
1

Transforming Malicious Code to ROP Gadgets for Antivirus Evasion

Giorgos Poulios 1, Christoforos Ntantogian 1, Giorgos Karopoulos 2, Christos Xenakis 1*

1 Department of Digital Systems, University of Piraeus, Greece
2 Department of Informatics and Telecommunications, University of Athens, Greece
*xenakis@unipi.gr

Abstract: The downside of current polymorphism techniques lies to the fact that they require a writeable code section,
either marked as such in the corresponding Portable Executable (PE) section header, or by changing permissions during
runtime. Both approaches are identified by AV software as alarming characteristics and/or behavior, since they are rarely
found in benign PEs unless they are packed. In this paper we propose the use of Return-Oriented Programming (ROP) as a
new way to achieve polymorphism and evade AV software. To this end, we have developed a tool named ROPInjector
which, given any piece of shellcode and any non-packed Portable Executable (PE) file, it transforms the shellcode to its ROP
equivalent and patches it into (i.e. infects) the PE file. After trying various combinations of evasion techniques, the results
show that ROPInjector can evade nearly and completely all antivirus software employed in the online VirusTotal service.
The main outcome of this research is the developed algorithms for: a) analysis and manipulation of assembly code on the
x86 instruction set, and b) the automatic chaining of gadgets by ROPInjector to form safe, and functional ROP code that is
equivalent to a given shellcode.

1. Introduction

Return Oriented Programming (ROP) gained

increased attention during the late 2000’s [3] as an advanced

stack smashing method that could bypass Data Execution

Prevention (DEP) mechanisms. ROP is a rediscovery of

threaded code in which programs typically consist of a chain

of addresses in the stack pointing to code chunks in the

attacked executable (or its loaded libraries) each of them

ending with a return instruction (commonly ret but not

only). These borrowed code chunks are called gadgets and

their “return” is in fact a call to the next gadget in the chain.

As an analogy to regular code, in ROP, gadgets are the

“instructions” and esp is the program counter.

Polymorphism is a technique for AV bypass in

which the code changes itself each time it runs, but the

function of the code (its semantics) does not change at all.

In this way, AVs cannot create a signature for detection of

the shellcode. However, the downside of current

polymorphism techniques lies to the fact that they require a

writeable code section, either marked as such in the

corresponding PE section header, or by changing

permissions during runtime. Both approaches are identified

by AV software as alarming characteristics and/or behavior,

since they are rarely found in benign PEs unless they are

packed.

In this work, we claim Return-Oriented

Programming (ROP) to be a strong polymorphism

alternative that eliminate the need of writable code section.

More specifically, the first and most important benefit of

using ROP for AV evasion is that such borrowed code (that

of gadgets) is always benign and tested against false

positives. Evidently, the return address chain has to be built

somehow onto the stack and that would leave a footprint

subject to signing. The process involves either pushing the

return addresses to the stack or just copying the whole chain

from another memory location (possibly some .data

segment) and adjusting the stack pointer. However, we

argue that: i) the code required for such operations is very

common and seemingly benign, ii) can be randomized or

encoded in many and trivial ways, iii) it largely depends on

the attacked PE and its image base since in the worst case it

is a series of push <VAi> operations. This holds because

gadget addresses change for different PEs and different

image bases, hence changing the footprint and statistics of

the chain building instructions even if they originate from

the same source shellcode. Given these features, ROP

enables polymorphism without requiring a writeable code

section in memory. Encoding/decoding can be applied on

the gadget chain in memory (i.e. in the stack and not in the

code section) and/or different gadgets can be randomly

chosen for the same operation hence altering the shellcode’s

footprint.

Based on the above observations, in this paper we

present ROPInjector, a tool which, given any piece of

shellcode (hereafter, also referred to as source (shell)code)

and any non-packed executable file, it transforms the

shellcode into its ROP equivalent and patches it into (i.e.

infects) the PE file. ROPInjector, which is written in C

programming language, infects Portable Executables (PEs)

for Windows OS (a previous version of the tool has been

presented in Blackhat [17]). Since it is very common for

AVs to detect minor deviations from the typical

arrangement of the file sections and their characteristics

(e.g. a second executable section with RWX permissions),

besides the transformation of the code into a non-

recognizable, non-recurrent form, the developed tool

addresses several additional issues to achieve evasion, such

as the positioning of the shellcode in the carrier executable

and the way of transferring control to the shellcode.

