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Abstract: The downside of current polymorphism techniques lies to the fact that they require a writeable code section, 
either marked as such in the corresponding Portable Executable (PE) section header, or by changing permissions during 
runtime. Both approaches are identified by AV software as alarming characteristics and/or behavior, since they are rarely 
found in benign PEs unless they are packed. In this paper we propose the use of Return-Oriented Programming (ROP) as a 
new way to achieve polymorphism and evade AV software. To this end, we have developed a tool named ROPInjector 
which, given any piece of shellcode and any non-packed Portable Executable (PE) file, it transforms the shellcode to its ROP 
equivalent and patches it into (i.e. infects) the PE file. After trying various combinations of evasion techniques, the results 
show that ROPInjector can evade nearly and completely all antivirus software employed in the online VirusTotal service. 
The main outcome of this research is the developed algorithms for: a) analysis and manipulation of assembly code on the 
x86 instruction set, and b) the automatic chaining of gadgets by ROPInjector to form safe, and functional ROP code that is 
equivalent to a given shellcode. 
 

1. Introduction 

Return Oriented Programming (ROP) gained 

increased attention during the late 2000’s [3] as an advanced 

stack smashing method that could bypass Data Execution 

Prevention (DEP) mechanisms. ROP is a rediscovery of 

threaded code in which programs typically consist of a chain 

of addresses in the stack pointing to code chunks in the 

attacked executable (or its loaded libraries) each of them 

ending with a return instruction (commonly ret but not 

only). These borrowed code chunks are called gadgets and 

their “return” is in fact a call to the next gadget in the chain. 

As an analogy to regular code, in ROP, gadgets are the 

“instructions” and esp is the program counter. 

Polymorphism is a technique for AV bypass in 

which the code changes itself each time it runs, but the 

function of the code (its semantics) does not change at all. 

In this way, AVs cannot create a signature for detection of 

the shellcode. However, the downside of current 

polymorphism techniques lies to the fact that they require a 

writeable code section, either marked as such in the 

corresponding PE section header, or by changing 

permissions during runtime. Both approaches are identified 

by AV software as alarming characteristics and/or behavior, 

since they are rarely found in benign PEs unless they are 

packed.  

In this work, we claim Return-Oriented 

Programming (ROP) to be a strong polymorphism 

alternative that eliminate the need of writable code section. 

More specifically, the first and most important benefit of 

using ROP for AV evasion is that such borrowed code (that 

of gadgets) is always benign and tested against false 

positives. Evidently, the return address chain has to be built 

somehow onto the stack and that would leave a footprint 

subject to signing. The process involves either pushing the 

return addresses to the stack or just copying the whole chain 

from another memory location (possibly some .data 

segment) and adjusting the stack pointer. However, we 

argue that: i) the code required for such operations is very 

common and seemingly benign, ii) can be randomized or 

encoded in many and trivial ways, iii) it largely depends on 

the attacked PE and its image base since in the worst case it 

is a series of push <VAi> operations. This holds because 

gadget addresses change for different PEs and different 

image bases, hence changing the footprint and statistics of 

the chain building instructions even if they originate from 

the same source shellcode. Given these features, ROP 

enables polymorphism without requiring a writeable code 

section in memory. Encoding/decoding can be applied on 

the gadget chain in memory (i.e. in the stack and not in the 

code section) and/or different gadgets can be randomly 

chosen for the same operation hence altering the shellcode’s 

footprint. 

Based on the above observations, in this paper we 

present ROPInjector, a tool which, given any piece of 

shellcode (hereafter, also referred to as source (shell)code) 

and any non-packed executable file, it transforms the 

shellcode into its ROP equivalent and patches it into (i.e. 

infects) the PE file. ROPInjector, which is written in C 

programming language, infects Portable Executables (PEs) 

for Windows OS (a previous version of the tool has been 

presented in Blackhat [17]). Since it is very common for 

AVs to detect minor deviations from the typical 

arrangement of the file sections and their characteristics 

(e.g. a second executable section with RWX permissions), 

besides the transformation of the code into a non-

recognizable, non-recurrent form, the developed tool 

addresses several additional issues to achieve evasion, such 

as the positioning of the shellcode in the carrier executable 

and the way of transferring control to the shellcode. 

