
The P versus NP Problem

Frank Vega1[0000−0001−8210−4126]

Joysonic,
Uzun Mirkova 5,

Belgrade, 11000, Serbia
vega.frank@gmail.com

Abstract. P versus NP is considered as one of the most important open
problems in computer science. This consists in knowing the answer of the
following question: Is P equal to NP? A precise statement of the P versus
NP problem was introduced independently by Stephen Cook and Leonid
Levin. Since that date, all efforts to find a proof for this problem have
failed. To attack the P versus NP problem, the NP-completeness is a
useful tool. We prove the known NP-complete problem MONOTONE
1-IN-3 3SAT can be polynomially reduced to the polynomial language
2SET PACKING. In this way, MONOTONE 1-IN-3 3SAT must be in P.
If any NP-complete problem can be solved in polynomial time, then every
language in NP has a polynomial time algorithm. Hence, we demonstrate
the complexity class P is equal to NP.

Keywords: Complexity Classes · Completeness · Polynomial Time ·
MONOTONE 1-IN-3 3SAT · 2SET PACKING.

1 Introduction

The P versus NP problem is a major unsolved problem in computer science
[3]. This is considered by many to be the most important open problem in
the field [3]. It is one of the seven Millennium Prize Problems selected by the
Clay Mathematics Institute [3]. It was essentially mentioned in 1955 from a
letter written by John Nash to the United States National Security Agency [1].
However, the precise statement of the P = NP problem was introduced in 1971
by Stephen Cook in a seminal paper [3].

In 1936, Turing developed his theoretical computational model [9]. The de-
terministic and nondeterministic Turing machines have become in two of the
most important definitions related to this theoretical model for computation [9].
A deterministic Turing machine has only one next action for each step defined in
its program or transition function [9]. A nondeterministic Turing machine could
contain more than one action defined for each step of its program, where this
one is no longer a function, but a relation [9].

Another relevant advance in the last century has been the definition of a
complexity class. A language over an alphabet is any set of strings made up of
symbols from that alphabet [4]. A complexity class is a set of problems, which

2 Frank Vega

are represented as a language, grouped by measures such as the running time,
memory, etc [4].

In the computational complexity theory, the class P contains those languages
that can be decided in polynomial time by a deterministic Turing machine [7].
The class NP consists in those languages that can be decided in polynomial
time by a nondeterministic Turing machine [7]. The biggest open question in
theoretical computer science concerns the relationship between these classes: Is
P equal to NP? In 2012, a poll of 151 researchers showed that 126 (83%) believed
the answer to be no, 12 (9%) believed the answer is yes, 5 (3%) believed the
question may be independent of the currently accepted axioms and therefore
impossible to prove or disprove, 8 (5%) said either do not know or do not care
or don’t want the answer to be yes nor the problem to be resolved [6].

It is fully expected that P 6= NP [8]. For that reason, P = NP is considered
as a very unlikely event [8]. Certainly, P versus NP is one of the greatest open
problems in science and a correct solution for this incognita will have a great
impact not only for computer science, but for many other fields as well [1].
Whether P = NP is still a controversial possible solution to this problem [1].
However, we prove the complexity class P is equal to NP . Hence, we solve one
of the most important open problems in computer science with a solution which
was certainly unexpected and with stunning practical consequences [1].

2 Definitions

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of
finite strings over Σ [2]. A Turing machine M has an associated input alphabet
Σ [2]. For each string w in Σ∗ there is a computation associated with M on
input w [2]. We say that M accepts w if this computation terminates in the
accepting state, that is M(w) = “yes” [2]. Note that M fails to accept w either
if this computation ends in the rejecting state, that is M(w) = “no”, or if the
computation fails to terminate [2].

The language accepted by a Turing machine M , denoted L(M), has an as-
sociated alphabet Σ and is defined by

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

We denote by tM (w) the number of steps in the computation of M on input w
[2]. For n ∈ N we denote by TM (n) the worst case run time of M ; that is

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [2]. We say that M runs in
polynomial time if there is a constant k such that for all n, TM (n) ≤ nk + k [2].
In other words, this means the language L(M) can be accepted by the Turing
machine M in polynomial time. Therefore, P is the complexity class of languages
that can be accepted in polynomial time by deterministic Turing machines [4].
A verifier for a language L is a deterministic Turing machine M , where

L = {w : M(w, c) = “yes” for some string c}.

The P versus NP Problem 3

We measure the time of a verifier only in terms of the length of w, so a polynomial
time verifier runs in polynomial time in the length of w [2]. A verifier uses
additional information, represented by the symbol c, to verify that a string w is
a member of L. This information is called certificate. NP is also the complexity
class of languages defined by polynomial time verifiers [8].