Moreover, we have performed several experiments to

evaluate the effectiveness of the proposed tool by injecting

shellcodes to well-known executable files including acrobat

reader, firefox, Java, etc. Quantitative results show that our

mailto:xenakis@unipi.

proposed technique, if combined with simple behavioral

anti-profiling techniques may render AV detection

infeasible.

The rest of the paper is organized as follows. Section

2 presents the related work, while section 3 provides the

required background for ROP. Section 4 elaborates on the

architecture of the proposed ROPInjector and its

functionality details. In section 5, we analyze experimental

results and in section 6 we provide a discussion of possible

mitigation techniques. Finally, section 7 concludes the

article.

2. Related Work

While the traditional use of ROP is software

exploitation (i.e., bypass non-executable stack and heap),

there are some previous works that have proposed

alternative uses of ROP. More specifically, in [8] the

authors propose ROP for benign purposes; specifically, they

use ROP for software watermarking. The proposed ROP-

based watermarking is able to transform watermarking code

into ROP gadgets and build them in the data region. Once

triggered using a secret message, the pre-constructed ROP

execution will recover the hidden watermark message. The

proposed method ensures that the watermarked program

does not have an explicit code stream that belongs

exclusively to watermarking. Instead the authors use

operating system libraries to borrow the ROP gadgets,

preventing detection by software analysis. Towards this

direction, RopSteg [9] has been proposed for program

steganography. The latter is a variation of software

obfuscation but it differs from it, since in program

steganography the instructions are hidden instead of being

transformed. RopSteg achieves to hide selected code

protection by generating equivalent ROP gadgets and

blending them into the executable. Finally, in [10], the

authors propose ROPOB, a code transformation technique

to obfuscate control flow using ROP. The main contribution

of ROPOB is that due to the use of ROP to complete control

flow transfer, static reverse engineering methods cannot

discover the real control flow, even though they can

disassemble software correctly. However, the main

limitation of ROPOB is that through dynamic analysis the

obfuscation trivially breaks. Although all the

aforementioned works have implemented the proposed

tools to evaluate their effectiveness, none of them are

available in the internet (i.e., source code or in the form of

an executable).

The work closest to ours is presented by Mohan et

al. [15]. The authors have developed a metamorphic

obfuscator called Frankenstein which is able to reassemble

a given malware with code fragments entirely from other

benign programs. Authors’ motivation was the creation of

malware variations from benign pieces of entirely randomly

selected binaries residing in a system. Their goal is to avoid

Signature Matching (i.e., syntax based heuristics) detection.

They deduce the problem of generating mutations into a

searching problem. Their proposed method is able to search

for segments of code found in benign binaries and evaluate

them semantically with the given malicious instructions.

The evaluation is based on a symbolic machine state.

Finally, it performs the suitable code arrangements to

construct the final payload. Frankenstein has several

limitations compared to our proposed ROPInjector. First,

the authors consider a relaxed version of a gadget. While

ROP considers that a gadget ends with the ret instruction,

Frankestain definition of a gadget is any sequence of bytes

that are interpretable as valid x86 instructions, since it

statically stitch gadgets together. On the contrary,

ROPInjector considers is a metamorphic malware generator

based on the pure definition of ROP and gadgets. Second,

Frankenstein purpose is to modify only code snippets which

may look suspicious in a malware. On the contrary,

ROPInjector the whole binary to its (one of the many) ROP

counterpart. Third, authors have implemented a prototype

which is not available and therefore, we could not repeat the

experiments for a quantitative comparative analysis.

To the authors’ best knowledge this is the first

practical work that infects PEs with pure ROP-encoded

payload. Nevertheless, in this section we examine two tools

having the same purpose with ROPInjector, that is, to infect

PE files with common (possibly encrypted) shellcode in

order to bypass AV software.

