The P versus NP Problem

Frank Vega ${ }^{1[0000-0001-8210-4126]}$
Joysonic, Uzun Mirkova 5, Belgrade, 11000, Serbia
vega.frank@gmail.com

Abstract

P versus NP is considered as one of the most important open problems in computer science. This consists in knowing the answer of the following question: Is P equal to NP? A precise statement of the P versus NP problem was introduced independently by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. To attack the P versus NP problem, the NP-completeness is a useful tool. We prove the known NP-complete problem MONOTONE 1-IN-3 3SAT can be polynomially reduced to the polynomial language 2SET PACKING. In this way, MONOTONE 1-IN-3 3SAT must be in P. If any NP-complete problem can be solved in polynomial time, then every language in NP has a polynomial time algorithm. Hence, we demonstrate the complexity class P is equal to NP .

Keywords: Complexity Classes • Completeness • Polynomial Time • MONOTONE 1-IN-3 3SAT • 2SET PACKING.

1 Introduction

The P versus $N P$ problem is a major unsolved problem in computer science [3]. This is considered by many to be the most important open problem in the field [3]. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute [3]. It was essentially mentioned in 1955 from a letter written by John Nash to the United States National Security Agency [1]. However, the precise statement of the $P=N P$ problem was introduced in 1971 by Stephen Cook in a seminal paper [3].

In 1936, Turing developed his theoretical computational model [9]. The deterministic and nondeterministic Turing machines have become in two of the most important definitions related to this theoretical model for computation [9]. A deterministic Turing machine has only one next action for each step defined in its program or transition function [9]. A nondeterministic Turing machine could contain more than one action defined for each step of its program, where this one is no longer a function, but a relation [9].

Another relevant advance in the last century has been the definition of a complexity class. A language over an alphabet is any set of strings made up of symbols from that alphabet [4]. A complexity class is a set of problems, which
are represented as a language, grouped by measures such as the running time, memory, etc [4].

In the computational complexity theory, the class P contains those languages that can be decided in polynomial time by a deterministic Turing machine [7]. The class $N P$ consists in those languages that can be decided in polynomial time by a nondeterministic Turing machine [7]. The biggest open question in theoretical computer science concerns the relationship between these classes: Is P equal to $N P$? In 2012, a poll of 151 researchers showed that $126(83 \%)$ believed the answer to be no, $12(9 \%)$ believed the answer is yes, $5(3 \%)$ believed the question may be independent of the currently accepted axioms and therefore impossible to prove or disprove, $8(5 \%)$ said either do not know or do not care or don't want the answer to be yes nor the problem to be resolved [6].

It is fully expected that $P \neq N P[8]$. For that reason, $P=N P$ is considered as a very unlikely event [8]. Certainly, P versus $N P$ is one of the greatest open problems in science and a correct solution for this incognita will have a great impact not only for computer science, but for many other fields as well [1]. Whether $P=N P$ is still a controversial possible solution to this problem [1]. However, we prove the complexity class P is equal to $N P$. Hence, we solve one of the most important open problems in computer science with a solution which was certainly unexpected and with stunning practical consequences [1].

2 Definitions

Let Σ be a finite alphabet with at least two elements, and let Σ^{*} be the set of finite strings over Σ [2]. A Turing machine M has an associated input alphabet Σ [2]. For each string w in Σ^{*} there is a computation associated with M on input $w[2]$. We say that M accepts w if this computation terminates in the accepting state, that is $M(w)=$ "yes" [2]. Note that M fails to accept w either if this computation ends in the rejecting state, that is $M(w)=$ " $n o$ ", or if the computation fails to terminate [2].

