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Proposal primary goals

❖ Enhancing CASA/tclean

1. to improve emission detection for ALMA radio synthesis imaging, 

2. to speed up convergence procedures.

❖ Bayesian probability theory (BPT) is used to incorporate acquired 
knowledge and let the algorithm learn from the data to tackle image 
analysis: BRAIN
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P(Hs |d, I ) =
P(d|Hs , I )P(Hs|I)

P(d|I)



BRAIN phases

❖ Several stages are foreseen with each a prototype software 

1. automatic mask emission algorithm in tclean (while employing one of 
the available deconvolution algorithms)

2. new standalone deconvolution algorithm (in the minor cycle)

3. improvement in image analysis for mosaic of images (both in 1 and 2)

4. improvement of source detection also in extreme sparse data

5. introduce 3D modeling of diffuse emissions

6. unified algorithm for the detection of both ALMA data and counting 
experiments

7. introduce calibration and imaging processes in one unique algorithm
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Beyond BRAIN phases

❖ Support CASA with a MEM reloaded task (e.g. Strong, A., 1995, ExA, 6, 
97) -see appendix

❖ Improve speed in tclean procedure via new optimization schemes (e.g. 
employing Bayesian surrogate models) -see appendix
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BRAIN in a nutshell
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BRAIN in a nutshell
❖ BPT + probabilistic mixture of models (Guglielmetti et al., 2019- Background-

Source Separation technique)

• emphasis is given on the background model (precise and accurate)

• automated decision for the separation of physically interesting sky signals from 
underlying background components (no explicit subtraction)

• physical models and experts knowledge are incorporated in prior probability 
densities 

• parametric models are incorporated in the inference process 

1. parameters are estimated from the data

2. models are compared with Bayes’ factors 

• robust uncertainty quantification provided by the joint posterior probability 
densities
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BRAIN in a nutshell
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counts/pixel Source prob
Dataset characterised by 3 main diffuse emissions caused by 3 SNRs:  Vela SNR, 

Vela Junior SNR, Puppis A SNR
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BRAIN in a nutshell
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20% of the wavdetect flux 
sources are underestimated

BSS residuals are a factor of 10 
smaller than wavdetect ones 

Estimated source intensities Estimated source positions



BRAIN further extensions
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BRAIN will be equipped by a 2D adaptive kernel to improve deconvolution 

R. Fischer et al. Phys. Rev. E61, 1152 (2000) 



❖ We aim at providing new alternative tasks to CASA to support image 
analysis and ALMA 2030 science goals 

❖ Bayes’ theorem provides for a different interpretation of probability, wrt 
frequentist statistics (inductive vs deductive) 

- scientific knowledge is quantified

❖ In image analysis, source detection is addressed straightforwardly 
analysing the probability of source detection

❖ model comparison and parameter estimation are at the state of the art

❖ Drawback of numerical complexity can be mitigated by new optimization 
algorithms (see appendix for more details) 

❖ If you would like to support this study: Join the proposal!
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Summary



Thank you!

See below the Appendix with:
• Bayesian Surrogate models for optimization 
• Application to MEM
• Resolve
• A brain teaser explained in the Bayesian framework 



Appendix



Bayesian Surrogate models 

Computer 
Codex z(x)

Minimisation of Complex Objective function. For reasonable data size, current 
estimation techniques:

                          a. SLOW if full objective function is accounted

             b. FAST if do not account for full objective function

Simulator
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Note: To increase computer power, performance can be enhanced via global optimization  as a 
Bayesian decision problem where two connected statistical layers are employed



Computer 
Codex z(x)

Emulator
• statistical representation of x 

• expresses knowledge about z(x) at any given x

• built using prior information and training set of model runs
Kriging surrogate sampler is used to emulate the original Complex 
Objective function
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Bayesian Surrogate models 



❖ Data: x, y
❖ Model: 

Gaussian likelihood:

  

Prior over the param:

Posterior param distr:  

Make predictions: 

y = fk(x) + ✏

p(y|x,k,Mi) /
Y

j

exp

�
� 1

2

(yj � fk(xj))
2/�2

�

p(k|Mi)

p(k|x,y,Mi) =
p(y|x,k,Mi)p(k|Mi)

p(y|x,Mi)

p(y⇤|x⇤
,x,y,Mi) =

Z
p(y⇤|k, x⇤

,Mi)p(k|x,y,Mi)dk
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Bayesian Surrogate models 