The first, Shellter [1], focuses on maintaining the

original structure of the PE file, by avoiding injection of the

shellcode into predefined locations or changing the

characteristics of the existing sections. It achieves so by

overwriting existing code for which it is certain that will be

given control during execution of the program. The latter is

deduced by tracing the executable file and analyzing its

execution flow. Shellter is also capable of reusing imports

of the original PE file to change the writing permissions of

the section containing the shellcode so that encrypted and

self-modifying code can be used. It is also capable of

injecting “junk code” before the shellcode that delays

execution as a means to anti-emulation. Shellter is advanced

in terms of dynamically selecting the location of the patch

in the shellcode (as opposed to extending the .text section).

However, while it features a patching method that

introduces variability (as to where in the file is the shellcode

injected), it relies on traditional polymorphism methods,

that are still subject to signature generation and detection of

write permissions or modifications of the .text section in

memory. Moreover, our proposed approach introduces

variability too, due to the transformation to ROP (which is

dependent on the PE file).

PEinject [2] is mostly a method (and referenced as

such) rather than a full-featured tool. It injects the shellcode

in the (first sufficiently large) padding space found in the

.text section (either 0xCC caves or section padding) and

does not encode or modify the payload in any way, neither

does it anticipate for self-modifying or encrypted payloads.

Control is passed to the injected shellcode by modifying the

address of entry point of the PE file’s NT_HEADER. The

evasion ratios of both methods are compared with our

proposed approach in Section 5.

3. Return Oriented Programming

ROP gained increased attention [14] as an advanced

stack smashing attack that could bypass Data Execution

Prevention (DEP) mechanisms. It is a rediscovery of

threaded code in which programs typically consist of a chain

of addresses in the stack pointing to code chunks in the

attacked executable (or its loaded libraries) each of them

ending with a return instruction (commonly ret, 0xC3, but

not only). These borrowed code chunks are called gadgets

and their “return” is in fact a call to the next gadget in the

chain. As an analogy to regular code, in ROP, gadgets are

the “instructions” and esp is the program counter.

The first and most important benefit of using ROP

for AV evasion is that such borrowed code (that of gadgets)

is always benign and tested against false positives. Of

course, the return address chain has to be built somehow in

the stack and that would leave a footprint subject to signing.

The process involves either pushing the return addresses to

the stack or just copying the whole chain from another

memory location (possibly some .data segment) and

adjusting the stack pointer. However, a) the kind of code

required for such operations is very common and seemingly

benign, b) it largely depends on the attacked PE and its

image base since in the worst case it is a series of push

<VAi> operations, and c) can be randomized or encrypted

in many and trivial ways. Especially, what we mentioned

for reason (b) holds because gadget addresses change for

different PEs and different image bases, hence changing the

footprint and statistics of the chain building instructions

even if they are for the same source shellcode.

Given these features, ROP enables polymorphism

without requiring a writeable code section in memory

(which is very rare in benign PEs unless they are packed, as

well as a typical heuristic for detection).

Encryption/decryption can be applied on the gadget chain in

memory. (i.e. in the stack and not in the code section) and/or

different gadgets can be randomly chosen for the same

operation hence altering the malware’s footprint.

4. ROPInjector

ROPInjector takes as in input a PE together with a

malicious piece of code and outputs the PE which is infected

with the malicious piece of code in a ROP form (see figure

1).

In general, ROPInjector approach can be divided

into 6 distinct phases as follows:

1) Reverse analysis of machine code

2) Finding ROP gadgets in PE

3) Transform instructions to ROP equivalents

using an intermediate representation language

4) Inject gadgets

5) Create chain from gadgets

6) Patch PE

In the next sections, we are going to analyse each of the

above phases providing detailed examples to gain better

understanding of the presented notions.

4.1 Reverse analysis of machine code

Reverse analysis of machine code into data

structures that are easy to handle is crucial to perform any

kind of patching, modifications, re-assembly, and any

transformation to ROP. Two are the most important pieces

of information required: i) the origin and destination of all

relative references (e.g. a relative jump and its target) and

ii) which registers are being written or read during each

instruction, as well as which registers are free to modify.

The former is required for injecting or removing

instructions from a code segment without breaking its

functioning. The latter is particularly useful to enhance

gadget matching, either by performing permutations, or by

using gadgets that contain redundant but safe instructions

(in this case, unsafe are branch, privileged, or indirect

addressing mode instructions because they risk raising

errors such as access violation).