The language accepted by a Turing machine M, denoted $L(M)$, has an associated alphabet Σ and is defined by

$$
L(M)=\left\{w \in \Sigma^{*}: M(w)=" y e s "\right\} .
$$

We denote by $t_{M}(w)$ the number of steps in the computation of M on input w [2]. For $n \in \mathbb{N}$ we denote by $T_{M}(n)$ the worst case run time of M; that is

$$
T_{M}(n)=\max \left\{t_{M}(w): w \in \Sigma^{n}\right\}
$$

where Σ^{n} is the set of all strings over Σ of length n [2]. We say that M runs in polynomial time if there is a constant k such that for all $n, T_{M}(n) \leq n^{k}+k$ [2]. In other words, this means the language $L(M)$ can be accepted by the Turing machine M in polynomial time. Therefore, P is the complexity class of languages that can be accepted in polynomial time by deterministic Turing machines [4]. A verifier for a language L is a deterministic Turing machine M, where

$$
L=\{w: M(w, c)=\text { "yes" for some string } c\} .
$$

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of w [2]. A verifier uses additional information, represented by the symbol c, to verify that a string w is a member of L. This information is called certificate. $N P$ is also the complexity class of languages defined by polynomial time verifiers [8].

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is a polynomial time computable function if some deterministic Turing machine M, on every input w, halts in polynomial time with just $f(w)$ on its tape [9]. Let $\{0,1\}^{*}$ be the infinite set of binary strings, we say that a language $L_{1} \subseteq\{0,1\}^{*}$ is polynomial time reducible to a language $L_{2} \subseteq$ $\{0,1\}^{*}$, written $L_{1} \leq_{p} L_{2}$, if there is a polynomial time computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for all $x \in\{0,1\}^{*}$,

$$
x \in L_{1} \text { if and only if } f(x) \in L_{2}
$$

An important complexity class is $N P$-complete [7]. A language $L \subseteq\{0,1\}^{*}$ is $N P$-complete if

- $L \in N P$, and
- $L^{\prime} \leq_{p} L$ for every $L^{\prime} \in N P$.

If L is a language such that $L^{\prime} \leq_{p} L$ for some $L^{\prime} \in N P$-complete, then L is $N P$-hard [7]. Moreover, if $L \in N P$, then $L \in N P$-complete [7]. A Boolean formula ϕ is composed of

1. Boolean variables: $x_{1}, x_{2}, \ldots, x_{n}$;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such as $\wedge(\mathrm{AND}), \vee(\mathrm{OR}), \rightharpoondown(\mathrm{NOT}), \Rightarrow$ (implication), \Leftrightarrow (if and only if);
3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ. A satisfying truth assignment is a truth assignment that causes ϕ to be evaluated as true. A formula with a satisfying truth assignment is a satisfiable formula. We define a $C N F$ Boolean formula using the following terms. A literal in a Boolean formula is an occurrence of a variable or its negation [4]. A Boolean formula is in conjunctive normal form, or $C N F$, if it is expressed as an AND of clauses, each of which is the OR of one or more literals [4]. A Boolean formula is in 3-conjunctive normal form or $3 C N F$, if each clause has exactly three distinct literals [4]. For example, the Boolean formula

$$
\left(x_{1} \vee \rightharpoondown x_{1} \vee \rightharpoondown x_{2}\right) \wedge\left(x_{3} \vee x_{2} \vee x_{4}\right) \wedge\left(\rightharpoondown x_{1} \vee \rightharpoondown x_{3} \vee \rightharpoondown x_{4}\right)
$$

is in $3 C N F$. The first of its three clauses is $\left(x_{1} \vee \rightharpoondown x_{1} \vee \rightharpoondown x_{2}\right)$, which contains the three literals $x_{1}, \rightharpoondown x_{1}$, and $\rightharpoondown x_{2}$.

3 Summary

I have a polynomial algorithm for MONOTONE 1-IN-3 $3 S A T$ that no one has found before: The trick is that I noticed given an instance ϕ of the language MONOTONE 1-IN-3 3SAT that we can construct a Boolean formula ϕ^{\prime} in $C N F$ such that

- If ϕ^{\prime} has a truth assignment with exactly one literal true for each clause, then ϕ complies with the same property.
- ϕ^{\prime} contains the clauses of ϕ and there are at most two clauses of two literals for each occurrence of a literal from every clause in ϕ. In this way, there are at most polynomially clauses in ϕ^{\prime} in relation to ϕ.
- We replace each occurrence of any variable into a single clause in ϕ by some unique variable in ϕ^{\prime} which appears in ϕ^{\prime} as follows: Once negated in a clause of two literals and twice as a positive literal in a clause of two and three literals respectively.