Moreover, we have performed several experiments to 

evaluate the effectiveness of the proposed tool by injecting 

shellcodes to well-known executable files including acrobat 

reader, firefox, Java, etc. Quantitative results show that our 

mailto:xenakis@unipi.


proposed technique, if combined with simple behavioral 

anti-profiling techniques may render AV detection 

infeasible.  

The rest of the paper is organized as follows. Section 

2 presents the related work, while section 3 provides the 

required background for ROP. Section 4 elaborates on the 

architecture of the proposed ROPInjector and its 

functionality details. In section 5, we analyze experimental 

results and in section 6 we provide a discussion of possible 

mitigation techniques. Finally, section 7 concludes the 

article. 

2. Related Work 

While the traditional use of ROP is software 

exploitation (i.e., bypass non-executable stack and heap), 

there are some previous works that have proposed 

alternative uses of ROP. More specifically, in [8] the 

authors propose ROP for benign purposes; specifically, they 

use ROP for software watermarking. The proposed ROP-

based watermarking is able to transform watermarking code 

into ROP gadgets and build them in the data region. Once 

triggered using a secret message, the pre-constructed ROP 

execution will recover the hidden watermark message. The 

proposed method ensures that the watermarked program 

does not have an explicit code stream that belongs 

exclusively to watermarking. Instead the authors use 

operating system libraries to borrow the ROP gadgets, 

preventing detection by software analysis. Towards this 

direction, RopSteg [9] has been proposed for program 

steganography. The latter is a variation of software 

obfuscation but it differs from it, since in program 

steganography the instructions are hidden instead of being 

transformed. RopSteg achieves to hide selected code 

protection by generating equivalent ROP gadgets and 

blending them into the executable. Finally, in [10], the 

authors propose ROPOB, a code transformation technique 

to obfuscate control flow using ROP. The main contribution 

of ROPOB is that due to the use of ROP to complete control 

flow transfer, static reverse engineering methods cannot 

discover the real control flow, even though they can 

disassemble software correctly. However, the main 

limitation of ROPOB is that through dynamic analysis the 

obfuscation trivially breaks. Although all the 

aforementioned works have implemented the proposed 

tools to evaluate their effectiveness, none of them are 

available in the internet (i.e., source code or in the form of 

an executable). 

The work closest to ours is presented by Mohan et 

al. [15]. The authors have developed a metamorphic 

obfuscator called Frankenstein which is able to reassemble 

a given malware with code fragments entirely from other 

benign programs. Authors’ motivation was the creation of 

malware variations from benign pieces of entirely randomly 

selected binaries residing in a system. Their goal is to avoid 

Signature Matching (i.e., syntax based heuristics) detection. 

They deduce the problem of generating mutations into a 

searching problem. Their proposed method is able to search 

for segments of code found in benign binaries and evaluate 

them semantically with the given malicious instructions. 

The evaluation is based on a symbolic machine state. 

Finally, it performs the suitable code arrangements to 

construct the final payload. Frankenstein has several 

limitations compared to our proposed ROPInjector. First, 

the authors consider a relaxed version of a gadget. While 

ROP considers that a gadget ends with the ret instruction, 

Frankestain definition of a gadget is any sequence of bytes 

that are interpretable as valid x86 instructions, since it 

statically stitch gadgets together. On the contrary, 

ROPInjector considers is a metamorphic malware generator 

based on the pure definition of ROP and gadgets. Second, 

Frankenstein purpose is to modify only code snippets which 

may look suspicious in a malware. On the contrary, 

ROPInjector the whole binary to its (one of the many) ROP 

counterpart. Third, authors have implemented a prototype 

which is not available and therefore, we could not repeat the 

experiments for a quantitative comparative analysis.  