4.1.1: MOD/REG/RM and SIB unrolling: Instructions

using the MOD/REG/RM indirect addressing mode with

displacement or the Scaled Index Byte (SIB) addressing

scheme in the shellcode are treated specially before the

transformation to ROP. Such instructions are unwanted for

the following reasons:

i) They are long (in the best and not so likely case 3

bytes long: 1 for opcode, 1 for MOD/REG/RM and

1 for SIB) hence unlikely to be found in gadgets;

ii) They often read many general purpose registers at

once, thus reserving them while as mentioned

earlier, the more the free registers the better;

 Table 1 List of PE files used as carriers in the experiments

Executable Version

AcroRd32.exe Version DC of Adobe Acrobat Reader

Acrobat.exe Version DC of Adobe Acrobat Pro

cmd.exe Version 10.0.17134.165 Windows Command

Prompt

Rainmeter.exe Version 4.2.0 Build 3111 of Rainmeter

firefox.exe Version 61.0.1 of Mozilla Firefox

java.exe Version 10.0.1 of Oracle Java

wmplayer.exe Version 12.0.9600.17415 of Microsoft Windows

Media Player

nam.exe Version 1.11 of “The Network Animator”

notepad++.exe Version 7.5.5 of the GNU text editor for Windows

Fig. 1. ROPInjector functionality

iii) Their respective gadgets (should they be found or

injected) will probably not be reusable, due to the

use of displacement and index constants (e.g. mov

edx, [esi*2+16]).

In order to circumvent this kind of situations, we reduce

such instructions to their arithmetic equivalents one-by-one.

We call this process unrolling and it is performed to the

shellcode before any transformation to ROP. For instance,

[1] mov eax, [ebx+ecx*2] may be replaced by:

[a'] Mo v eax, ecx

[b'] sal eax, 1

[c'] add eax, ebx

[d'] mov eax, [eax]

If the register eax is not free to use for the arithmetic

operations, another temporary register that is free may be

used.

Noteworthy is how unrolling unlocks register access

from one atomic instruction to many. For instance, in the

latter example, ecx is freed at [a'] and ebx at [c']. If for

example eax were to be freed at the preceding 10

instructions, then instructions [a'] to [c'] could be moved 10

instructions behind, thus resulting in an additional free

register (i.e., ecx and ebx, but not eax which will not be free)

in that preceding code chunk.

4.2 Finding gadgets

Candidate gadgets in the executable sections of the

given PE file must end in one of :

• ret,

• retn,

• pop regX;

• jmp regX, or jmp regX.

Exceptionally for the latter, the gadget in question must be

first paired with a loader gadget that loads the required

return address into regX. The process begins by finding all

gadget endings and temporarily storing them to a list. For

each of those endings, n bytes of preceding machine code is

disassembled for each n up to maximum depth N (typically

20 bytes). If such disassembly aligns with the ending (not

guaranteed since x86 instructions are of variable length) a

candidate gadget has been found. Candidate gadgets

containing any illegal, privileged (e.g. sysenter, int,

iret), branch or esp modifying instructions are filtered

out.

4.3 Parsing gadgets into Intermediate
Representation and One to One
Permutations Between Source Code and
Gadgets (ROP Transformation)

The gadgets found in the aforementioned process are

first analyzed instruction-by-instruction to infer register

access. Since gadgets are allowed to contain safe but

redundant instructions, their register access is tested for

modifications to the register in question (e.g. a mov ecx,

eax; pop ecx; ret; gadget cannot be used for

moving eax to ecx) as well as the non-free registers of the

source instruction to be encoded.

Following that, they are parsed into an Intermediate

Representation (IR) consisting of an operation-type, and 3

operands with different meaning depending on the type. If

a multi-instruction gadget contains more than one

representable instructions, only the first is considered.