We create sets of fewer than three elements assigned to each literal from every clause into ϕ^{\prime}, such that the set assigned to the negated literal of some variable is not mutually disjoint with the sets assigned to the two positive literals from this unique variable in ϕ^{\prime}. Moreover, we modify those sets with exactly two elements just adding a common element to the sets of the literals of every clause in ϕ^{\prime}, because this is a guarantee that the sets assigned to the literals of each clause are not mutually disjoint. The amount of sets in this procedure is small since there are exactly the same amount of sets which is equal to the total number of literals for each clause in ϕ^{\prime}. In this way, a truth assignment T for the Boolean formula ϕ^{\prime} of m^{\prime} clauses with exactly one literal true for each clause corresponds to m^{\prime} mutually disjoint sets assigned for the literals that were true in this assignment, that is the negated or positive literal when the variable in T is false or true respectively. Certainly, the possibility between m^{\prime} mutually disjoint sets that every clause of two literals has exactly one set chosen from its literals makes possible the validated assignment of all the variables in ϕ where they were replaced by several unique variables in ϕ^{\prime} when we evaluate as true the literal which has been assigned this set in ϕ^{\prime}. At the same time, the property between m^{\prime} mutually disjoint sets that every clause of three literals has exactly one set chosen from its literals converts this into a certificate for the clauses of three literals in ϕ which are equivalent to the modified clauses of three literals that contain ϕ^{\prime} when we evaluate as true the literal which has been assigned this set in ϕ^{\prime}. In this way, the collection of these sets is an instance of the polynomial language 2SET PACKING assuming that we require m^{\prime} mutually disjoint sets. If we cannot pick m^{\prime} mutually disjoint sets from this collection, then this will imply ϕ^{\prime} has not a truth assignment with exactly one literal true for each clause. The reason is because if we cannot choose a single set for every clause, then there is not a truth assignment that may select as true exactly one literal for each clause. Notice that we use graphs to represent these steps in the Figures 1 and 2, but this proof has no a particular relation with the graph theory.

4 Results

Definition 1. MONOTONE 1-IN-3 3SAT

INSTANCE: A Boolean formula ϕ in $3 C N F$ such that there is no clause which contains a negated literal.

QUESTION: Is there a truth assignment for ϕ such that each clause in ϕ has exactly one true literal?

REMARKS: MONOTONE 1-IN-3 3SAT is in NP-complete [5].

Definition 2. 2SET PACKING

INSTANCE: A collection C of finite sets and a positive integer $K \leq|C|$ such that for all $c \in C$ we have $|c| \leq 2$ where $|\ldots|$ is the cardinality function.

QUESTION: Does C contain at least K mutually disjoint sets?
REMARKS: 2SET PACKING is solvable in polynomial time by matching techniques [5].

Theorem 1. MONOTONE $1-I N-3 ~ 3 S A T \leq_{p}$ 2SET PACKING.
Proof. Consider a Boolean formula ϕ in $3 C N F$ with m clauses such that there is no clause which contains a negated literal in which the positive literal x appears k times. We replace the first occurrence of x by x_{1}, the second by x_{2}, and so on, where $x_{1}, x_{2}, \ldots, x_{k}$ are k new variables. Later, we add

$$
\left(\rightharpoondown x_{1} \vee x_{2}\right) \wedge\left(\rightharpoondown x_{2} \vee x_{3}\right) \wedge \ldots \wedge\left(\rightharpoondown x_{k} \vee x_{1}\right)
$$

to a new Boolean formula ϕ^{\prime} in $C N F$ which contains the modified clauses of ϕ plus these above clauses of fewer than 3 literals where we do this procedure for each positive literal x in ϕ. Note, this is logically equivalent to

$$
x_{1} \Rightarrow x_{2} \Rightarrow \ldots \Rightarrow x_{k} \Rightarrow x_{1}
$$

such that the resulting expression in ϕ^{\prime} satisfies the condition for a truth assignment on x. In this new formula ϕ^{\prime} every variable appears at most 3 times. If $k=1$, then the literal x_{1} appears once. If $k>1$, for every integer i between 1 and k, we have that the literal x_{i} appears twice and $\rightharpoondown x_{i}$ appears once. Suppose we have the following instance ϕ of MONOTONE 1-IN-3 3SAT