To the authors’ best knowledge this is the first 

practical work that infects PEs with pure ROP-encoded 

payload. Nevertheless, in this section we examine two tools 

having the same purpose with ROPInjector, that is, to infect 

PE files with common (possibly encrypted) shellcode in 

order to bypass AV software. 

The first, Shellter [1], focuses on maintaining the 

original structure of the PE file, by avoiding injection of the 

shellcode into predefined locations or changing the 

characteristics of the existing sections. It achieves so by 

overwriting existing code for which it is certain that will be 

given control during execution of the program. The latter is 

deduced by tracing the executable file and analyzing its 

execution flow. Shellter is also capable of reusing imports 

of the original PE file to change the writing permissions of 

the section containing the shellcode so that encrypted and 

self-modifying code can be used. It is also capable of 

injecting “junk code” before the shellcode that delays 

execution as a means to anti-emulation. Shellter is advanced 

in terms of dynamically selecting the location of the patch 

in the shellcode (as opposed to extending the .text section). 

However, while it features a patching method that 

introduces variability (as to where in the file is the shellcode 

injected), it relies on traditional polymorphism methods, 

that are still subject to signature generation and detection of 

write permissions or modifications of the .text section in 

memory. Moreover, our proposed approach introduces 

variability too, due to the transformation to ROP (which is 

dependent on the PE file). 

PEinject [2] is mostly a method (and referenced as 

such) rather than a full-featured tool. It injects the shellcode 

in the (first sufficiently large) padding space found in the 

.text section (either 0xCC caves or section padding) and 

does not encode or modify the payload in any way, neither 

does it anticipate for self-modifying or encrypted payloads. 

Control is passed to the injected shellcode by modifying the 

address of entry point of the PE file’s NT_HEADER. The 

evasion ratios of both methods are compared with our 

proposed approach in Section 5. 

3. Return Oriented Programming 

ROP gained increased attention [14] as an advanced 

stack smashing attack that could bypass Data Execution 

Prevention (DEP) mechanisms. It is a rediscovery of 

threaded code in which programs typically consist of a chain 

of addresses in the stack pointing to code chunks in the 

attacked executable (or its loaded libraries) each of them 

ending with a return instruction (commonly ret, 0xC3, but 

not only). These borrowed code chunks are called gadgets 



and their “return” is in fact a call to the next gadget in the 

chain. As an analogy to regular code, in ROP, gadgets are 

the “instructions” and esp is the program counter. 

The first and most important benefit of using ROP 

for AV evasion is that such borrowed code (that of gadgets) 

is always benign and tested against false positives. Of 

course, the return address chain has to be built somehow in 

the stack and that would leave a footprint subject to signing. 

The process involves either pushing the return addresses to 

the stack or just copying the whole chain from another 

memory location (possibly some .data segment) and 

adjusting the stack pointer. However, a) the kind of code 

required for such operations is very common and seemingly 

benign, b) it largely depends on the attacked PE and its 

image base since in the worst case it is a series of push 

<VAi> operations, and c) can be randomized or encrypted 

in many and trivial ways. Especially, what we mentioned 

for reason (b) holds because gadget addresses change for 

different PEs and different image bases, hence changing the 

footprint and statistics of the chain building instructions 

even if they are for the same source shellcode. 

Given these features, ROP enables polymorphism 

without requiring a writeable code section in memory 

(which is very rare in benign PEs unless they are packed, as 

well as a typical heuristic for detection). 

Encryption/decryption can be applied on the gadget chain in 

memory. (i.e. in the stack and not in the code section) and/or 

different gadgets can be randomly chosen for the same 

operation hence altering the malware’s footprint. 

4. ROPInjector 

ROPInjector takes as in input a PE together with a 

malicious piece of code and outputs the PE which is infected 

with the malicious piece of code in a ROP form (see figure 

1).  

In general, ROPInjector approach can be divided 

into 6 distinct phases as follows: 

1) Reverse analysis of machine code 

2) Finding ROP gadgets in PE 

3) Transform instructions to ROP equivalents 

using an intermediate representation language 

4) Inject gadgets 

5) Create chain from gadgets 

6) Patch PE 

In the next sections, we are going to analyse each of the 

above phases providing detailed examples to gain better 

understanding of the presented notions. 