However, the following ones have also been considered in

other gadgets with the same ending, because of the

backwards gadget finding process described in the previous

paragraph. Noteworthy is the fact that by parsing into this

higher level IR, one-to-one permutations are automatically

performed. That is because both gadgets and instructions

 mov esp, ebp

 pop ebp

 ret(n)

 CCCCCCCCCCCCCCCCCC

 jmp epilogue; normal flow avoiding gadget

 mov ecx, eax; the injected gadget

 jmp return; gadget flow avoiding std. epilogue

epilogue:

 mov esp, ebp

 pop ebp

return:

 ret(n)

 CCCCCCCC

 Fig.2. Injection of gadget (right) in 0xCC cave preceded by standard function epilogue (left)

Table 2: List of patching scenarios tested against VirusTotal

Patching Scenario Description

Original The executable file is not patched at all

ROP-Exit This is the executable file generated by the ROPInjector. The executable

file is patched with the shellcode unrolled, converted to ROP, and entry

point before the original program’s exit (hook ExitProcess or exit)

Exit In this scenario, the executable file is patched with the shellcode intact and

entry point before the original program’s exit (hook ExitProcess or exit)

Shellcode The executable file is patched with the shellcode intact, and entry point

before the original program.

are classified into one of these types, based on which the

encoding is then performed, rather than on the instructions

per se. The IR is also useful for selecting the encoder

function accompanying every gadget. Encoders are

responsible to answer “whether their assigned gadget can

encode a given instruction”, as well as to encode it into a

list of stack operations if requested to.

Predefined, one-to-one permutations (i.e. one

instruction to one gadget) are achieved through the IR and

encoder functions. Encoders will also perform basic

algebraic permutations based on the properties of addition,

subtraction multiplication and division. For instance, if the

instruction to be encoded is of type ADD_IMM (add

reg, imm), an encoder will repeat anything add reg,

x with x being an integer divisor of imm, imm/x times.

Addition and subtraction with constants will also be

swapped if the signs of the constants are flipped. M-to-N

permutations quickly scale to exponentially growing space

and are out of the scope of this work.

4.4 Injecting Gadgets

In order to enhance transformation of the source

shellcode, and since not all required gadgets are always

found in the PE file, new ones are also injected as needed.

Firstly, the 0xCC caves are used for this injection, and if

they are filled, the .text section is extended before the actual

patch. The injection is performed in the least noticeable way

to avoid alarms. If a standard epilogue (mov esp, ebp;

pop ebp; ret) is found right before the 0xCC cave, the

gadget is injected in-between the preceding code and the

epilogue. Figure 2 depicts such an example gadget injection

of a mov ecx, eax gadget. In the case that no epilogue is

found at the boundary with the 0xCC cave, a pseudo-

function with standard prologue and epilogue is injected to

avoid heuristics or n-grams that might raise suspicion due

to non-ordinary returns. This pseudo-function has the

following form shown in figure 3.

Following gadget insertions will then reuse this

pseudo-epilogue as stated above, by injecting before the

standard epilogue, thus making it look more like a real

function.

 push ebp

 mov ebp, esp

 <gadget code>

 jmp return

 mov esp, ebp

 pop ebp

return:

 ret

Fig. 3. Pseudo-function ending used during gadget

injection

4.5 Chaining gadgets

The return address chain can be built either during

runtime or during compile-time and saved to the initialized

data section of the file (to be then copied at runtime to the

stack). The most alarming option would be the first (during

runtime) and we choose this to evaluate our evasion ratio

(also chosen as an implementation option). During this

process, besides the pushing of the VAs onto the stack, the

ROP compiler must consider pushing immediate constants,

adjustments for stack pointer modifications in the gadget

(e.g. redundant pops, retns) and gadgets with loader

gadgets. For this purpose, the following types of stack

operations are defined:

 PUSH_VA ; push a (loader) gadget VA onto the

stack

 PUSH_IMM ; push an immediate constant onto

the stack

 ADVANCE ; advance (subtract from) the stack

pointer a number of bytes

 CHAIN ; pseudo operation denoting a

placeholder for the next gadget’s VA

The result of the encoding process of a given

instruction by a given gadget is a series of stack operations

for the invocation of the gadget. The list of such operations

for all gadget calls describes the assembly instructions that

if executed, will build the chain in the stack. Alternatively,

such operations may be used to create the required stack

frame during compile-time, save it as initialized data and
copy it over from the data section during runtime. The latter

process allows also for encoding/decoding of the stack

frame. In the former case, and when multiple calls are made

Fig. 4. Evasion ratio of ROPInjector for the Meterpreter Shellcode

to the same gadget (e.g. as in using inc eax to achieve

add eax, X) the compiler wraps the call with a

conditional jump loop using a free register.