$$
\ldots(x \vee w \vee g) \wedge \ldots \wedge(x \vee y \vee z) \ldots
$$

then the transformed expression ϕ^{\prime} in $C N F$ over the variable x is

$$
\ldots\left(x_{1} \vee w \vee g\right) \wedge \ldots \wedge\left(x_{2} \vee y \vee z\right) \ldots\left(\rightharpoondown x_{1} \vee x_{2}\right) \wedge\left(\rightharpoondown x_{2} \vee x_{1}\right)
$$

where

- the variable x_{1} appears thrice and,
- the literal x_{1} appears twice and,
- the literal $\rightharpoondown x_{1}$ appears once.

Now from the expression ϕ^{\prime} in $C N F$, we create an instance of $2 S E T$ PACKING in the following two steps:

1. In the first step, we create a set for each literal that appears in every clause. For every variable x_{i}, we assign the set $\left\{x_{1, i}, x_{2, i}\right\}$ to the negated literal $\rightharpoondown x_{i}$, for the positive literal x_{i} in the clause of three literals the set $\left\{x_{1, i}\right\}$ and for the positive literal x_{i} in the clause of two literals the set $\left\{x_{2, i}\right\}$.
2. In the second step, for each clause c_{i} of three literals we add to the set assigned to its literals a single element d_{i} which is unique for every clause c_{i} of three literals obtaining three sets of two elements. Moreover, for each clause c_{j} of two literals, there is a negated literal $\rightharpoondown x_{i}$ with a set $\left\{x_{1, i}, x_{2, i}\right\}$ and another positive literal x_{j} with a set of a single element $\left\{x_{2, j}\right\}$, therefore we add to the set of cardinality equal to one the another element $x_{1, i}$ obtaining the set $\left\{x_{2, j}, x_{1, i}\right\}$ of two elements.

If we consider an instance of $2 S E T$ PACKING created from the sets of each literal from every clause of ϕ^{\prime}, then the first step guarantee that we should analyze separately the sets from the positive literals in relation to the set of the single negated literal. In this way, in the first step there is no a possibility where we could choose the three sets for a single variable in ϕ^{\prime} at the same time because they are not mutually disjoint sets. For that reason, we can assure if we choose some K mutually disjoint sets from this instance, then we can assign as true the literals which are represented by these sets, since there is no a violation when for some variable x_{i} the literals x_{i} and $\rightharpoondown x_{i}$ could be both true or false at the same time.

In the second step, we guarantee this truth assignment created from a K mutually disjoint sets of this instance complies that every clause of three literals in ϕ^{\prime} has exactly one true literal since the sets from the literals of a clause of three literals are not mutually disjoint since they contain the single element d_{i} which is unique for every clause c_{i} of three literals. Moreover, this second step makes possible that exactly one literal for a clause of two literals in ϕ^{\prime} can be true just making possible the condition of assignment for every variable x in the original ϕ. Note, that we add to the set of the positive literal of clauses of two literals in ϕ^{\prime}, the element $x_{1, i}$ and not $x_{2, i}$ from the negated literal $\rightharpoondown x_{i}$, because that guarantee there should not be a violation against the same truth assignment between the variables x_{j} and x_{i} that represents the variable x over two distinct clauses of three literals that contain x_{j} and x_{i} in ϕ^{\prime} respectively.

Look at the example of the Figure 1 and see how is applied the first step and finally the second step which is represented in the Figure 2 over this reduction. We have the clause $c_{i}=\left(x_{1} \vee y_{2} \vee z_{3}\right)$ of three literals and the clauses $c_{j}=(\rightharpoondown$ $\left.x_{1} \vee x_{2}\right)$ and $c_{r}=\left(x_{1} \vee \rightharpoondown x_{k}\right)$ of two literals. Note, the variable x_{1} only appears in these three clauses. According to the first step in the Figure 1, we add the set $\left\{x_{1,1}, x_{2,1}\right\}$ to the negated variable $\rightharpoondown x_{1}$ and the another sets $\left\{x_{1,1}\right\}$ and $\left\{x_{2,1}\right\}$ to the positive literals in the clause c_{i} of three literals and the clause c_{r} of two literals respectively. We also see how is applied the second step in the Figure 2 where it is added the element d_{i} to all the sets of the literals in the

Fig. 1. First step

Fig. 2. Second step
clause c_{i} of three literals. The transformation in the clauses of two literals in the second step is also visible in the Figure 2 where it is added the element $x_{1,1}$ to the set $\left\{x_{2,2}\right\}$ assigned to the positive literal x_{2} in the clause c_{j} of two literals. With these two steps, we obtain the sets of each literal from every clause have a cardinality equal to 2 .

