for model 1, but also as for model 1, do not lead to significant
uncertainties in the amplitude or phase offset of the parameter variations. As with
model 1, we show the histograms of the curve phase and the maximum phase for
model 2 in Appendix 4B in Figures 4.20 and 4.21 for completeness.

We found that the variation in T}y, leads the variation in I by 0.036 (1o confidence
interval from the bootstrap sample, centred on the median value: [0.041-0.098]), the
variation in Ty, leads the variation in T, by 0.05 [0.055-0.111], and the variation in T’
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Figure 4.10: Model 1: 2-D histograms of spectral parameter values in phase bin 5 for each bootstrap
sample, showing the correlations between spectral parameters. The colour bars indicate the number
of occurrences, out of the 5421 good bootstrap samples for model 1. While Tyis. was tied across
phase in model 1, we still found a very strong correlation between Ty;s. and Ty}

leads the variation in T by 0.014 [0.011-0.016]. A histogram of the phase differences
between the untied parameters in each bootstrap sample is shown in Figure 4.13. In
terms of variability amplitudes, I" has an rms amplitude of 9.9% [9.9%12.0%], T
has an rms amplitude of 8.6% [8.1%—10.0%], and Ty, has an rms amplitude of 2.0%
[1.2%-1.7%]. Note that the overall trends in phase offset are very similar to those seen
for model 1, likely because the additional single-temperature blackbody component
contributes only a small amount to the spectrum (as also seen in the time-averaged
spectra). From this we conclude that both the time-averaged and phase-resolved
spectra are consistent with there being no visible blackbody component associated
with, e.g., the neutron star surface.
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Figure 4.11: Model 1: 2-D histogram of the T}, value in phase bin 5 with the rms amplitude of the
Ty, variation for each bootstrap sample. As with Figure 4.10, the colour bars indicate the number
of occurrences. We see that there is not a strong correlation between the value of T}, and the rms
amplitude of the variation.

4.4.3 Comparison with the lag-energy spectrum

For a final check on the best-fitting parameterisation of the spectral models, we sim-
ulated lag-energy spectra and compared them to the data via the x? (listed in the
final column in Table 4.2). We followed the same procedure as Stevens & Uttley
(2016) to simulate QPOs with energy spectral parameters sampled from the best-
fitting curves fitted to the parameter variations, and computed time lags from the
cross spectrum averaged over the same Fourier frequency range as was used for the
data, 825-845Hz. Both model parameterisations match the lag-energy data well,
with x2 values of 32.4 and 29.9 for models 1 and 2, respectively, for 29 degrees of
freedom. Neither model is clearly preferred, consistent with their similar spectral
fit parameters. Figure 4.14 shows the lag-energy spectra simulated from the best
parameterisations of both models plotted with the data from Figure 4.4. This plot
and the accompanying fits illustrate how even though the bootstrapped error bars on
the untied parameter variations allow for no variation of some parameters, the untied
parameters are required to vary to fit the data
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Figure 4.12: The varying spectral parameters of the best parameterisation of model 2. Lines and
error regions have the same meanings as in Figure 4.7.
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TBNEW _GAS
DISKBB
DISKBB
BBODYRAD
BBODYRAD
NTHCOMP
NTHCOMP
NTHCOMP
NTHCOMP
GAUSS
GAUSS
GAUSS

Parameter

Ny (x10%2 cm

Tdisc (keV)
Ndisc

Tbb (keV)
Npp

r

T, (keV)
Tbb (keV)
Np1,

Eline (keV)
Oline (keV)
Nline

Value

-2)  1.07

&9¥g;8883
26572
0.9217
0.0557
2.019f
2.7091
0.9217
0.171709%%8
7.08%551
.05,
4.670:0% x

4.4 Results

Notes

Frozen
Tied
Tied
Untied
Tied
Untied
Untied
Untied
Tied
Tied
Tied
10~3  Tied

Table 4.4: Values of the best-fitting parameterisation for model 2. Mean values are listed for
the untied parameters, indicated by 7. Errors on the tied parameters represent the 90% confidence
interval as computed by the xspEc MCMC error routine. The NTHCOMP blackbody temperature was
tied to the BBODYRAD blackbody temperature. XSPEC gives a fit statistic of x2 = 1983.8 for 1059

d.o.f.
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Figure 4.13: Phase differences of the parameter variations of untied parameters for the best pa-
rameterization of model 2, computed for each bootstrap sample. The phase offset between T, and
Tyy, is the sum of the offset between Te and I' and between I'" and Ty,y,.
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Figure 4.14: Lag-energy spectra from the cross-spectra averaged over 825-845 Hz. The black dots
are the data (same as in Figure 4.4). The black dashed line indicates no time lag with respect
to the variability in the reference band. The navy blue triangles are simulated from the model 1
(x? = 32.4), the purple X’s are simulated from model 2 (x? = 29.9). All model-data comparisons
have 29 degrees of freedom. Both models adequately reproduce the amplitude and slope of the time
lags.

4.5 Discussion

We have been able to use the CCF method to reconstruct the phase-dependent spec-
tral variability associated with the lower kHz QPO, in observations of 4U 1608-52
obtained in March 1996. The chosen models, dominated by a constant disc blackbody
and variable Comptonized component, were able to fit the time-averaged spectrum
well. We have shown that a combination of three sinusoidally varying Comptoniza-
tion parameters (the seed blackbody temperature Ty, the power-law index I'; and the
electron temperature T,) can model the phase-resolved spectral variations observed
via the CCF method and hence also explain the observed dependence of lag on energy.
In this section we first consider the observed spectral variability in empirical terms for
comparison with the previously known spectral-timing properties of the QPO, before
considering any physical interpretation. Then we consider the physical interpretation
based on our fits, but we note that the assumed NTHCOMP Comptonization model
is simply one parameterization of the variable continuum spectrum, so we should be
careful not to assign too much physical significance to the parameter variations we
observe.
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4.5 Discussion

Our results show that the lower kHz QPO variations correspond to significant
changes not only in the flux but also the spectral shape of the Comptonized emission.
This finding can shed light on a number of aspects of the QPO variability. Firstly,
as can be seen in Figure 4.8, the Comptonized component is only weakly variable
at low energies, appearing to pivot so that higher energies show intrinsically larger
variations. This finding implies that the well-known drop in lower kHz QPO fractional
rms towards low energies (e.g., originally discovered by Berger et al. 1996 for the
same 4U 1608-52 data) is not simply due to dilution by the constant disc blackbody
emission, but also due to intrinsic spectral evolution of the Comptonized component,
which has an intrinsically harder variable spectrum than the time-averaged shape
of the Comptonized component. This result could potentially explain the harder
shape (higher inferred seed photon temperature) of the covariance spectrum of the
QPO compared to the time-averaged Comptonized component shape, which has been
noted by Peille et al. (2015) and Troyer & Cackett (2017). Those works suggested
that the difference might originate if the QPO emission is localised to a hotter part of
the boundary layer, but our new findings suggest that instead, the harder covariance
spectrum results from spectral evolution during the QPO cycle.

o
Te]

Time lag (us)

---- No phase offsets ]
Constant T,

|
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Figure 4.15: Lag-energy model curves for spectral variability models based on model 1, assuming:
best-fitting model 1 parameter variations shown in Figure 4.7 (black solid line); best-fitting model 1
variations but with zero phase offset between parameter variations (blue dot-dashed line); best-fitting
model 1 variations but with T}, set to be constant (red dotted line). See text for details.

It is important to bear in mind that the observed lags do not automatically arise
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from significant spectral evolution during the QPO cycle. To examine the origin of
the lags in more depth, we used the best-fitting I', T}, and T;, parameter curves for
model 1 (Figure 4.7) to generate model flux spectra in XSPEC and hence produce flux
light curves, which we could use to predict the hypothetical lag-energy dependence in
the absence of any instrumental effects. The lag-energy dependence for the best-fitting
model 1 parameters is shown as a solid black line in Figure 4.15. It broadly matches
the dependence predicted and observed in the PCA data shown in Figure 4.14, albeit
with a sharper drop close to 20keV, since the lags there are not contaminated by
redistributed photons from lower energies as is the case for the observed and sim-
ulated PCA measurements. The best-fitting parameter variations show significant
phase offsets between all the variable parameters. These offsets can be removed in
our simulations, by aligning the parameter variation curves to all have the same phase
at curve maximum, the result of which is shown in Figure 4.15 as the dot-dashed blue
line. The lags are significantly suppressed as a result, showing that the parameter
evolution on its own does not lead to the observed lags if those parameter variations
are in phase: the parameters which describe the Compton spectral shape must intrin-
sically lag one another, in the order 71, varying first, then I' and finally 7;,. The effect
of forcing Ty to be constant is shown as the dotted red line in Figure 4.15. Clearly
the variation in Ty, plays an important role in setting the shape of the lag-energy
spectrum below ~ 7keV.

In our parameterization of the QPO spectral evolution, the small phase offsets
between the spectral parameter variations are responsible for producing the observed
energy-dependent lags. To understand this effect better, first consider that the peak in
the QPO flux corresponds to phase zero in the parameter evolution curves (Figures 4.7
and 4.12). From this point, I" rises and the spectrum softens significantly. At the same
time, T}, also increases. Since the normalisation at 1keV is fixed, an increase in Ty,
corresponds to an increase in the energy of the low-energy roll-over in the spectrum,
which produces a relative hardening of the spectrum. Since the peak in T is seen
before the peak in softening due to I', we see an overall soft lag in the lag-energy
spectrum. At higher energies where the high-energy cut-off dominates, the spectral
shape is dominated by the roughly exponential cut-off curve and not the changes in
photon index. However, the correlation of T, with I' means that the soft lags due to
varying I' ‘leak’ into the higher energies as T, increases (and an additional delay is
introduced since T, itself slightly lags T').