 

4.1 Reverse analysis of machine code 
 

Reverse analysis of machine code into data 

structures that are easy to handle is crucial to perform any 

kind of patching, modifications, re-assembly, and any 

transformation to ROP. Two are the most important pieces 

of information required: i) the origin and destination of all 

relative references (e.g. a relative jump and its target) and 

ii) which registers are being written or read during each 

instruction, as well as which registers are free to modify. 

The former is required for injecting or removing 

instructions from a code segment without breaking its 

functioning. The latter is particularly useful to enhance 

gadget matching, either by performing permutations, or by 

using gadgets that contain redundant but safe instructions 

(in this case, unsafe are branch, privileged, or indirect 

addressing mode instructions because they risk raising 

errors such as access violation).  

 

4.1.1: MOD/REG/RM and SIB unrolling: Instructions 

using the MOD/REG/RM indirect addressing mode with 

displacement or the Scaled Index Byte (SIB) addressing 

scheme in the shellcode are treated specially before the 

transformation to ROP. Such instructions are unwanted for 

the following reasons:  

i) They are long (in the best and not so likely case 3 

bytes long: 1 for opcode, 1 for MOD/REG/RM and 

1 for SIB) hence unlikely to be found in gadgets; 

ii) They often read many general purpose registers at 

once, thus reserving them while as mentioned 

earlier, the more the free registers the better; 

                    Table 1 List of PE files used as carriers in the experiments 

Executable Version 

AcroRd32.exe Version DC of Adobe Acrobat Reader 

Acrobat.exe Version DC of Adobe Acrobat Pro 

cmd.exe Version 10.0.17134.165 Windows Command 

Prompt 

Rainmeter.exe Version 4.2.0 Build 3111 of Rainmeter 

firefox.exe Version 61.0.1 of Mozilla Firefox 

java.exe Version 10.0.1 of Oracle Java 

wmplayer.exe Version 12.0.9600.17415 of Microsoft Windows 

Media Player 

nam.exe Version 1.11 of “The Network Animator” 

notepad++.exe Version 7.5.5 of the GNU text editor for Windows 

 

Fig. 1. ROPInjector functionality 



iii) Their respective gadgets (should they be found or 

injected) will probably not be reusable, due to the 

use of displacement and index constants (e.g. mov 

edx, [esi*2+16]). 

In order to circumvent this kind of situations, we reduce 

such instructions to their arithmetic equivalents one-by-one. 

We call this process unrolling and it is performed to the 

shellcode before any transformation to ROP. For instance, 

[1] mov eax, [ebx+ecx*2] may be replaced by: 

 
[a'] Mo v eax, ecx 

[b'] sal eax, 1 

[c'] add eax, ebx 

[d'] mov eax, [eax] 

 

If the register eax is not free to use for the arithmetic 

operations, another temporary register that is free may be 

used. 

Noteworthy is how unrolling unlocks register access 

from one atomic instruction to many. For instance, in the 

latter example, ecx is freed at [a'] and ebx at [c']. If for 

example eax were to be freed at the preceding 10 

instructions, then instructions [a'] to [c'] could be moved 10 

instructions behind, thus resulting in an additional free 

register (i.e., ecx and ebx, but not eax which will not be free) 

in that preceding code chunk. 

 

4.2 Finding gadgets 
 

Candidate gadgets in the executable sections of the 

given PE file must end in one of : 

• ret,  

• retn,  

• pop regX;  

• jmp regX, or jmp regX.  

 

Exceptionally for the latter, the gadget in question must be 

first paired with a loader gadget that loads the required 

return address into regX. The process begins by finding all 

gadget endings and temporarily storing them to a list. For 

each of those endings, n bytes of preceding machine code is 

disassembled for each n up to maximum depth N (typically 

20 bytes). If such disassembly aligns with the ending (not 

guaranteed since x86 instructions are of variable length) a 

candidate gadget has been found. Candidate gadgets 

containing any illegal, privileged (e.g. sysenter, int, 

iret), branch or esp modifying instructions are filtered 

out.  