Now, if the Boolean formula ϕ^{\prime} has m^{\prime} clauses, then the collection C of sets for each literal from every clause complies that

$$
\phi \in M O N O T O N E \text { 1-IN-3 3SAT if and only if }\left(C, m^{\prime}\right) \in 2 S E T \text { PACKING. }
$$

Is it the case that C contains m^{\prime} mutually disjoint sets and ϕ is not a Boolean formula in MONOTONE 1-IN-3 3SAT? The answer is no. Think for example in some m^{\prime} mutually disjoint sets, then we can transform them in a truth assignment T evaluating every literal assigned in these sets as true. In this truth assignment T from the clauses of two literals exactly one literal would be true and from the clauses of three literals exactly one literal would be true in the Boolean formula ϕ^{\prime}. Certainly, we guarantee that since the literals of every clause have not mutually disjoint sets in ϕ^{\prime} after the reduction. In this way, the truth assignment T will be a satisfying assignment for the Boolean formula ϕ^{\prime} where every clause has exactly one true literal which also implies that the original Boolean formula ϕ will be in MONOTONE 1-IN-3 3SAT. Take into account that we assume that $K=m^{\prime}$ since at least the m^{\prime} clauses which contains ϕ^{\prime} should be satisfiable with this truth assignment T in order to satisfy the original Boolean formula ϕ as well.

This is a polynomial time reduction:

- We can create the Boolean formula ϕ^{\prime} in time $O\left(m^{2}\right)$ just replacing the modified clauses of three literals and adding the clauses of two literals. Certainly, we can go each time through every clause ϕ just adding the new clauses of two literals and modifying the other clauses of three literals which are at most $m-1$.
- After that, we create the instance for $2 S E T$ PACKING in time $O(m)$ just creating the new sets in the first step and modifying them in the second step. Notice there at most two clauses of two literals for each variable in ϕ^{\prime}. Since the amount of variables in ϕ^{\prime} is linear in relation to the number of clauses in ϕ, then we can assume the creation and the modification of these sets can be done in time $O(m)$.

Certainly, we can create the instance (C, m^{\prime}) just running the whole reduction in time $O\left(m^{2}\right)$ and thus, the proof is completed.

Theorem 2. $P=N P$.
Proof. The known NP-complete problem MONOTONE 1-IN-3 3SAT can be reduced in polynomial time to $2 S E T$ PACKING where 2SET PACKING $\in P$ [5]. Consequently, MONOTONE $1-I N-3$ 3SAT $\in P$. If any NP-complete problem can be solved in polynomial time, then every language in $N P$ has a polynomial time algorithm [4]. In conclusion, we finally prove that $P=N P$.

References

1. Aaronson, S.: P ? NP. Electronic Colloquium on Computational Complexity, Report No. 4 (2017)
2. Arora, S., Barak, B.: Computational complexity: a modern approach. Cambridge University Press (2009)
3. Cook, S.A.: The P versus NP Problem. Clay Mathematics Institute (April 2000), at http://www.claymath.org/sites/default/files/pvsnp.pdf
4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press, 3rd edn. (2009)
5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edn. (1979)
6. Gasarch, W.I.: Guest column: The second $\mathrm{P} \stackrel{?}{=}$ NP poll. ACM SIGACT News $\mathbf{4 3}(2)$, 53-77 (2012)
7. Goldreich, O.: P, NP, and NP-Completeness: The basics of computational complexity. Cambridge University Press (2010)
8. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
9. Sipser, M.: Introduction to the Theory of Computation, vol. 2. Thomson Course Technology Boston (2006)