We now turn to the physical interpretation of our results. The main spectral-
variability feature of the QPO, independent of the lags, is the large intrinsic variation
in spectral shape, which corresponds to a low-energy pivoting throughout the QPO
cycle, such that the peak of the flux cycle corresponds to the hardest photon index and
the spectrum is softest at the minimum. The weak intrinsic variability at low energies
suggests that seed variations are rather weak and we also do not see any clear evidence
for a direct component of surface blackbody emission. These spectral results seem to
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rule out variations in seed blackbody luminosity, or the upscattered fraction of the
surface blackbody luminosity, as the driving signal for the QPO. Instead, modulation
of the heating rate in the Comptonizing medium seems to be the most likely cause of
the intrinsically hard flux variability of the QPO. It is interesting to note that Kumar
& Misra (2014) reach similar conclusions, on the basis of Comptonization modelling
of the observed energy dependence of QPO fractional rms and time lags.

An increase in heating rate relative to seed photon luminosity in a Comptonizing
medium can explain the hardening of the spectrum coupled with increasing flux (e.g.,
Pietrini & Krolik 1995), but at the same time, the inferred electron temperature is seen
to drop, which would be inconsistent with an increase in relative heating rate. This
result can be understood if the inferred high energy cut-off is due to Compton down-
scattering and hence more closely related to the optical depth, 7, of the Comptonizing
region than to its intrinsic temperature (following E.u; ~ 511 keV /72, Sunyaev &
Titarchuk 1980), which may be the case for high-optical depth plasma in the boundary
layer. That is, an increase in heating rate is coupled to an increase in optical depth
and hence a lower cut-off energy. Such a mechanism might be linked to variations in
accretion rate from the disc, but no evidence for disc variability is seen in our data
and, as noted previously, it is difficult to understand how the accretion rate could be
modulated so coherently.

An alternative possibility is that the QPO represents some kind of “breathing” os-
cillation excited in the boundary layer. For example, following the possible connection
of heating rate to optical depth described above, let us assume that the heating rate is
coupled to the density in the boundary layer. A perturbation in density increases the
heating rate but also causes the expansion of the boundary layer, which is expected
to be radiatively supported (Inogamov & Sunyaev 1999). Density and heating rate
then fall, the boundary layer collapses again to its denser configuration, and the cycle
repeats. This behaviour could explain the correlated variation of I' and 7T, in terms
of the heating and density (and hence optical depth) correlation. The connection
to seed photon temperature (Thp) is less clear, but might be linked to stronger irra-
diation of the neutron star surface occurring when the boundary layer is less dense
(thus allowing more Comptonized photons to reach that surface). The observed phase
offsets between the Comptonization parameters are small compared to the oscillation
time and so could be inherent to the oscillation mechanism. One could also consider
Comptonization delays as a cause of the lags, as explored by Kumar & Misra (2014,
2016). Besides Comptonization delays, causal limits could also play an important
role: a phase offset of 0.02 corresponds to only 7km in light-travel distance. For a
moderately optically thick region of ~km scale, fluctuations in density and optical
depth in the core of the emitting region could take a time comparable to the observed
phase offsets to be communicated to the observer.

Finally, we note that the lack of evidence for iron line variability during the lower
kHz QPO cycle is consistent with the lack of clear evidence for a reverberation signal
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for the QPO (Peille et al. 2015; Cackett 2016). The implication is that the boundary
layer oscillations seen by the observer are not seen (at least with the same amplitude)
by the disc, which could happen if the oscillating boundary layer emission occurs at
low latitudes relative to the neutron star surface. Some hints of disc reverberation are
seen for the upper kHz QPO however. A natural extension of this work would be to
carry out a phase-resolved study of the upper kHz QPO, to identify the similarities
and differences with the lower kHz QPO.

4.6 Conclusion

We have presented the first application of phase-resolved spectroscopy to a kHz QPO.
For this investigation, we applied the Stevens & Uttley (2016) QPO-phase-resolved
technique to the lower kHz QPO observed by RXTE in 4U 1608-52 during its 1996
outburst. As this observation was taken in the early months of RXTFE operation, all
5 PCUs were operational and there were minimal calibration differences between the
different PCUs. The lower kHz QPO is the only type of periodic or quasi-periodic
variability seen in the observation we use (that is, there were no upper kHz QPOs or
coherent pulsations), which made this clean signal an ideal proof-of-principle case.

The phase spectra were fitted with models that contained a multi-colour blackbody
accretion disc, a thermal Comptonization component for the boundary layer, a single-
temperature seed blackbody that could represent the surface of the neutron star, and
a broad iron line to model the most prominent reflection feature. We found that the
power-law index I', high-energy cut-off temperature T, and seed blackbody temper-
ature Ti,p, varied with QPO phase: the fractional rms variation in I" was ~ 9-10%,
in T, was ~8-9%, and in T}, was ~ 1.5-2%. There were non-zero phase differences
between all three parameter variations, notably a ~0.014 relative phase lag of T¢
compared with I'; and a ~ 0.02-0.05 relative phase lag of I' compared with Tj,,. With
simulations of light curves fed by the sinusoidal best-fitting spectral parameter vari-
ations, we were able to reproduce the lag-energy spectrum of the data in amplitude
and in slope/shape.

Since the shape of the Comptonization spectral component is changing and the
parameters do not vary in-phase with one-another, we rule out upscattering of varia-
tions in the surface blackbody luminosity or accretion disc luminosity as the origin of
the QPO. Instead, our results point towards a “breathing” oscillation in the boundary
layer propelled by cyclic changes in the density and heating rate of the Comptonizing
region, with optical depth changes then changing the amount of irradiation of the
neutron star surface which produces seed photons.

Further exploration of this possible “breathing” oscillation mechanism in the bound-
ary layer can be done in finer detail (both temporally and spectrally) with two current
X-ray instruments, AstroSat and NICER. AstroSat’s Large-Area X-ray Proportional

132



4.6 Conclusion

Counter (LAXPC) does not have the same telemetry-constrained data modes as with
RXTE, so it has an energy resolution of 10% across 3-80keV with 10 us time reso-
lution (Singh et al. 2014; Yadav et al. 2016; Antia et al. 2017). Verdhan Chauhan
et al. (2017) reported the detection of kHz QPOs in 4U 1728-34 with the LAXPC.
AstroSat’s order-of-magnitude improvement in both energy and time resolution com-
pared to RXTE event-mode data will allow more precise modelling of phase-dependent
spectral changes. In the softer X-rays, NICER avoids telemetry constraints while also
minimizing deadtime. It has 40 ns time resolution and CCD energy resolution across
its 0.5-12keV bandpass (Gendreau et al. 2012; Arzoumanian et al. 2014). These spec-
ifications make NICER well-suited for determining whether blackbody temperature
variations or low-energy normalization variations are responsible for the soft X-ray
changes in the kHz QPO (as discussed in the previous section). Looking into the
future of X-ray observatories, eXTP (Zhang et al. 2016) and STROBE-X (Wilson-
Hodge et al. 2017) will both provide exceptional opportunities to study spectral-timing
behaviour of kHz QPOs.
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Appendix 4A: Software

The software and data products will be made publicly available when the paper is
published. The data were reduced and processed with the scripts in the GitHub
repository abigailStev/rxte reduction. The reduced and processed data products,
analysis scripts, and explanatory Jupyter notebooks for this paper will be found in
the GitHub repository abigailStev/kHz QPO _phase res.

Appendix 4B: Spectral Fitting Procedure

As described in the text, we follow the systematic procedure from Stevens & Uttley
(2016) to determine which spectral parameters must vary to reproduce the phase-
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dependent changes in the energy spectrum. The model IDs for each parameterisation,
x.y.z, are to be interpreted as model number x, with y free parameters, enumerated
by z.

Model 1, normalized phase of the curve
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Figure 4.16: Model 1: Histograms of the phases of the fitted curves for each bootstrap sample.
Measured from the fit to the data, Ty}, has a phase of 0.689 (1o confidence interval from the bootstrap
sample, centred on the median value: [0.672-0.711]), Te has a phase of 0.652 [0.640-0.661|, and T’
has a phase of 0.667 [0.660-0.674].

Model 1, normalized phase of the maximum
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Figure 4.17: Model 1: Histograms of the normalized phases of the maximum of the fitted curves for
each bootstrap sample. Measured from the fit to the data, the maximum in T}}, has a phase of 0.554
(1o confidence interval from the bootstrap sample, centred on the median value: [0.529-0.573|), the
maximum in T, has a phase of 0.593 [0.586-0.606|, and the maximum in I" has a phase of 0.581
[0.574-0.589].
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Figure 4.18: Model 2: 2-D histograms of spectral parameter values in phase bin 5 for each bootstrap
sample, showing the correlations between spectral parameters. The colour bars indicate the number
of occurrences, out of the 5419 good bootstrap samples for model 2. As in model 1, Ty;sc was tied
across phase, but here we do not see a strong correlation with it and Ty,.
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Table 4.5: Systematic fitting for model 1 (TBNEW _cAs X (DISKBB+NTHCOMP-+GAUSS)). The best
parameterization, 1.3.3, has Ty, Te, and I’ untied, and gives a x?2 /d.o.f. = 1981.2/1060. Any
improvement on that, in the final block of fits 1.4.* with four untied parameters, does not give
Ax? > Ad.o.f. compared to the best-fit in 1.3.* with three untied parameters.