However, not all types of instructions can be easily

encoded into ROP. In this work we do not consider the

encoding of branches (jumps, calls, loops, interrupts),

privileged instructions and pops. Hence, the return-oriented

code chunks must finally return back to the source

shellcode. This is achieved by wrapping the chain building

instructions in the following:
[1] call build_chain
[2] jmp past_the_chain

build_chain:
[3] push <VA of gadget N>
[4]
[5] push <VA of gadget 1>
[6] ret

past_the_chain:
[7] <other instructions/chains>

In this way, the last gadget (N) will return to instruction [2]

jumping past the chain building instructions and continuing

normal execution flow.

4.6 PE Patching and Passing Control to the
Shellcode

First of all, the patching of the PE file and the passing

of control to the shellcode must be done in the least

noticeable way. A second executable section hosting the

shellcode would be too alarming, since the vast majority of

executables has only one. The next least disruptive and easy

to implement option would be to inject the shellcode in the

0xCC padding commonly left by the linker in-between code

segments (typically OBJ files) in the .text section of PEs.

However, there may not always be sufficient space in those

0xCC caves, while it is important to notice that ROPInjector

puts this padding space into better use for our purposes as

we analyze below.

For the above reasons we choose to append the

shellcode to the existing .text section of the executable, and

correct all section headers and relocations accordingly. To

pass control to it, the default practice is to replace the

instructions pointed to by

NT_HEADER.AddressOfEntryPoint with a jump to

the shellcode which is appended those replaced instructions

followed by a jump back to the original execution flow.

Directly pointing the address of entry point to the shellcode

in this case is avoided, since many AVs’ heuristics are

alarmed by the fact that it points towards the end of .text.

An alternative to giving control to the shellcode at program

entry, is to hook any calls to ExitProcess, exit or

other similar functions. This technique in particular, as

shown also later by the results, bypasses behavioral

profiling by AVs that employ emulation or sandboxing.

This can be attributed to the fact that either AVs emulate

only a small portion of the executable’s entry code due to

scanning time constraints, or because of lack of (universal)

techniques for triggering a graceful exit (many programs do

not handle SIGINT and SIGTERM signals).

An issue that arises when patching signed

executables is that their checksum/hash, and thus their

certificate, gets invalidated. This is obviously very alarming

and would prevent us from testing our methods on popular

executables of every-day use. Surprisingly though, hiding

the certificate by erasing its pointer in the security data

directory of NT_HEADER does not trigger any alarms. Of

course, regardless of the certificate, the checksum of the PE

file is recalculated and patched accordingly.

5. Experiments and Results

In order to evaluate ROPInjector we used the

VirusTotal online antivirus scanning service [4] which at

the time of this writing includes 57 AVs. For carrier PEs

(i.e., the infected ones), we selected 9 popular 32-bit

executable of various sizes that most of them also include

certificates (see Table 1).

Regarding the source shellcode, we selected the most

popular payload of Metasploit [5]: the Reverse TCP

Meterpreter. For each PE and each shellcode we performed

4 patching scenarios as listed in Table 2, resulting in a total

of 72 samples. Figure 4 depicts the evasion ratios (1 −
𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝐴𝑉𝑠
) of ROPInjector for each one of the four

scenarios for the widely used reverse Meterpreter shellcode.

We can observe that the executables generated by the

ROPInjector (i.e., “ROP-Exit” scenario) achieve the highest

evasion ratio. In particular, in more than half of the test

cases the ROPInjector results in 100% AV evasion, while in

some PE files (e.g., java.exe), the ROPInjector has evasion

ratio greater than 98.5% for the well-known Meterpreter

shellcode. This means that in average ROPInjector achieves

AV evasion equal to 99.31%, as depicted in figure 5 (i.e.,

“ROP-Exit” scenario).

From these results we can deduce that evasion

depends almost equally on both code

obfuscation/transformation (hence signature evasion) and

entry point (hence behavioral profiling evasion). This can

be attributed to the fact that some AVs were able to detect

ROPInjector despite the fact that there is no signature, due

to the ROP polymorphism. It seems that behavioral analysis

is equally important to static signatures for some AVs (from

the ones that were alarmed) and is mostly performed during

entry of executables.