 

4.3 Parsing gadgets into Intermediate 
Representation and One to One 
Permutations Between Source Code and 
Gadgets (ROP Transformation) 

 

The gadgets found in the aforementioned process are 

first analyzed instruction-by-instruction to infer register 

access. Since gadgets are allowed to contain safe but 

redundant instructions, their register access is tested for 

modifications to the register in question (e.g. a mov ecx, 

eax; pop ecx; ret; gadget cannot be used for 

moving eax to ecx) as well as the non-free registers of the 

source instruction to be encoded.  

Following that, they are parsed into an Intermediate 

Representation (IR) consisting of an operation-type, and 3 

operands with different meaning depending on the type. If 

a multi-instruction gadget contains more than one 

representable instructions, only the first is considered. 

However, the following ones have also been considered in 

other gadgets with the same ending, because of the 

backwards gadget finding process described in the previous 

paragraph. Noteworthy is the fact that by parsing into this 

higher level IR, one-to-one permutations are automatically 

performed. That is because both gadgets and instructions 

  mov esp, ebp 

  pop ebp 

  ret(n) 

  CCCCCCCCCCCCCCCCCC 

  jmp epilogue; normal flow avoiding gadget 

  mov ecx, eax; the injected gadget 

  jmp return; gadget flow avoiding std. epilogue 

epilogue: 

  mov esp, ebp 

  pop ebp 

return: 

  ret(n) 

  CCCCCCCC 

   Fig.2. Injection of gadget (right) in 0xCC cave preceded by standard function epilogue (left) 

 

Table 2: List of patching scenarios tested against VirusTotal 

Patching Scenario Description 

Original The executable file is not patched at all 

ROP-Exit This is the executable file generated by the ROPInjector. The executable 

file is patched with the shellcode unrolled, converted to ROP, and entry 

point before the original program’s exit (hook ExitProcess or exit) 

Exit In this scenario, the executable file is patched with the shellcode intact and 

entry point before the original program’s exit (hook ExitProcess or exit) 

Shellcode The executable file is patched with the shellcode intact, and entry point 

before the original program. 

 



are classified into one of these types, based on which the 

encoding is then performed, rather than on the instructions 

per se. The IR is also useful for selecting the encoder 

function accompanying every gadget. Encoders are 

responsible to answer “whether their assigned gadget can 

encode a given instruction”, as well as to encode it into a 

list of stack operations if requested to. 

Predefined, one-to-one permutations (i.e. one 

instruction to one gadget) are achieved through the IR and 

encoder functions. Encoders will also perform basic 

algebraic permutations based on the properties of addition, 

subtraction multiplication and division. For instance, if the 

instruction to be encoded is of type ADD_IMM (add 

reg, imm), an encoder will repeat anything add reg, 

x with x being an integer divisor of imm, imm/x times. 

Addition and subtraction with constants will also be 

swapped if the signs of the constants are flipped. M-to-N 

permutations quickly scale to exponentially growing space 

and are out of the scope of this work. 

 

4.4 Injecting Gadgets 
 

In order to enhance transformation of the source 

shellcode, and since not all required gadgets are always 

found in the PE file, new ones are also injected as needed. 

Firstly, the 0xCC caves are used for this injection, and if 

they are filled, the .text section is extended before the actual 

patch. The injection is performed in the least noticeable way 

to avoid alarms. If a standard epilogue (mov esp, ebp; 

pop ebp; ret) is found right before the 0xCC cave, the 

gadget is injected in-between the preceding code and the 

epilogue. Figure 2 depicts such an example gadget injection 

of a mov ecx, eax gadget. In the case that no epilogue is 

found at the boundary with the 0xCC cave, a pseudo-

function with standard prologue and epilogue is injected to 

avoid heuristics or n-grams that might raise suspicion due 

to non-ordinary returns. This pseudo-function has the 

following form shown in figure 3.  