ID %/ d.o.f. Untied

1.0.1 105150.7/1180 -

1.1.1 75497.1/1140  Tqisc

1.1.2 87690.9/1140  Najsc

1.1.3 7126.5/1140 r

1.1.4 43674.8/1140 T,

1.1.5 3854.0/1140 Top

1.1.6 5021.3/1140 Np,

1.1.7 90572.7/1140  Ejine

1.1.8 105136.3/1140  Oline

1.1.9 68453.8/1140  Niipe

1.2.1 3191.1/1100 Tob, Taisc
1.2.2 3244.7/1100 Thb, Naisc
1.2.3 2233.0/1100 Tpp, I

1.2.4 2062.9/1100 Ty, Te

1.2.5 3179.0/1100 Ty, Npg,
1.2.6 3609.0/1100 Tob, Eline
1.2.7 3832.7/1100 Thb, Oline
1.2.8 3534.3/1100 Tob, Niine
1.2.9 3219.5/1100 Npr, Taise
1.2.10 3264.3/1100 Np1, Naisc
1.2.11 4997.0/1100 Npp, I'
1.2.12 4572.9/1100 Npy, Te
1.2.13 4519.6/1100 Np1, Eline
1.2.14 5019.2/1100 NpL, Oline
1.2.15 4794.0/1100 Np1, Nine
1.2.16 2063.6/1100 T, I

1.3.1 2009.3/1060 Tob, Te, Taisc
1.3.2 2008.6,/1060 T, Te, Naise
1.3.3 1981.2/1060 Typ, T, T
1.3.4 2009.3/1060 Tvh, Te, Npp,
1.3.5 2043.7/1060 Tob, Te, Eline
1.3.6 2060.1/1060 Tob, Te, Tline
1.3.7 2059.0/1060 Tob, Te, Niine
1.3.8 2101.9/1060 Tob, I', Taise
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ID

1.3.9

1.3.10
1.3.11
1.3.12
1.3.13
1.3.14
1.3.15
1.3.16
1.3.17
1.3.18
1.3.19

1.4.1
1.4.2
1.4.3
144
1.4.5
1.4.6
1.4.7
1.4.8
1.4.9
1.4.10
1.4.11
1.4.12
1.4.13
1.4.14
1.4.15
1.4.16
1.4.17
1.4.18
1.4.19
1.4.20
1.4.21
1.4.22
1.4.23
1.4.24
1.4.25
1.4.26
1.4.27

%/ d.of.

2114.9/1060
2084.5,/1060
2200.0,/1060
2235.6,/1060
2208.1/1060
1984.7/1060
1982.6/1060
1983.1/1060
2045.3/1060
2059.5,/1060
2047.9/1060

1978.5/1020
1975.5/1020
1979.5/1020
1978.6/1020
1973.4/1020
1960.1/1020
1999.6,/1020
1996.9/1020
2001.3,/1020
2003.8,/1020
1998.5/1020
1999.1/1020
2003.3/1020
2005.4,/1020
2001.3,/1020
2005.1/1020
2006.9/1020
2005.8/1020
1971.7/1020
1981.5/1020
1976.3/1020
1975.1/1020
1972.5/1020
1982.4/1020
1979.3/1020
1976.2/1020
1971.4/1020

4.6 Conclusion

Untied

Thp, I', Naise
Ty, I', NpL
Tob, ', Etine
Tob, I', Oline
Thb, I', Niine
disc

disc

Tbb7 Teu 1—‘7 Tdisc
Thb, Te, I', Naise
Tpb, Te, I', Npr,
Tbb7 Teu Fa Eline
Tbb7 Teu Fa Oline
Tbb7 Teu Fa Nline
Thb, Te; Naise, Tdisc
Thb, Te,y Naise Npr
Tbb7 Teu Ndi507 Eline
Tbb7 Te7 Ndism Oline
Tbb7 Te7 Ndism Nline
Thb, Te, Taise, NpL
Thb, Te; Taisc; Eiine
Tbb7 Te7 Tdism Oline
Tbb7 Te7 Tdism Nline
Tbb7 Te7 NPL7 Eline
Tob, Te, NP1, Oline
Thh, Te, Npr, Niine
Te7 1—‘ NdibC7 Tdisc

Te, I', Ngisc, Npr,
Tca F NdlSC7 Ehnc
Tca F7 NdlSC7 Oline
Tca F7 N disc» Nhnc
Te7 1—‘ N PL, lesc
Te7 1—‘ N PL, Elme

Tca F NPL7 Oline

T07 F N PL, Nhnc
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Table 4.6: Systematic fitting for model 2 (TBNEW _GAS X (DISKBB+BBODYRAD+NTHCOMPCAUSS)).
The best parameterisation, 2.3.4, has Tpp, I, and Te varying. This fit gives a x?2 / d.o.f.
= 1983.8/1059. Any improvement on that fit, in the final block of fits with four untied parameters,
does not give Ax? > Ad.o.f. compared to the best-fit with three untied parameters.

ID X%/ d.o.f. Untied
2.0.1  105157.6/1179 -

138

2.1.1 75299.4/1139  Tgisc

2.1.2 87479.2/1139  Nyisc

2.1.3 3154.0/1139 Ty

2.1.4 4427.1/1139  Nypp

2.1.5 7025.8/1139 T

2.1.6 42796.6/1139 T,

2.1.7 4897.7/1139  Npp,

2.1.8 90375.5/1139  Ejine

2.1.9 105138.2/1139  Oline

2.1.10  65550.2/1139  Nijpe

2.2.1 2637.8/1099  Thb, Taisc
2.2.2 2646.5/1099 Ty, Naisc
2.2.3 2574.8/1099  Thp, Npp
2.24 2296.1/1099 Ty, I

2.2.5 2405.1/1099 Ty, Te
2.2.6 2274.8/1099 Ty, NpL
2.2.7 3064.1/1099  Thb, Eline
2.2.8 3115.5/1099 Thb, Oline
2.2.9 2958.8/1099  Thp, Niine
2.2.10 2851.0/1099  Nypp, Taisc
2.2.11 3410.6/1099  Npp, Nyisc
2212 6059.6/1099 Ny, I’
2.2.13 5002.3/1099 Ny, Te
2.2.14  3265.5/1099  Npp, NpL,
2.2.15  4161.7/1099  Npb, Eline
2.2.16 5365.8/1099  Nypb, Oline
2.2.17  4288.5/1099  Npb, Niine
2.3.1 2056.8/1059  Thp, I', Taise
2.3.2 2211.7/1059  Thp, I', Nyise
2.3.3 2062.5/1059  Typ, I', Ny,
2.3.4 1983.8/1059  Typ, I', Te
2.3.5 2062.0/1059  Typ, I, NpL,
2.3.6 2122.5/1059  Tup, I, Ejine



ID

2.3.7

2.3.8

2.3.9

2.3.10
2.3.11
2.3.12
2.3.13
2.3.14
2.3.15
2.3.16
2.3.17
2.3.18
2.3.19
2.3.20
2.3.21

24.1
24.2
24.3
244
2.4.5
2.4.6
2.4.7

%/ d.of.

2146.0,/1059
2991.8,/1059
2207.7/1059
2377.1/1059
2109.7/1059
2199.0/1059
2042.1/1059
2057.8/1059
2055.1/1059
2092.8,/1059
2108.7/1059
2066.1/1059
2222.4/1059
2258.5,/1059
2245.4/1059

1976.9/1019
1972.2/1019
1983.4/1019
1980.5/1019
1990.6/1019
1991.1/1019
1992.2/1019

Untied

Thb, T, Oline
Thb, I', Niine
Tbb7 Teu Tdisc
Tbb7 Teu Ndisc
Thb, Te, Npp
Ty, Te, NpL
Tbb7 Tc; Elinc
Tbb7 Teu Oline
Tbb7 Teu Nline
Thb, Ner, Taise
Thb, NpL, Naise
Tob, Npr, Npp
Tob, NpeL, Eline
Tob, NpPL, Oline
Thbb, NpL, Niine

Tbb7 Fu Teu Tdisc
Tbb7 Fu Teu Ndisc
Tpb, I'; Te, Npp
Tpp, I', Te, Npr,
Tpb, ', Te, Eiine
Tbb7 Fu Teu Oline
Tbb7 Fu Teu Nline

4.6 Conclusion

2.4.8  2362.6/1019 Tpb, Te, Eiine, Taisc
2.4.9  2001.3/1019 Tpb, Te, Etines Naise
2.4.10  2094.0/1019 Tpb, Te, Etines Nob
2.4.11 2005.1/1019 Tpb, Te, Ejine, NpL
2.4.12  2339.1/1019 Tpb, Te, Eine, Oline
2.4.13  2033.0/1019 Tpb, Te, Eiine, Niine
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Figure 4.19: Model 2: 2-D histogram of the T}, value in phase bin 5 with the tied Ny}, value for
each bootstrap sample. The colour bar indicates the number of occurrences, out of the 5419 good
bootstrap samples for model 2. As in model 1, Ty;s. was tied across phase, but here we do not see a
strong correlation with it and T}
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Figure 4.20: Model 2: Histograms of the phases of the fitted curves for each bootstrap sample. As
measured from the fit to the data, the maximum in T}, has a phase of 0.695 (1o confidence interval
from the bootstrap sample, centred on the median value: [0.687-0.745]), the maximum in T, has a
phase of 0.652 [0.645-0.665], and the maximum in " has a phase of 0.668 [0.662-0.679].
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Model 2, normalized phase of the maximum
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Figure 4.21: Model 2: Histograms of the normalized phases of the maximum of the fitted curves
for each bootstrap sample. As measured from the fit to the data, the maximum in 7T},;, has a phase
of 0.545 (1o confidence interval from the bootstrap sample, centred on the median value: [0.471—
0.544]), the maximum in T, has a phase of 0.593 [0.581-0.600], and the maximum in I" has a phase
of 0.595 [0.569-0.586].
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NICER Spectral-Timing Studies of a
Low-Frequency QPO in the
Soft-Intermediate State of MAXI J1535-571