Moreover, a comparison is also made with Shellter

v2.2 [1] and PEinject [2] in figure 6. Shellter was used with

its default options (i.e. with polymorphic junk code). We

can observe that executables generated from our proposed

ROPInjector (i.e., “ROP-Exit”) have the highest evasion

ratio in all conducted experiments compared to Shellter and

PEinject. Note also that even the simple “Exit” scenario

achieved in some executable files better results than

Shellter. Finally, the peinject had the worst evasion ratio.It

is also important to notice that besides VirusTotal, we have

also tested the effectiveness of ROPInjector against a

special piece of software named NCCGroup’s

“Experimental Windows .text section Patch Detector” [7].

This detector compares the executable sections in memory

against the ones on disk to detect modifications/patching.

As expected, no executable was detected as patched, since

ROPInjector does not alter the .text section in memory

(neither does it require to).

Fig. 5. Average evasion ratio per combination of methods

6. Discussion

Most antivirus software relies on string signatures and mild

behavioral profiling detection mechanisms. By encoding

the shellcode into its return-oriented equivalent and even by

performing elementary mutations (unrolling), the former

can be bypassed in the vast majority of cases. Dynamic

analysis and behavioral profiling can also be avoided by

carefully intercepting normal execution flow in points that

AVs either cannot emulate or simply cannot derive enough

evidence to classify the behavior as malicious. In this work,

we presented as a means to the latter the hooking of

common calls to process exit resulting in many cases in

absolute evasion and in others rates greater than 98%.

However, if the anti-dynamic analysis protection of

ROPInjector is bypassed than the dynamic analysis of an

infected PE can reveal the malicious code hidden in a ROP

form. However, we consider this as out of scope since

ROPinjector is mainly designed as an obfuscation tool to

avoid static detection. Advanced techniques specialized for

anti-dynamic analysis such as malwash [16] can be

combined and further enhance evasion capabilities of

ROPInjector.

The techniques presented can still be mitigated if

dealt with individually. For instance, signatures could be

created for ROP building instructions and behavioral

analysis could be also performed backwards in terms of

process life-cycle. However, since slight variations and

randomization can again disarm scanners, a more robust

countermeasure does not seem straight-forward to design,

and/or practical to implement.

Several AVs rely on code statistics (such as entropy,

n-grams and more), in order to classify PE files as benign or

malicious. Unless such methods are designed to consider

separate parts of the file’s code, ROPInjector does not affect

the statistic metrics of the binary file as a whole. The only

metric that is affected and can be used by AVs for detection

is the hash of the PE itself. In particular, for well-known PEs

(such as Firefox.exe), AVs can cross-check the hash of the

PE. If the hash is different from the official version of the

executable, then AVs can raise an alarm. However, since

new versions with updates are continuously released,

maintaining the size of each PE is a challenging task.

Another solution which has a great impact on ROP,

since it effectively mitigates software exploitation attacks

based on ROP is the well-known Control Flow Integrity

(CFI) [12]. The latter is a compile time mechanism for

preventing malicious code from redirecting the execution

flow of a program. In other words, the goal of CFI is to

restrict the set of possible control-flow transfers to those that

are strictly required for correct program execution. This

prevents code-reuse techniques such as ROP from working

because they would cause the program to execute control-

flow transfers which are illegal under CFI [13]. By its own

definition, we can deduce that CFI will not be triggered,

since its purpose is to defend against external threats which

will modify the operation of an executable. On the contrary,

ROPInjector does not change the execution flow of an

executable except for the exit point of the executable in

order to trigger ROPInjector and transfer the code execution

into the ROP chain, executing the malware. However, since

this execution flow modification is not an indirect branch,

CFI will not consider this as a policy violation and will not

be triggered. We have verified this behavior against

executables which are compiled with CFI (i.e., using

Control Flow Guard implementation of Windows OS).

Perhaps the most promising direction is towards the

strict coupling of the host operating system with the trusted

software certificates (or checksums) and a “default distrust

all” policy, i.e., whitelisting rather than blacklisting, which

may have gain in popularity the last years in Windows

domain environments (i.e., application whitelisting [6]), but

not in standalone installations of Windows OS in personal

environments.