Following gadget insertions will then reuse this 

pseudo-epilogue as stated above, by injecting before the 

standard epilogue, thus making it look more like a real 

function. 

  push ebp 

  mov ebp, esp 

  <gadget code> 

  jmp return  

  mov esp, ebp 

  pop ebp 

return: 

  ret 

Fig. 3. Pseudo-function ending used during gadget 

injection 

4.5 Chaining gadgets 
 

The return address chain can be built either during 

runtime or during compile-time and saved to the initialized 

data section of the file (to be then copied at runtime to the 

stack). The most alarming option would be the first (during 

runtime) and we choose this to evaluate our evasion ratio 

(also chosen as an implementation option). During this 

process, besides the pushing of the VAs onto the stack, the 

ROP compiler must consider pushing immediate constants, 

adjustments for stack pointer modifications in the gadget 

(e.g. redundant pops, retns) and gadgets with loader 

gadgets. For this purpose, the following types of stack 

operations are defined: 

 

  PUSH_VA    ; push a (loader) gadget VA onto the 

stack 

  PUSH_IMM ; push an immediate constant onto 

the stack 

  ADVANCE  ; advance (subtract from) the stack 

pointer a number of bytes 

  CHAIN         ; pseudo operation denoting a 

placeholder for the next gadget’s VA 

   

The result of the encoding process of a given 

instruction by a given gadget is a series of stack operations 

for the invocation of the gadget. The list of such operations 

for all gadget calls describes the assembly instructions that 

if executed, will build the chain in the stack. Alternatively, 

such operations may be used to create the required stack 

frame during compile-time, save it as initialized data and   
copy it over from the data section during runtime. The latter 

process allows also for encoding/decoding of the stack 

frame. In the former case, and when multiple calls are made 

Fig. 4. Evasion ratio of ROPInjector for the Meterpreter Shellcode 



to the same gadget (e.g. as in using inc eax to achieve 

add eax, X) the compiler wraps the call with a 

conditional jump loop using a free register. 

However, not all types of instructions can be easily 

encoded into ROP. In this work we do not consider the 

encoding of branches (jumps, calls, loops, interrupts), 

privileged instructions and pops. Hence, the return-oriented 

code chunks must finally return back to the source 

shellcode. This is achieved by wrapping the chain building 

instructions in the following: 
[1] call build_chain 
[2] jmp past_the_chain 

build_chain: 
[3] push <VA of gadget N> 
[4] .... 
[5] push <VA of gadget 1> 
[6] ret 

past_the_chain: 
[7] <other instructions/chains> 

In this way, the last gadget (N) will return to instruction [2] 

jumping past the chain building instructions and continuing 

normal execution flow. 

 

4.6 PE Patching and Passing Control to the 
Shellcode 

 

First of all, the patching of the PE file and the passing 

of control to the shellcode must be done in the least 

noticeable way. A second executable section hosting the 

shellcode would be too alarming, since the vast majority of 

executables has only one. The next least disruptive and easy 

to implement option would be to inject the shellcode in the 

0xCC padding commonly left by the linker in-between code 

segments (typically OBJ files) in the .text section of PEs. 

However, there may not always be sufficient space in those 

0xCC caves, while it is important to notice that ROPInjector 

puts this padding space into better use for our purposes as 

we analyze below.  

For the above reasons we choose to append the 

shellcode to the existing .text section of the executable, and 

correct all section headers and relocations accordingly. To 

pass control to it, the default practice is to replace the 

instructions pointed to by 

NT_HEADER.AddressOfEntryPoint with a jump to 

the shellcode which is appended those replaced instructions 

followed by a jump back to the original execution flow. 

Directly pointing the address of entry point to the shellcode 

in this case is avoided, since many AVs’ heuristics are 

alarmed by the fact that it points towards the end of .text. 

An alternative to giving control to the shellcode at program 

entry, is to hook any calls to ExitProcess, exit or 

other similar functions. This technique in particular, as 

shown also later by the results, bypasses behavioral 

profiling by AVs that employ emulation or sandboxing. 

