Low Noise Amplifiers at 67 116 GHz

Gary Fuller and Danielle George
Advanced Radio Instrumentation Group

ALMA Band 2+3 LNAs

- NGC 35nm InP process

Cuadrado-Calle et al. 2017, IEEE Transactions

UMA \#19C+\#13B (heated load, 15K)

June 2018 Delivered LNAs

MANCHESTER
 1824

The University of Manchester

Prototype wideband Band 2 receiver, Nov 2018

Laboratory facilities at UoM

High frequency test cryostat:

- $2^{\text {nd }}$ stage base temperature 4 K
- 4 He or 3 He sorption coolers for 1 K and 300 mK
- Ultimate goal temp 50 mK

Cryogenic on-wafer probe station

- < 4 K stage
- Current configuration to 67 GHz

Noise and Gain

- Currently up to 50 GHz
- Setting up system for 110 GHz

Seeking funds for provision up to 500 GHz

MANCHESTER 1824

Band $2+3$ new design

Simulated S-parameters of the new Band 2+3 LNA (solid curves) and the original design (dashed curves).

$d B\left(B 23 _V 1 . . S(2,1)\right)$	----
$d B\left(B 23 _V 1 . . S(1,1)\right)$	----
$d B\left(B 23 _V 1 . . S(2,2)\right)$	----
$d B($ NewDesign..S(2,1))	-
$d B($ NewDesign..S(1,1))	-
$d B($ NewDesign.. $S(2,2))$	-

Simulated 4 -14GHz LNA

Simulated 14-24GHz LNA

1824
$35-52 \mathrm{GHz}$ LNA

MANCHESTER
 1824
 $30-52$ GHz LNA (Room Temp, commericial process)

WIN Semiconductors $\mathbf{3 0 - 5 2 ~ G H z ~ L N A ~}$

$125-211$ GHz LNA simulation

Next Steps

- LNA integration and characterization
- 4 designs inc update of original design
- Optimizing LNA packaging
- Designs for next 35 nm as well as 25 nm runs
- $67-116$ GHz
- $125-211 \mathrm{GHz}$
- $211-373 \mathrm{GHz}$
- $4-14 \mathrm{GHz}$
- $14-24 \mathrm{GHz}$