P (s|d) = P (d|s)P (s)

P (d)
⌘ e�H(d,s)

Zd

d = (d1, d2, . . . , dn)
T n 2 N

hsi = argminhs|diH(d, s)

tn = {ti}ni=1

P (y(x)|ti,Xi, I) =
P (ti|y(x),Xi, I)P (y(x))

P (ti)
⌘ e�H(y(x),ti)

Zti
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Bayesian Surrogate models 



Simulated sky signal employing NIFTY package

1.6E+4 dimensions

NIFTY= Numerical Information Field Theory 

(M.Selig, T. Enßlin et al., 2013, A&A, 554A, 26)
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Simulated dataset employing NIFTY package

d=R(s) + n

NIFTY= Numerical Information Field Theory 

(M.Selig, T. Enßlin et al., 2013, A&A, 554A, 26)
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Simulated dataset employing NIFTY package

d=R(s) + n

find optimal solution for s given d

assumption: s is random field 
following some statistics and 
being constrained by the data

NIFTY= Numerical Information Field Theory 

(M.Selig, T. Enßlin et al., 2013, A&A, 554A, 26)
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Bayesian Surrogate models 



Fabrizia Guglielmetti (ESO) -  ALMA Development Workshop, June 5 2019

Bayesian Surrogate models 
Here is a movie of the optimization scheme. If you want to see it, send me a message fgugliel@eso.org 

mailto:fgugliel@eso.org
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Bayesian Surrogate models 



Surrogate solution
coincide with 

Wiener filter solution
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Bayesian Surrogate models 



The surrogate 
minimisation 
routine made 
a speed up of 
a factor 100 

wrt the 
steepest 
descent
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Maximum Entropy methods  
(Strong, A., 1995, ExA, 6, 97)

❖ Entropy:                                  

                          ( intensity in pixel i relative to model value)

❖  Poisson log likelihood:   

❖ S is maximised over all images consistent with the data:     

                - Lagrangian multiplier =0 as start, flat map

                - C is maximised, max S for given L 

                - Stop when L is consistent with the data    

S = �
X

filogfi

L = logP (d|M) =
X

lne

�x

x

n

/n!

C = S � �L

Fabrizia Guglielmetti (ESO) -  ALMA Development Workshop, June 5 2019



Fabrizia Guglielmetti (ESO) -  ALMA Development Workshop, June 5 2019

Maximum Entropy methods  
(Strong, A., 1995, ExA, 6, 97)
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Maximum Entropy methods  
(Strong, A., 1995, ExA, 6, 97)



RESOLVE 

Simulated VLA signal (Jy/pix)
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Junklewitz, H. (2016) A&A 586, 76 

Newest version by 
Arras, P. (2019) 

arXiv:1903.11169



low noise, 40% uv-coverage

Fabrizia Guglielmetti (ESO) -  ALMA Development Workshop, June 5 2019

RESOLVE 



Greiner, M. (2016) arXiv160504317
3C 338 at 8415 MHz fastRESOLVE clean -uniform weight.

clean -natural weight.clean -intermediate weight.
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RESOLVE 



Monty Hall problem 
well-known brain teaser from “Let’s make a deal” TV game show (1980s). 
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Monty Hall problem 

1 2 3
?

• Stick with door 1?
• Switch to door 2?
• Does it make no 

difference?

Should 
contestant:
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Monty Hall problem 

1 2 3

P(D) =Total probability of 
getting the observed data
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1 2 3

Monty Hall problem -earthquake scenario
• Stick with door 1? 
• Switch to door 2? 
• Does it make no difference?

? Assume the prize was placed randomly  
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1 2 3

Monty Hall problem -earthquake scenario

Nature of the data & probability of data differs from previous game
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1 2 3

Monty Hall problem -earthquake scenario

(a) possible data outcomes are that any # of the doors might have opened 

(b) Probabilities of these outcomes depend from any information about door 
latches and earthquake properties 

Nature of the data & probability of data differs from previous game
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1 2 3

Monty Hall problem -earthquake scenario

(c) We rely on the observation:                                    

D:   + goat
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