A. L. Stevens and P. Uttley

To be submitted to The Astrophysical Journal

Abstract

We present the discovery and preliminary spectral-timing analysis of a low-frequency
~5.7Hz QPO feature in observations of MAXI J1535-571 in the soft-intermediate
state, obtained in September—October 2017 by the Neutron Star Interior Composi-
tion Ezplorer (NICER). The feature is relatively broad (quality factor @ ~ 2) and
weak (1.8% fractional rms from 3-10keV), with a weak harmonic and additional low-
amplitude broadband noise. These characteristics likely make it a weak Type B QPO,
like one previously identified in the soft-intermediate state of the transient black hole
X-ray binary XTE J1550-564. The lag-energy spectrum of the QPO shows soft lags
of about 50 ms with an inflected spectral shape, flattening above ~ 4 keV. Preliminary
QPO-phase-resolved spectral analysis suggests that the inflected lag-energy spectrum
is due to the disk blackbody component lagging the Comptonized power-law emission
by ~27% of a QPO cycle. This large phase shift has similar amplitude but opposite



5 NICER Low-Frequency QPO

sign to that seen in Rossi X-ray Timing FExplorer data for the Type B QPO from
the transient black hole X-ray binary GX 339-4. We suggest that the Type B QPOs
from these systems may have the same origin, in the form of a precessing jet-like
corona illuminating the disk, with the different lag signs depending on the observer
inclination angle.
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5.1 Introduction

5.1 Introduction

MAXI J1535-571 is a newly-discovered transient X-ray binary that went into outburst
starting on 2 September 2017. It was co-discovered in the X-rays by MAXI (Negoro
et al. 2017b) and the Neil Gehrels Swift Observatory (Markwardt et al. 2017; Kennea
et al. 2017). Its multi-wavelength properties strongly suggest that the source is an ac-
creting stellar-mass black hole (Scaringi & ASTR211 Students 2017a,b; Negoro et al.
2017a; Russell et al. 2017b; Dincer 2017; Britt et al. 2017). One week following its
discovery, X-ray, radio, and sub-mm detections showed the source brightening and en-
tering the hard-intermediate spectral state (Nakahira et al. 2017; Kennea 2017; Palmer
et al. 2017; Tetarenko et al. 2017; Shidatsu et al. 2017b). In the hard-intermediate
state, low-frequency quasi-periodic oscillations (LF QPOs) were detected in the X-ray
light curve by Swift (Mereminskiy & Grebenev 2017; Russell et al. 2017a) and NICER
(Gendreau et al. 2017). The source continued to transition into the soft state in Oc-
tober and November (Shidatsu et al. 2017a). Although heavily absorbed (neutral
column density Ny ~ fewx10?2 cm~2), MAXI J1535-571 reached extremely bright
flux levels, up to 5 Crab in 2-20keV flux (Shidatsu et al. 2017b). As of mid-January
2018, the source was beginning to transition back through the intermediate states to
the hard state.

LF QPOs are seen at Fourier frequencies of ~ 0.1 to tens of Hz in the X-ray light
curves of accreting black hole X-ray binaries. Theories of the origins of LF QPO
variability fall under the general categories of intrinsic variability, such as shocks in
the accretion flow (Chakrabarti 1996), or geometric variability, like rigid-body Lense-
Thirring precession of the Comptonizing region (Stella & Vietri 1998; Ingram et al.
2009). Systematic observational studies indicate that the LF QPO origin is geometric
in nature, due to the correlation of the QPO amplitude (Schnittman et al. 2006;
Motta et al. 2015; Heil et al. 2015a) and the sign of the energy-dependent lags (van
den Eijnden et al. 2017) with the binary orbit inclination. The two most common
types of LF QPOs seen in black hole X-ray binaries are called Type B and Type
C. Type B LF QPOs are characterized by weak harmonics and broadband noise,
and appear in the soft-intermediate state; Type C LF QPOs are characterized by
strong harmonics and broadband noise, and appear in the hard-intermediate state
(for more explanation of the types of LF QPOs, see Remillard et al. 2002; Casella
et al. 2005; Motta et al. 2011). The two appear at similar frequencies but show
different amplitude-inclination correlations, which suggests that they have different
origins.

Spectral-timing analysis can determine the amplitudes of and causal relationships
between variations of the different emission components seen in the X-ray spectrum
(e.g., disk blackbody and Comptonized emission), opening up new avenues with which

IFor up-to-date information on MAXI J1535-571, see http://maxi.riken. jp/nakahira/1535monitor/.
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to analyze LF QPOs (e.g., Ingram & van der Klis 2015; Stevens & Uttley 2016). In
this paper we present the discovery and initial spectral-timing analysis of a weak
Type B QPO from MAXI J1535-571 observed with the NICER experiment, recently
installed on the International Space Station. NICER’s large collecting area, soft X-
ray response, CCD-quality energy resolution and high count-rate capability enable
unprecedented spectral-timing studies of even weak QPOs, such as the one we report
here. In Section 5.2, we give information about the data and data selection crite-
ria. In Section 5.3, we present our results, including the average power spectrum,
lag-energy spectrum, energy-dependent cross-correlation function, and a calibration-
independent study of the QPO-phase-dependent spectral variability. The discussion
and conclusions are presented in Section 5.4.

5.2 Data

The observations used in this paper were taken in September and October 2017 with
the X-ray Timing Instrument (XTI) on NICER (Gendreau et al. 2012; Arzoumanian
et al. 2014). During this time, NICER observed MAXI J1535-571 regularly, with
many short continuous (few hundred s) exposures spread throughout each day. Each
day’s observations are packaged into ‘segments’. The data used here to identify the
Type B QPO corresponds to all useful exposures obtained during this period, which
includes 31 segments, covering first the segment IDs 1050360104-1050360120 and then
1130360101-1130360114. Based on the source spectral and timing properties (see
below), these observations correspond to the hard-intermediate and soft-intermediate
states of accreting black holes. Over the 61.380ks exposure of these observations
combined, NICER recorded an extraordinary 936,910,259 photon counts spanning
the full energy range of the detector.

In Figure 5.1 we show the coarse flux (count rate), spectral (hardness ratio) and
timing (fractional rms) evolution of MAXI J1535-571, obtained from continuous 64 s
sections of the NICER data. NICER XTI has a time resolution of ~40ns, but for
our timing studies, we bin the light curves to a time step of 2785 (~ 3.9 ms). For our
64 s light curve sections, this gives 16,384 time bins per section.

Detailed study of the power-spectral evolution throughout the observations showed
that in the periods with high rms (> 5%) and generally harder flux spectra, the power
spectrum is dominated by strong Type C QPOs, with accompanying broadband noise
and a strong harmonic (Uttley et al., in prep.). Therefore, we identify those data with
the hard-intermediate state (see, e.g., Nowak 1995; Homan et al. 2001; Belloni et al.
2005). Here we focus on the observations showing low rms (< 4%) and relatively
soft spectra, which do not show strong variability, but still show larger fractional
variability amplitudes than the canonical soft states observed in other transient BH
XRBs (e.g., Belloni et al. 2005). We therefore identify these observations with the
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5.2 Data
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Figure 5.1: Evolution of MAXI J1535-571 coarse spectral and timing properties, for continuous 64 s
sections of the data. Top: Total 3-10 keV count rate (count s~1). MippLE: Spectral hardness ratio
(ratio of the count rates in 7-10keV to 1-2keV bands). Borrom: Fractional rms in the 3-10keV
band, integrated from 1.5-15 Hz.

soft-intermediate state.

Since QPOs cannot be readily identified in 64s sections of the weakly-varying
soft-intermediate state light curves, we searched for evidence of characteristic timing
signatures by sorting the data according to hardness ratio (where the hardness ratio
is the ratio of the 7-10keV to 1-2keV count rate). We then averaged together the
3-10 keV power spectra of 64 s sections contained in a sliding range of hardness ratios
corresponding to a 30% change in hardness ratio. This analysis revealed the presence
of a fairly broad QPO-like signal at a frequency of ~5.7Hz, which is present for
hardness ratios < 0.033 but not for harder spectra (see Figure 5.2). The QPO seems
to shift in frequency and weaken significantly for the lowest hardness ratios, but
appears to be relatively stable over the hardness ratio range 0.022—0.033. Therefore,
for the rest of our study we combined the data from 64s sections, selected in this
hardness ratio range and with an integrated 1.5-15 Hz rms < 0.04.
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Figure 5.2: Poisson-noise-subtracted 3—10keV power spectra averaged from 64s sections of data
with 1.5-15 Hz rms < 0.04, for two hardness ratio ranges: 0.0332-0.0432 (black) and 0.0256-0.0332
(red). A broad QPO-like signal emerges for the softer hardness ratio range.

There are 576 good 64 s continuous sections of data which fit our spectral hardness
and rms criteria, which gives a total exposure of 36.864ks. The total count rate in
the 3-10keV energy band is 5816 count s~!. For the reference energy band (used
in Sections 5.3.2 and 5.3.3), which covers 3-10keV but uses detector chains 4-6, the
count rate is 2542 count s 1.