This can be attributed to the fact that either AVs emulate 

only a small portion of the executable’s entry code due to 

scanning time constraints, or because of lack of (universal) 

techniques for triggering a graceful exit (many programs do 

not handle SIGINT and SIGTERM signals). 

An issue that arises when patching signed 

executables is that their checksum/hash, and thus their 

certificate, gets invalidated. This is obviously very alarming 

and would prevent us from testing our methods on popular 

executables of every-day use. Surprisingly though, hiding 

the certificate by erasing its pointer in the security data 

directory of NT_HEADER does not trigger any alarms. Of 

course, regardless of the certificate, the checksum of the PE 

file is recalculated and patched accordingly. 

5. Experiments and Results 

In order to evaluate ROPInjector we used the 

VirusTotal online antivirus scanning service [4] which at 

the time of this writing includes 57 AVs. For carrier PEs 

(i.e., the infected ones), we selected 9 popular 32-bit 

executable of various sizes that most of them also include 

certificates (see Table 1). 

Regarding the source shellcode, we selected the most 

popular payload of Metasploit [5]: the Reverse TCP 

Meterpreter. For each PE and each shellcode we performed 

4 patching scenarios as listed in Table 2, resulting in a total 

of 72 samples. Figure 4 depicts the evasion ratios (1 −
𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝐴𝑉𝑠
) of ROPInjector for each one of the four 

scenarios for the widely used reverse Meterpreter shellcode. 

We can observe that the executables generated by the 

ROPInjector (i.e., “ROP-Exit” scenario) achieve the highest 

evasion ratio. In particular, in more than half of the test 

cases the ROPInjector results in 100% AV evasion, while in 

some PE files (e.g., java.exe), the ROPInjector has evasion 

ratio greater than 98.5% for the well-known Meterpreter 

shellcode. This means that in average ROPInjector achieves 

AV evasion equal to 99.31%, as depicted in figure 5 (i.e., 

“ROP-Exit” scenario). 

From these results we can deduce that evasion 

depends almost equally on both code 

obfuscation/transformation (hence signature evasion) and 

entry point (hence behavioral profiling evasion). This can 

be attributed to the fact that some AVs were able to detect 

ROPInjector despite the fact that there is no signature, due 

to the ROP polymorphism. It seems that behavioral analysis 

is equally important to static signatures for some AVs (from 

the ones that were alarmed) and is mostly performed during 

entry of executables. 

Moreover, a comparison is also made with Shellter 

v2.2 [1] and PEinject [2] in figure 6. Shellter was used with 

its default options (i.e. with polymorphic junk code). We 

can observe that executables generated from our proposed 

ROPInjector (i.e., “ROP-Exit”) have the highest evasion 

ratio in all conducted experiments compared to Shellter and 

PEinject. Note also that even the simple “Exit” scenario 

achieved in some executable files better results than 

Shellter. Finally, the peinject had the worst evasion ratio.It 

is also important to notice that besides VirusTotal, we have 

also tested the effectiveness of ROPInjector against a 

special piece of software named NCCGroup’s 

“Experimental Windows .text section Patch Detector” [7]. 

This detector compares the executable sections in memory 

against the ones on disk to detect modifications/patching. 

As expected, no executable was detected as patched, since 

ROPInjector does not alter the .text section in memory 

(neither does it require to). 



 
Fig. 5. Average evasion ratio per combination of methods 

6. Discussion 

Most antivirus software relies on string signatures and mild 

behavioral profiling detection mechanisms. By encoding 

the shellcode into its return-oriented equivalent and even by 

performing elementary mutations (unrolling), the former 

can be bypassed in the vast majority of cases. Dynamic 

analysis and behavioral profiling can also be avoided by 

carefully intercepting normal execution flow in points that 

AVs either cannot emulate or simply cannot derive enough 

evidence to classify the behavior as malicious. In this work, 

we presented as a means to the latter the hooking of 

common calls to process exit resulting in many cases in 

absolute evasion and in others rates greater than 98%. 