7. Conclusions

In this paper we presented ROPInjector, a software tool

which, given any piece of shellcode and any non-packed 32-

bit Portable Executable (PE) file, it transforms the shellcode

to its ROP equivalent and patches it into (i.e. infects) the PE

Fig. 6. Comparison of evasion ratio between “ROP-Exit”, “Exit” scenarios with Shelter and PEinject

file. After trying various combinations of evasion

techniques, the results show that ROPInjector can evade

nearly and completely all antivirus software employed in

the online VirusTotal service. The main outcome of this

research is the developed algorithms for: a) analysis and

manipulation of assembly code on the x86 instruction set,

and b) the automatic chaining of gadgets by ROPInjector to

form safe, and functional ROP code that is equivalent to a

given shellcode. Currently, we are in the process of porting

the implementation of ROPInjector tool, from C to Python

programing language. This would benefit the project, since

Python is more human friendly and the security community

has already implemented libraries for reverse engineering,

fact that would greatly help us to reduce the code base and

complexity of ROPInjector.

8. Acknowledgments

This work was supported by the European Commission,

under the FutureTPM project with Grant Agreement No.

779391.

References

[1] Shellter project, https://www.shellterproject.com, last

accessed on April 15, 2018

[2] Injecting Shellcode into a Portable Executable(PE)

using Python,

http://www.debasish.in/2013/06/injecting-shellcode-

into-portable.html, last accessed on April 15, 2018

[3] Shacham, Hovav. "The geometry of innocent flesh on

the bone: Return-into-libc without function calls (on

the x86)." Proceedings of the 14th ACM conference

on Computer and communications security. ACM,

2007.

[4] VirusTotal, https://www.virustotal.com, last accessed

on June 15, 2018

[5] Metasploit, http://www.metasploit.com/, last accessed

on April 15, 2018

[6] Applocker, https://docs.microsoft.com/en-

us/windows/security/threat-protection/windows-

defender-application-control/applocker/applocker-

overview, last accessed on February 15, 2018

[7] Experimental Windows .text section Patch Detector,

https://github.com/nccgroup/WindowsPatchDetector,

last accessed on July 15, 2018

[8] Ma, Haoyu, et al. "Software Watermarking using

Return-Oriented Programming." Proceedings of the

10th ACM Symposium on Information, Computer and

Communications Security. ACM, 2015.

[9] Lu, Kangjie, Siyang Xiong, and Debin Gao. "Ropsteg:

program steganography with return oriented

programming." Proceedings of the 4th ACM

conference on Data and application security and

privacy. ACM, 2014.

[10] Dongliang Mu et al. "ROPOB: Obfuscating Binary

Code via Return Oriented Programming."

International Conference on Security and Privacy in

Communication Systems. Springer, Cham, 2017

[11] Jiang Ming et al. "BinSim: Trace-based semantic

binary diffing via system call sliced segment

equivalence checking." Proceedings of the 26th

USENIX Security Symposium. 2017.

[12] Martín Abadi et al. "Control-flow integrity."

Proceedings of the 12th ACM conference on

Computer and communications security. ACM, 2005

[13] Nathan Burow et al. "Control-flow integrity:

Precision, security, and performance." ACM

Computing Surveys (CSUR) 50.1 (2017): 16.

[14] Shacham, H. et al. "Return-oriented programming:

Exploits without code injection." Black Hat USA

Briefings, August 2008.

[15] Vishwath Mohan and Kevin W. Hamlen.

"Frankenstein: Stitching Malware from Benign

Binaries." USENIX Workshop on Offensive

Technologies (WOOT 12012): 77-84.

[16] Kyriakos Ispoglou, and Mathias Payer. "malWASH:

Washing Malware to Evade Dynamic Analysis."

WOOT. 2016.

[17] Giorgos Poulios, Christoforos Ntantogian, and

Christos Xenakis. "Ropinjector: Using return oriented

programming for polymorphism and antivirus

evasion."Blackhat USA (2015).

[18] Giorgos Poulios, “Advanced Antiviurs Evasion

Techniques”, Master Thesis, Department of Digital

Systems, University of Piraeus, 2015.