5.3 Results

5.3.1 Power Spectrum

We computed the average power spectrum (Figure 5.3) in the energy band 3-10 keV
for all XTI detector chains using our own code? (see van der Klis 1989 for an overview
of power spectra). The power spectrum was geometrically re-binned in frequency with
a binning factor of 1.03. Using XSPEC v12.9.1 (Arnaud 1996), we fitted this power
spectrum over the 0.03-128 Hz range with four Lorentzians: two of the Lorentzians
model the broadband noise, one Lorentzian models the QPO fundamental, and one
Lorentzian models the weak QPO harmonic. In units of power, the Poisson noise level

2The analysis scripts, processed data products, and explanatory Jupyter notebooks will be made
publicly available after the public release of these observations and the publication of this paper.
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5.3 Results

Component Parameter Value Notes
Poisson noise  (x1074 Hz™1)  3.417 £ 0.003
BBN; FWHM (Hz)  0.6705

BBN; Veentroid (HZ) 1x 106 [1]
BBN; norm. (x107%) 1.8 £0.2

BBN»y FWHM (Hz) 2.7+£0.2

BBN»y Veentroid (Hz) 0.5+0.2

BBN»y norm. (x107%)  9.0+£0.2

QPO FWHM (Hz) 2.84 2]
QPO Vcentroid (HZ) 5671_88’;

QPO norm. (x107%) 3.5 +0.1
Harmonic FWHM (Hz) 33

Harmonic Veentroid (Hz) 11.04+0.5
Harmonic norm. (x107%) 541

Table 5.1: Fit parameters to the power spectra shown in Figure 5.3. The Poisson noise was modeled
with a power-law and the two broadband noise (BBN) components, QPO, and QPO harmonic were
modeled with Lorentzians. The fit to the power spectrum yielded a x? fit statistic of 188.98 for 179
degrees of freedom. The errors on the parameters represent the 90% confidence region computed
from the xspEc MCMC routine. Notes in the final column: [1]: This centroid was frozen at 1 x 1076
to represent the low-frequency broadband noise with an approximately zero-frequency Lorentzian
and eliminate degeneracy between the two broadband noise components. [2]: Forced to be half the
QPO centroid value.

is well-modeled by a constant.

The total rms is low, but the power spectrum is dominated by a QPO-like feature
with a centroid frequency of Veentroia = 5.67 Hz. Since it is relatively broad, the width
of this feature is degenerate with the other components in the power spectrum, so in
the fits, we forced a quality factor Q@ = 2 (Q = Veentroid / FWHM). Thus, the assumed
FWHM of the feature is 2.84 Hz by definition. The resulting parameters of the fit
to the power spectrum are listed in Table 5.1. The QPO contributes a 3-10keV rms
of 1.8%. Although this feature is quite broad compared to more commonly studied
QPOs, it is distinct from the broadband noise and possesses a clear — if weak —
harmonic. Therefore we will refer to it as a QPO for the remainder of this paper.

It is interesting to note that the fitted noise level is only 0.6% lower than that ex-
pected given the count rate (2/5186, i.e., 3.439x 10~% in units of fractional rms? Hz~1).
Poisson noise levels are reduced by instrumental deadtime effects, which suppress the
observed noise variance due to the resulting (anti-)correlations between successive
photon counts. The data show that the fraction of photons lost to deadtime in the
NICER detectors is indeed remarkably small for such a bright source.
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Figure 5.3: Power spectra in the energy band 3-10keV, with and without Poisson noise (Top and
BOTTOM, respectively). The data are in black points, the Lorentzian fitted to the QPO fundamental
is plotted in solid blue, the QPO harmonic is plotted in black dash-dotted, the two broadband noise
Lorentzians and Poisson noise power-law are in dotted black lines, and the total model is plotted in
a solid black line. Both panels also show a ratio of the total model (green line) with the data. The
QPO (fundamental) has a centroid frequency of 5.67 Hz and a FWHM of 2.84 Hz (forcing Q = 2).
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5.3.2 Lag-Energy Spectrum

The lag-energy spectrum, computed from the average cross spectrum, measures how
much the variability in many narrow energy bands leads or lags the variability in a
broad ‘reference’ energy band (see Uttley et al. 2014 for an overview of lag-energy
spectra). To ensure that the narrow-band and broad reference band light curves
are truly independent, we use the detector information stored in the event lists as a
selection criterion. The NICER XTI is comprised of 56 concentrator-detector pairs,
which are grouped into 7 chains (with 8 detectors on one chain) for read-out purposes.
We used chains 0-3 (inclusive) for the narrow bands and chains 4-6 (inclusive) for
the reference band. This division of chains was chosen to optimize the signal-to-noise
in the narrow bands while maintaining enough signal in the reference band for fitting
the power spectrum in Section 5.3.3. To further improve signal-to-noise, we bin up
the intrinsic CCD energy resolution of the data so that there are 62 narrow-band
‘channels of interest’ across the energy range 0.1-11keV. The energy resolution of
the lag-energy spectrum (and subsequent analysis in Section 5.3.3) is thus limited by
the width of the channels of interest, which are comparable to or broader than the
instrumental resolution. Due to the strong absorption, there are few intrinsically low-
energy source counts below ~ 1keV and the spectrum there is dominated by photons
redistributed from higher energies. Thus, 1keV is chosen as the lower energy bound
for the rest of the plots and analysis.

To compare the lag-energy spectra of the broadband noise and the QPO com-
ponents, cross-spectra were averaged and resulting phase and time-lags calculated
across two Fourier frequency ranges: 0.015625-1.0 Hz (intrinsic broadband noise),
4.25-7.09 Hz (QPO). The frequency range used for the QPO was chosen to be the
FWHM centered on the centroid for the fitted Lorentzian model in the power spec-
trum (Figure 5.3). The lag-energy spectra are shown in Figure 5.4.

The broadband noise roughly follows a smooth ‘soft lag’ shape, in which the
variability at softer energies lags the variability at harder energies. The QPO lags
also show a clear soft lag shape, but with a clear flattening above 4keV. The QPO
soft lags are also very large: the 50 ms timescale of the lag at ~ 1.5 keV corresponds to
28% of a QPO cycle (where one QPO cycle is ~ 176 ms, computed from the centroid
frequency of 5.67 Hz). The shape of the QPO lag-energy spectrum is reminiscent of
the inflected lag-energy spectrum observed for the Type B QPO of GX 339-4 (Stevens
& Uttley 2016 and Chapter 2 of this thesis), albeit with the opposite sign of lags. To
better understand this behavior, we therefore follow the approach of Stevens & Uttley
(2016) and study the phase-resolved spectral variability of the MAXI J1535-571 soft-
intermediate state LE QPO.
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Figure 5.4: Lag-energy spectra computed over the frequency ranges 0.015625-1.0 Hz (a, broadband
noise) and 4.253-7.088 Hz (b, LF QPO). A positive sign indicates that the variation in that energy
channel arrived after the variation in the broad 3-10keV reference band.
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5.3.3 Phase-Resolved Spectral Variability

We followed the method of Stevens & Uttley (2016) (see Chapters 2 and 4 of this
thesis) to investigate phase-resolved spectral variability on the time-scale of the LF
QPO. Since the broadband noise variability amplitude is relatively large compared
to the QPO-like signal, we filtered the average cross spectrum by applying a window
function over the FWHM of the QPO (4.25-7.09 Hz). The QPO signal in the cross
spectrum is weak (and therefore difficult to fit in all channels-of-interest to obtain
an energy-dependent filter), but its amplitude is energy-dependent. By applying
a window function (instead of an optimal filter constructed from the fitted cross
spectrum amplitude as in Chapter 4), we make fewer assumptions about the shape
and relative strength of the QPO-like signal (and how it changes in energy) albeit
at the cost of some distortion of the signal waveform. However, given the relatively
large width of the feature, we expect such distortion to be fairly weak. Hence, using
a non-optimal filter but with minimal other assumptions is a reasonable trade-off.

We apply the inverse discrete Fourier transform to the filtered average cross
spectrum of each channel-of-interest with the reference band, to obtain the energy-
dependent cross-correlation function (CCF). As outlined in Chapters 2 and 4, we also
apply a normalization of 2/N, where N is the number of time steps in a segment of
the light curve (16,384). This gives the CCF units of (count s~1)? in each channel of
interest. We then divide the CCFs by the rms of the QPO in the reference band (in
absolute rms-squared normalization, i.e units of count s~!) so that the CCF only con-
tains the amplitudes of count rate variation in the channels of interest. To compute
the rms of the QPO in the reference band, we produced an averaged power spectrum
of detector chains 4-6 in the energy range 3—10 keV, rebinned in frequency by a factor
of 1.03, and fitted with the same power-law plus four Lorentzian model as was used
in Section 5.3.1.

The CCF is shown in six energy channels in Figure 5.5. Here, the phase difference
between the soft and hard energies is visible. To illustrate the relative amplitude
of the CCF in each energy channel, we take the ratio of the CCF amplitude with
the mean count rate in each energy channel (since the CCF has a larger absolute
amplitude at lower energies, but the lower energies also have more counts). This
2-dimensional CCF showing both energy-dependence and time-delay-dependence is
shown in Figure 5.6. Again, we see that the QPO in the hard energies leads the QPO
in the soft energies (as was also indicated by the lag-energy spectrum).

Since the in-flight spectral calibration of NICER is still in progress and there are
energy-dependent systematics in effective area of up to 5-10%, we cannot yet carry
out full phase-resolved spectroscopy as in Chapters 2 and 4. Instead, we look at ‘ratio
spectra’, ratios of the phase-resolved spectra to the mean spectrum (Figure 5.7). This
approach accounts for the uncertainties in the instrument’s effective area (which is
simply divided out) and shows relative amplitude changes with energy. We use the
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Figure 5.5: The CCF in six energy channels (corresponding to mean energies of 1.05, 2.07, 3.47,
4.90, 6.90, and 10.40 keV), computed from the filtered average cross spectrum. The time-delay bins
have the same time resolution as the binned light curves (1/256 s~ 3.9 ms). The CCF has a larger
amplitude in the lower energy channels, but those lower energy channels also have higher mean count
rates. Phase differences between the energies are already apparent.

mean count rate per binned channel of interest as the ‘mean spectrum’, and compute
the error on the mean spectrum as the square root of the total counts in each energy
bin, divided by the exposure time.