However, if the anti-dynamic analysis protection of 

ROPInjector is bypassed than the dynamic analysis of an 

infected PE can reveal the malicious code hidden in a ROP 

form. However, we consider this as out of scope since 

ROPinjector is mainly designed as an obfuscation tool to 

avoid static detection. Advanced techniques specialized for 

anti-dynamic analysis such as malwash [16] can be 

combined and further enhance evasion capabilities of 

ROPInjector. 

The techniques presented can still be mitigated if 

dealt with individually. For instance, signatures could be 

created for ROP building instructions and behavioral 

analysis could be also performed backwards in terms of 

process life-cycle. However, since slight variations and 

randomization can again disarm scanners, a more robust 

countermeasure does not seem straight-forward to design, 

and/or practical to implement.  

Several AVs rely on code statistics (such as entropy, 

n-grams and more), in order to classify PE files as benign or 

malicious. Unless such methods are designed to consider 

separate parts of the file’s code, ROPInjector does not affect 

the statistic metrics of the binary file as a whole. The only 

metric that is affected and can be used by AVs for detection 

is the hash of the PE itself. In particular, for well-known PEs 

(such as Firefox.exe), AVs can cross-check the hash of the 

PE. If the hash is different from the official version of the 

executable, then AVs can raise an alarm. However, since 

new versions with updates are continuously released, 

maintaining the size of each PE is a challenging task. 

Another solution which has a great impact on ROP, 

since it effectively mitigates software exploitation attacks 

based on ROP is the well-known Control Flow Integrity 

(CFI) [12]. The latter is a compile time mechanism for 

preventing malicious code from redirecting the execution 

flow of a program. In other words, the goal of CFI is to 

restrict the set of possible control-flow transfers to those that 

are strictly required for correct program execution. This 

prevents code-reuse techniques such as ROP from working 

because they would cause the program to execute control-

flow transfers which are illegal under CFI [13]. By its own 

definition, we can deduce that CFI will not be triggered, 

since its purpose is to defend against external threats which 

will modify the operation of an executable. On the contrary, 

ROPInjector does not change the execution flow of an 

executable except for the exit point of the executable in 

order to trigger ROPInjector and transfer the code execution 

into the ROP chain, executing the malware. However, since 

this execution flow modification is not an indirect branch, 

CFI will not consider this as a policy violation and will not 

be triggered. We have verified this behavior against 

executables which are compiled with CFI (i.e., using 

Control Flow Guard implementation of Windows OS). 

Perhaps the most promising direction is towards the 

strict coupling of the host operating system with the trusted 

software certificates (or checksums) and a “default distrust 

all” policy, i.e., whitelisting rather than blacklisting, which 

may have gain in popularity the last years in Windows 

domain environments (i.e., application whitelisting [6]), but 

not in standalone installations of Windows OS in personal 

environments.  

7. Conclusions 

In this paper we presented ROPInjector, a software tool 

which, given any piece of shellcode and any non-packed 32-

bit Portable Executable (PE) file, it transforms the shellcode 

to its ROP equivalent and patches it into (i.e. infects) the PE 

Fig. 6. Comparison of evasion ratio between “ROP-Exit”, “Exit” scenarios with Shelter and PEinject 



file. After trying various combinations of evasion 

techniques, the results show that ROPInjector can evade 

nearly and completely all antivirus software employed in 

the online VirusTotal service. The main outcome of this 

research is the developed algorithms for: a) analysis and 

manipulation of assembly code on the x86 instruction set, 

and b) the automatic chaining of gadgets by ROPInjector to 

form safe, and functional ROP code that is equivalent to a 

given shellcode. Currently, we are in the process of porting 

the implementation of ROPInjector tool, from C to Python 

programing language. This would benefit the project, since 

Python is more human friendly and the security community 

has already implemented libraries for reverse engineering, 

fact that would greatly help us to reduce the code base and 

complexity of ROPInjector. 
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