In Figure 5.7 we show ratio spectra at four phases of a QPO cycle (selected such
that 0° is approximately at the minimum in the 4.9keV channel). We see that the
phase-dependent changes have larger fractional amplitudes at higher energies, as can
also be inferred from Figure 5.6. The pink and green curves, indicating 90° and 270°
respectively, correspond to the maximum and minimum flux phases at low energies
(<2keV), while the purple and orange curves, indicating 0° and 180° respectively,
are the minimum and maximum flux phases at higher energies (= 3keV).

To determine the approximate flux changes with phase, we can attempt to crudely
fit the mean energy spectrum (Figure 5.8) with a simple continuum model appropriate
to the soft-intermediate state. In so doing, we assume that the broadband flux dis-
tribution, which covers a relatively wide dynamic range in energy and flux, should be
robust to the maximum 5-10% systematic errors in the current calibration. The mean
spectrum was fitted in XSPEC with the model TBNEW GAS X (SIMPLER * DISKBB),
with 5% systematic error. The model corresponds to a multi-temperature accretion
disk blackbody which contributes seed photons to a Comptonized component, with
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Figure 5.6: The energy-dependent cross-correlation function (CCF). The colour map shows the
ratio of the CCF amplitude with the mean count rate in each energy channel. The CCF amplitude
represents deviations from the mean count rate per energy channel (hence why it can be negative).
One QPO cycle roughly corresponds to 45.15 time-delay bins (computed from the 5.67 Hz centroid
frequency).

both components being absorbed by the Galactic absorbing column. The SIMPLER
model, used also by Stevens & Uttley (2016) approximates a Compton-upscattered
power-law with low-energy cut-off matching the shape of the seed spectrum, in this
case the disk blackbody component (DISKBB). The power-law photon index was frozen
at I' = 2. The absorbing column density was frozen to Ny = 3.4 x 10?2 cm~2 (Negoro
et al. 2017a). The best-fitting disk temperature was 1.3keV and disk normalization
was 1700. With I" = 2, the best-fitting scattering fraction was 0.07. These model
parameters are given for completeness, but should not be considered robust, given
the current limitations of the calibration. The total spectrum was also multiplied by
a constant of 1.75 to account for only using data from 4 out of the 7 detector chains,
since the only response matrix currently available is for the combined effective area of
all the detector chains (the disk normalization value quoted above has been re-scaled
to account for this response factor).

We can combine our estimated model continuum spectrum with the robust phase-
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Figure 5.7: Ratios of the phase-resolved spectra with the mean spectrum at four phases of a QPO
cycle. The black dashed line denotes no change from the mean spectrum. The purple X’s are for a
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orange triangles are for 180° (time-delay bin of 1), and pink circles are for 270° (time-delay bin 13).
The shape of the spectrum changes more significantly above 3 keV.

resolved ratio spectra obtained via the CCF, to estimate the flux variation as a func-
tion of energy. Figure 5.9 shows difference spectra obtained by multiplying the ratio
spectra from Fig. 5.7 by the model used to fit the mean spectrum in Figure 5.8 (except
with absorption removed so that the estimated variation of the disk blackbody com-
ponent can be fully seen). The model spectrum is then subtracted from the resulting
estimated phase-resolved spectra, to show a difference spectrum in each time-delay
bin. The phase lag of the soft photons, likely that of the disk emission relative to the
Comptonized component, is apparent. Furthermore it is clear that the disk variation
is still relatively weak in flux compared to the power-law variation, even though the
disk dominates the total flux in the mean spectrum. Integrating the flux in energy
bands of 1-2keV and 7-10keV for each time-delay bin, we find that the variation in
the hard band leads the variation in the soft band by 27% of a QPO cycle, consistent
with the measured lag-energy spectrum (Figure 5.4).
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5.4 Discussion and Conclusion

We have reported the discovery and initial spectral-timing analysis of a QPO feature
in the soft-intermediate state of the 20172018 outburst of the new candidate black
hole transient MAXI J1535-571. This QPO has a centroid frequency of 5.67 Hz and is
relatively broad, consistent with @ ~ 2. It is also weak, with an integrated fractional
rms of 1.8% in 3-10keV. The QPO shows strong soft lags with respect to the 3-10 keV
reference band of about 50 ms, which is notably different from the weaker lags of the
lower-frequency broadband noise, which also shows a smoother lag-energy spectrum
compared to the inflected shape of the QPO lag-energy spectrum, which flattens above
~4keV.

Given the QPQO’s appearance at times when the total rms is low, and centroid
frequency between 5 and 6 Hz, it is tempting to identify this feature with the Type B
QPO. In fact, the closest analogy appears to be the QPOs originally identified by
Wijnands et al. (1999) as a Type A QPO in the black hole transient XTE J1550-564
(and Type A-I by Homan et al. 2001), and later identified by Casella et al. (2005) as
a form of Type B QPO. Besides the similar frequencies (~ 5.7 Hz in MAXI J1535-571
versus ~ 5.9 Hz in XTE J1550-564), the shared characteristics of the MAXI J1535-571
QPO and the QPO in XTE J1550-564 are a low Q-value (Q < 3 in XTE J1550-564),
a small rms (2-3% in XTE J1550-564) and occurrence during the soft-intermediate
state (what Homan et al. 2001 referred to as the ‘very high state’ between the hard
and soft states). Interestingly, soft lags are also observed for the similar QPO in
XTE J1550-564 (Wijnands et al. 1999), albeit across the harder 3-50keV energy
range covered by RXTE.

The QPO analyzed in this chapter has some notable differences with the clear Type
B QPO in Chapter 2. There, the QPO had a fractional rms of ~ 14% in 5-10 keV, and
the broadband noise was much weaker. The QPO showed hard lags, and so the ~ 25%
fractional rms variation in the power-law parameters lagged the ~ 1.4% variation in
the soft blackbody flux. However, it is also notable that the inflected shapes of the
lag-energy spectra observed in both sources are similar, but with opposite sign. It is
possible that there is a similar mechanism for both QPOs, namely a large-scale-height
precessing power-law emitting region, possibly the base of the jet (as we suggested
for the Type B QPO in Chapter 2). The inflected shape of the lag-energy spectrum
in MAXI J1535-571 is then linked to a systematic phase-offset between the peaks
in power-law emission and the modulation of the disk blackbody spectrum. Our
reconstruction of phase-dependent spectral variability (see Figure 5.9) suggests that
the disk and power-law component variations are indeed shifted in phase, but unlike
the case of GX 3394, the disk component in MAXI J1535-571 lags rather than leads
the power-law component by ~ 30% in phase.

The phase lead of disk relative to power-law variations in GX 339-4 was attributed
to a geometry where the approaching side of the disk is illuminated by the jet base,
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leading to enhanced (blue-shifted) disk emission, before the jet base points towards
the observer leading to enhanced power-law emission (e.g., due to beaming effects).
The flipped sign of the lag in MAXI J1535-571 could therefore mean that the jet
precession is retrograde compared to the motion of gas in the disk. Alternatively,
the maximum in jet base power-law emission might be seen when the jet is pointing
away from the observer, e.g., if solid angle effects dominate over beaming effects.
The latter scenario might be linked to the higher inclination of the MAXI J1535-571
system compared to GX 339-4, as suggested by measurements of the iron line in the
hard-intermediate state (Xu et al. 2017).

Finally, we note that these observations highlight the enormous potential of NICER
for making breakthroughs in our understanding of accreting compact objects via
spectral-timing methods. At the peak flux levels of the soft-intermediate state of
MAXI J1535-571, the total NICER count rate exceeded 17,000 count s~!, with very
little deadtime and hence minimal spectral distortion. The combination of such large
count rates with CCD energy resolution and a soft X-ray response is a revolutionary
capability, which can be fully realized once NICER’s calibration is completed. The
mission will act as a pathfinder for potential future dedicated spectral-timing missions
such as eXTP (Zhang et al. 2016) and STROBE-X (Wilson-Hodge et al. 2017), en-
abling new breakthroughs using the techniques presented in this thesis and pointing
the way to a bright future for our understanding of the innermost regions of accreting
compact objects.
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Summary

Compact objects like stellar-mass black holes and neutron stars are the final rem-
nants of core-collapse supernovae of massive stars. In the general relativistic frame-
work, compact objects are dense enough to significantly warp spacetime. By studying
emission from very close to the compact object, we can decipher the effects of strong-
gravity on physical processes, and test general relativity in the strong-field limit.
Improving our understanding of the strong gravitational regime will help to advance
models of supermassive black holes in active galactic nuclei, compact object mergers,
gamma-ray burst environments, and gravitational waves. Moreover, the inner cores
of neutron stars are theorized to be denser than an atomic nucleus, and these supra-
nuclear-density conditions cannot be re-created in a laboratory on Earth. As such, a
major goal of the field is to determine the equation of state of neutron star matter.
Modelling emission from the surfaces of neutron stars can place constraints on the
equation of state, with implications for the extreme limits of nuclear physics, particle
physics, and condensed matter physics.

One of the best laboratories to study compact objects is low-mass X-ray binaries
(LMXBs), in which the compact object accretes from a low-mass stellar binary part-
ner. For LMXBs in outburst, viscous heating in the accretion disk causes the accreting
plasma to glow brightly in the X-rays as it falls down the potential well of the com-
pact object. The X-rays are dominated by emission from the immediate vicinity of
the compact object, in the strong-field gravity regime. The two primary analysis tools
to study X-ray emission from LMXBs are spectroscopy and timing. Spectroscopy in-
forms us of the physical processes and components present in the inner region of the
LMXB, while timing informs us of dynamical changes in these systems.

There is a plethora of rapid sub-second variability in the X-ray light curves from
accreting LMXBs, and a growing toolbox of analysis techniques and algorithms to ap-
ply to such phenomena. The two kinds of variability that are studied in this thesis are
quasi-periodic oscillations (QPOs) and coherent X-ray burst oscillations. QPOs are a
probe for studying physical processes in the inner regions of LMXBs, and X-ray burst
oscillations are used to determine the masses and radii of neutron stars to constrain the
neutron star equation of state. Of the novel analysis techniques, the one featured most
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Summary

prominently in this thesis is X-ray spectral-timing, and specifically our method for
QPO-phase-resolved spectroscopy. Spectral-timing analysis combines spectroscopy
and timing simultaneously to take advantage of energy-dependent Fourier amplitudes
and phases in the data. With this, we can deduce the temporal relationships between
spectral components and break degeneracies in QPO emission models. The other new
analysis technique featured in this thesis is an evolutionary optimization algorithm.
When applied to models of X-ray burst oscillations, it is able to explore the degen-
eracies in the model parameter space more efficiently than other popular algorithms.
With these new analysis techniques, we are able to get more out of the data and gain
a better understanding of compact objects.

In Chapter 2, we present a novel spectral-timing technique to do phase-resolved
spectroscopy of QPOs that tracks the variations of spectral parameters with QPO
phase. We apply this new technique to the fleeting Type B low-frequency QPO
from the black hole GX 3394 during its 2010 outburst. We find that the blackbody
emission has a small variation (~ 1.4% fractional rms) that leads the large power-law
variation (~25% fractional rms) by ~ 0.3 in relative phase. We also find that the
variable blackbody is cooler and larger than the inner edge of the accretion disk.
From these results, we infer that a large-scale-height (‘jet-like’) Comptonizing region
precesses during a QPO cycle, illuminating and heating azimuthal regions of the inner
accretion disk. There is debate regarding the location of the Comptonizing region,
and our results suggest that the Comptonizing region in this black hole is linked to the
base of the radio jet. Furthermore, we find that the QPO lag-energy spectrum can be
reproduced by periodic variations of the low- and high- energy spectral components
that are shifted out of phase with each another.

In Chapter 3, we use ray-tracing to simulate pulse profiles of thermonuclear burst
oscillations from an accreting neutron star. We then fit these with an evolutionary
optimization algorithm (similar to a genetic algorithm, with more generalized fea-
tures) to assess how well we could recover the input parameters. This application of
an evolutionary optimization algorithm to burst oscillation pulse profile modelling is
the first of its kind in the literature. For the regions of parameter space sampled by
our tests, the mass and radius fits are accurate (average bias compared to the true
value) to <5%, with an uncertainty (statistical error, including degeneracies among
the fit parameters) of < 7% in mass and < 10% in radius. While the parameter spaces
of all the models tested have some degeneracy, we find that synthetic pulse profiles
with significant asymmetry and large amplitudes are the best-constrained. If these
results could be obtained with real data from a large-area, high-throughput X-ray
timing instrument like eXTP or STROBE-X, they will produce definitive tests that
rule on the validity of equation of state models.

In Chapter 4, we apply our phase-resolved spectroscopy technique to a lower kilo-
hertz (kHz) QPO from the neutron star 4U 1608-52 during its 1996 outburst. We
find evidence for significant variations in the shape of the Comptonized blackbody
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spectral component, like a nearly 10% rms variation in the photon index. The seed
blackbody temperature changes by only a few percent, giving a total QPO spectrum
that pivots at low energies with the dominant variation happening in the hard X-rays.
The small time lags (few tens of microseconds) cannot be reproduced by the changing
amplitude of the parameter variations alone, but by including small (few percent)
phase lags in the parameter variations. These results are interpreted as a ‘breathing’
oscillation in the neutron star boundary layer (where the accretion disk meets the
neutron star surface). Finer spectral and temporal resolution of the lower kHz QPO
from, e.g., NICER or STROBE-X, would allow us to precisely determine the location
of the seed blackbody and the internal spectral shape changes of the boundary layer,
to better understand the physics of this ‘breathing’ oscillation.

Finally in Chapter 5, we carry out spectral-timing analysis of the Type B low-
frequency QPO seen by NICER in the new black hole transient MAXI J1535-571 in
the autumn of 2017. We discover a weak Type B QPO in the soft spectral state of
the outburst and we compute its energy-dependent cross-spectrum amplitude, lag-
energy spectrum, cross-correlation function, and phase-resolved ratio spectra. The
lag-energy spectrum has a similar shape but opposite sign as compared to the Type
B QPO lags in Chapter 2, and the ratio spectra indeed show that the soft X-rays lag
the hard X-rays by ~27% of a QPO cycle. NICER’s superb CCD energy resolution
of the soft X-rays tracks the tiny blackbody variations with QPO phase, and the
completed spectral calibration of NICER in the future will allow us to fit detailed
models to the QPO-phase-resolved spectra. While we find no evidence of a changing
iron line profile in the ratio spectra, a larger-area X-ray observatory like STROBE-X
would place much stricter upper limits on the presence of this reflection component
in the QPO emission.
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Compacte objecten zoals neutronensterren en zwarte gaten met massa’s tot enkele
tientallen zonsmassa’s zijn overblijfselen van een supernova waarbij de kern van een
zware ster ineenstort. Volgens de algemene relativiteitstheorie zijn compacte objecten
zwaar en dicht genoeg om de ruimtetijd significant te krommen. Door de emissie van
zeer dicht bij compacte objecten te bestuderen kunnen we de effecten van sterke zwaar-
tekracht op fysische processen ontrafelen en de algemene relativiteitstheorie toetsen
in het regime van sterke zwaartekracht. Een beter begrip van dit regime is cruciaal
voor het verbeteren van modellen van superzware zwarte gaten in actieve sterren-
stelsels, het samensmelten van compacte objecten, de omgeving van gammaflitsen en
zwaartekrachtgolven. Bovendien heeft de kern van neutronensterren een theoretisch
voorspelde dichtheid groter dan die van een atoomkern, en zulke supra-nucleaire dicht-
heden kunnen in aardse laboratoria niet worden gereproduceerd. Een belangrijk doel
van het onderzoeksveld is daarom de toestandsvergelijking van deze neutronenster-
materie te bepalen. Door de emissie van het oppervlak van neutronensterren te mo-
delleren kan de toestandsvergelijking worden begrensd, met consequenties voor de
meest extreme gebieden van de kernfysica, deeltjesfysica, en vaste-stoffysica.

Een van de beste laboratoria om compacte objecten te bestuderen zijn lage massa
rontgendubbelsterren (LMXBs) waarin een compacte object massa opneemt (accretie)
van een begeleidende, lage-massa ster. Bij een LMXB in uitbarsting straalt het door
wrijving verhitte plasma in de accretieschijf helder in het rontgengebied, terwijl het
in de potentiaalput van het compacte object valt. De rontgenstraling wordt gedomi-
neerd door de emissie uit de directe omgeving van het compacte object, in het sterke
zwaartekracht-regime. De twee primaire hulpmiddelen om de rontgenstraling van
LMXBs te analyseren zijn spectroscopie en analyse van tijdvariaties (timing). Spec-
troscopie vertelt ons over de fysische processen en de componenten in de binnenste
delen van de LMXB, terwijl timing ons informeert over de dynamische veranderingen
in deze systemen.

Er is allerlei snelle sub-seconde variabiliteit in de réntgenlichtkrommen van accre-
terende LMXBs, en een groeiende gereedschapskist met analysetechnieken en algo-
ritmen om op deze verschijnselen toe te passen. De twee soorten variabiliteit die in
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dit proefschrift zijn bestudeerd zijn quasi-periodieke oscillaties (QPOs) en coherente
rontgenburst-oscillaties. Via QPOs worden de fysische processen in de binnendelen
van LMXBs bestudeerd, en rontgenburst-oscillaties worden gebruikt om de massa en
straal van neutronensterren te bepalen en daarmee de toestandsvergelijking te be-
grenzen. De nieuwe analysetechniek die in dit proefschrift het meest op de voorgrond
treedt is timing van het rontgenspectrum (spectral timing), in het bijzonder onze
methode voor QPO-fase afhankelijke spectroscopie. Spectral timing combineert spec-
troscopie en timing en gebruikt de energieathankelijke Fourier-amplitudes en fases in
de data. Hiermee kunnen relaties tussen spectrale componenten in het tijddomein
worden bepaald en ontaarde parameters in QPO emissiemodellen worden ontrafeld.
De andere nieuwe analysetechniek die wordt gebruikt in dit proefschrift is een evoluti-
onair optimalisatie-algoritme. Met deze analysetechnieken kunnen we meer informatie
uit de data verkrijgen en zo compacte objecten beter begrijpen.

In Hoofdstuk 2 presenteren we een nieuwe spectral timing techniek die QPO-fase
afhankelijke spectroscopie mogelijk maakt en de variaties in de spectrale parame-
ters als functie van de QPO fase meet. We passen deze nieuwe techniek toe op de
kortdurende Type B lage-frequentie QPO van het zwarte gat GX 339—4 tijdens zijn
uitbarsting in 2010. We vinden een kleine variatie in de blackbody emissie (~1.4%
fractional rms) die ~ 0.3 in fase voorloopt op een grote (~ 25% fractional rms) variatie
in de power-law component. Ook is deze variabele blackbody koeler en groter dan de
binnenrand van de accretieschijf. Uit deze resultaten leiden wij af dat een Compton-
verstrooiend gebied van grote (‘jet-achtige’) schaalhoogte gedurende de QPO cyclus
precedeert en daarbij achtereenvolgens verschillende azimutale locaties in de binnen-
ste accretieschijf aanstraalt en verhit. Binnen het vakgebied zijn er discussies gaande
betreffende de locatie van het Comptonverstrooiende gebied en onze resultaten sug-
gereren dat dit gebied, in dit zwarte gat, is geassocieerd met de basis van de radiojet.
Verder concluderen we dat de energieafhankelijke faseverschuiving van de QPO ver-
klaard kan worden door periodieke variaties in laag- en hoog- energetische spectrale
componenten die uit fase zijn.

In Hoofdstuk 3 gebruiken we ray-tracing om pulsprofielen te simuleren van ther-
monucleaire burst-oscillaties van een accreterende neutronenster. Vervolgens fitten
wij deze profielen met een evolutionair optimalisatie-algoritme (een gegeneraliseerd
genetisch algoritme) om te bepalen hoe goed we de ingevoerde parameters kun-
nen reproduceren. Dit is de eerste toepassing in de literatuur van een evolutionair
optimalisatie-algoritme om burst-oscillatie profielen te modelleren. In het gebied van
de parameter-ruimte bestreken door onze tests, zijn de massa en straal fits nauwkeu-
rig (d.w.z. voor wat betreft systematische afwijkingen t.o.v. de werkelijke waarde) tot
<5%, met een onzekerheid (statistische fout inclusief de effecten van ontaarding tus-
sen de fit parameters) van < 7% in de massa en van < 10% in de straal. In alle geteste
modellen is er een zekere mate van ontaarding tussen de parameters, maar synthe-
tische pulsprofielen met een significante asymmetrie en grote amplitude begrenzen
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de parameters het best. Als vergelijkbare resultaten kunnen worden verkregen met
echte data van een groot rontgen-timing instrument dat grote fotonenfluxen aankan,
zoals eXTP of STROBE-X, zal dat definitieve tests opleveren van de geldigheid van
model-toestandvergelijkingen.

In Hoofdstuk 4 passen we onze fase-athankelijke spectroscopie methode toe op een
lage kilohertz (kHz) QPO van de neutronenster 4U 1608-52 tijdens zijn uitbarsting
in 1996. We vinden aanwijzingen voor significante variaties in het spectrum van de
Comptonized blackbody component, zoals een variatie in fotonindex van bijna 10%
rms. De temperatuur van de seed blackbody varieert met maar een paar procent,
wat bij elkaar leidt tot een QPO spectrum dat heen en weer draait rond een punt
bij lage energie en waar de sterkste variaties plaatsvinden in het harde rontgenge-
bied. De kleine tijdverschuivingen (van enkele tientallen microseconden) kunnen niet
verklaard worden door alleen de amplitude van de spectrale variaties, maar vereisen
kleine faseverschuivingen (enkele procenten) tussen de parametervariaties. Deze re-
sultaten worden geinterpreteerd als een zg. ‘breathing’ oscillatie in de boundary layer
van de neutronenster (waar de accretieschijf bij het oppervlak van de neutronenster
komt). Waarnemingen van de lage-kHz QPO met hogere spectrale- en tijdsresolutie,
bijvoorbeeld van NICER of STROBE-X, zouden ons in staat stellen om de precieze
locatie van de seed blackbody en de interne spectrale veranderingen van de boundary
layer te bepalen, en zo de fysica van deze ‘ademhalingsoscillatie’ te begrijpen.

In Hoofdstuk 5 tenslotte, doen we een spectral timing analyse van de Type B,
lage-frequentie QPO in de pas ontdekte black-hole transient MAXI J1535-571, zo-
als waargenomen met NICER in het najaar van 2017. Wij ontdekken een zwakke
Type-B QPO in de soft spectral state van de uitbarsting en bepalen zijn energie-
afhankelijke cross-spectral amplitude, tijdverschuiving als functie van energie, cross-
correlatie functie en fase-afhankelijke ratio spectra. De tijdverschuiving als functie van
energie heeft een vergelijkbare vorm, maar omgekeerd teken, vergeleken met die van
de Type-B QPO in Hoofdstuk 2. De ratio spectra laten zien dat de zachte rontgen-
straling inderdaad achterloopt op de harde rontgenstraling met ~ 27% van een QPO
cyclus. NICER’s grandioze CCD energieresolutie in het zachte rontgenspectrum volgt
de kleine blackbody variaties als functie van QPO fase op de voet, en als de spectrale
calibratie van NICER voltooid is zullen we gedetailleerde modellen kunnen fitten aan
de QPO-fase athankelijke spectra. We vinden in de ratio spectra geen aanwijzingen
voor veranderingen in het ijzerlijnprofiel, maar een groter rontgen-observatorium, zo-
als STROBE-X zal veel striktere bovenlimieten plaatsen op de aanwezigheid van deze
reflectiecomponent in de QPO emissie.

179






Acknowledgements

While a PhD is an individual undertaking, it takes a village to get through it, and I
would not have succeeded without an incredible network of support.

First, I would like to thank Phil for the opportunity to do a PhD and for teaching
me so much about X-ray astronomy, Fourier techniques, and statistics. Thank you
for seeing through my nerves at the interview and choosing me! Thank you also to
Michiel for your additional guidance throughout the PhD. I would also like to thank
my committee members, Chris, Ed, Anna, Rudy, and Sera, for evaluating my thesis
and being part of the defense. Additionally, thank you to Sharon for your help and
guidance in the research in Chapter 3.

Huge thanks to Lucy, Adam, and Anne, for your invaluable guidance and support
as I navigated my PhD. Lucy, thank you for your patience in helping me learn the
ropes as | jumped in the deep end of X-ray data analysis as a total beginner. Adam,
thank you for sitting down and working through cross spectral analysis details when
I kept getting stuck. Anne, thank you for our numerous illuminating chats about
harmonics and cross-correlation functions. I can say with absolute certainty that I
wouldn’t have finished without you three. I hope to mentor others as a postdoc as
you did for mel!

Thank you to the X-ray group at API. I greatly appreciated both the larger X-ray
timing sandwich meetings and the smaller Timing Club meetings. Thanks also to the
radio pulsar/FRB group for letting me crash some of your meetings in my last year.
Having a group atmosphere definitely enhanced my research experience at API.

More huge thanks to Catia and Marieke, my paranymphs. Céatia, my PhD sis-
ter, thank you for frantic research advice, dinners, code checks, tea breaks, fashion
nights out, sewing afternoons, and occasional haircuts. Was gezellig!! Marie(ke), my
longtime office buddy and Nerd Nite co-conspirator, thank you for chats, tea breaks,
birthday decorations, and research advice on my postdoc applications. You both in-
fused so much fun and work-life balance into my PhD journey, and I'm so glad to
have you by my side at the defense.

Thank you so much to Daniela, Lucy, and Caroline, my first close group of friends
in Amsterdam, for your advice and so much tea that kept me on track to finish this

181



Acknowledgements

PhD. Our dinners and get-togethers helped me feel at home here. Daniela, thank you
also for helping me with my postdoc applications! Thank you to Arnim for the pizza
and movies. Thank you to Samayra, Amruta, Susan, and Céatia, the “goat girls”, for
brainstorming sessions, more advice, even more tea, lunches, dinners, and trips to the
geitenboerderij for baby goat snuggles. Susan, thank you also for our monthly bagel
brunches. Thank you to Anne for so much chocolate and tea, and many long chats.
And of course, thank you very much to Samayra for translating the samenvatting.

Thank you to my wonderful friends and colleagues from Nerd Nite (Shanna, Lisa,
Marieke, Milena, Eva, and Brechje) and the inaugural API PhD & PD Council
(Samayra, Macla, and Justin) for broadening my horizons. I'm so glad to have been
a part of those with you alll Thank you to my amazing Stingray buddies, Daniela
and Matteo, for being the best software collaborators. I love how much Stingray has
grown!! Thank you also to the broader python in astronomy folks — I'm so glad to be
involved with building an inclusive and welcoming community for astronomy research
software!

Thank you to my lovely officemates over the years in the big office and the little
office at the API. I've loved our many conversations and tea breaks and vocabulary-
searching sessions over the years. Thank you to the API secretariat and manager
(Milena, Susan, Vivian, and Annemarie) for being the driving force of the institute
and for many lovely chats. Thank you also to the APIs I've had the pleasure of
working alongside over my 4+ years in Amsterdam! Our institute is a gem and I'm
so glad to have been here. Additionally, thank you to the Huber group in Regensburg
for your hospitality when I was in town.

Thank you to everyone in the broader astronomy community who I've had the
joy of interacting with. Having such a great network of collaborators and conference
buddies really makes this job fun. Thank you also to the online astro community on
Twitter for adding a whole new dimension to the PhD experience!

Finally, thank you to my family for your love and support through these last 44
years, and thank you to Tyler for being my rock through it all. I've had so much
fun exploring Europe with you, and I'm so excited for us to build a life together in
Michigan. The long-distance sacrifice paid off.

It’s hard to succinctly write down magic words that can somehow encompass
everything I'm thankful for and everyone I'm thankful to. I'm just immeasurably
glad that you all were a part of my PhD.

Abbie

182