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some
deterministic Turing machine M , on every input w, halts in polynomial time with
just f(w) on its tape [9]. Let {0, 1}∗ be the infinite set of binary strings, we say
that a language L1 ⊆ {0, 1}∗ is polynomial time reducible to a language L2 ⊆
{0, 1}∗, written L1 ≤p L2, if there is a polynomial time computable function
f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [7]. A language L ⊆ {0, 1}∗ is
NP–complete if

– L ∈ NP , and

– L′ ≤p L for every L′ ∈ NP .

If L is a language such that L′ ≤p L for some L′ ∈ NP–complete, then L
is NP–hard [7]. Moreover, if L ∈ NP , then L ∈ NP–complete [7]. A Boolean
formula φ is composed of

1. Boolean variables: x1, x2, . . . , xn;

2. Boolean connectives: Any Boolean function with one or two inputs and one
output, such as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only
if);

3. and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables
in φ. A satisfying truth assignment is a truth assignment that causes φ to be
evaluated as true. A formula with a satisfying truth assignment is a satisfiable
formula. We define a CNF Boolean formula using the following terms. A literal
in a Boolean formula is an occurrence of a variable or its negation [4]. A Boolean
formula is in conjunctive normal form, or CNF , if it is expressed as an AND of
clauses, each of which is the OR of one or more literals [4]. A Boolean formula is
in 3-conjunctive normal form or 3CNF , if each clause has exactly three distinct
literals [4]. For example, the Boolean formula

(x1∨⇁ x1∨⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨⇁ x3∨⇁ x4)

is in 3CNF . The first of its three clauses is (x1∨⇁ x1∨⇁ x2), which contains
the three literals x1, ⇁ x1, and ⇁ x2.

4 Frank Vega

3 Summary

I have a polynomial algorithm for MONOTONE 1–IN–3 3SAT that no one has
found before: The trick is that I noticed given an instance φ of the language
MONOTONE 1–IN–3 3SAT that we can construct a Boolean formula φ′ in
CNF such that

– If φ′ has a truth assignment with exactly one literal true for each clause,
then φ complies with the same property.

– φ′ contains the clauses of φ and there are at most two clauses of two literals
for each occurrence of a literal from every clause in φ. In this way, there are
at most polynomially clauses in φ′ in relation to φ.

– We replace each occurrence of any variable into a single clause in φ by some
unique variable in φ′ which appears in φ′ as follows: Once negated in a
clause of two literals and twice as a positive literal in a clause of two and
three literals respectively.

We create sets of fewer than three elements assigned to each literal from every
clause into φ′, such that the set assigned to the negated literal of some variable
is not mutually disjoint with the sets assigned to the two positive literals from
this unique variable in φ′. Moreover, we modify those sets with exactly two
elements just adding a common element to the sets of the literals of every clause
in φ′, because this is a guarantee that the sets assigned to the literals of each
clause are not mutually disjoint. The amount of sets in this procedure is small
since there are exactly the same amount of sets which is equal to the total
number of literals for each clause in φ′. In this way, a truth assignment T for
the Boolean formula φ′ of m′ clauses with exactly one literal true for each clause
corresponds to m′ mutually disjoint sets assigned for the literals that were true
in this assignment, that is the negated or positive literal when the variable in
T is false or true respectively. Certainly, the possibility between m′ mutually
disjoint sets that every clause of two literals has exactly one set chosen from its
literals makes possible the validated assignment of all the variables in φ where
they were replaced by several unique variables in φ′ when we evaluate as true
the literal which has been assigned this set in φ′. At the same time, the property
between m′ mutually disjoint sets that every clause of three literals has exactly
one set chosen from its literals converts this into a certificate for the clauses of
three literals in φ which are equivalent to the modified clauses of three literals
that contain φ′ when we evaluate as true the literal which has been assigned this
set in φ′. In this way, the collection of these sets is an instance of the polynomial
language 2SET PACKING assuming that we require m′ mutually disjoint sets.
If we cannot pick m′ mutually disjoint sets from this collection, then this will
imply φ′ has not a truth assignment with exactly one literal true for each clause.
The reason is because if we cannot choose a single set for every clause, then
there is not a truth assignment that may select as true exactly one literal for
each clause. Notice that we use graphs to represent these steps in the Figures 1
and 2, but this proof has no a particular relation with the graph theory.

The P versus NP Problem 5

4 Results

Definition 1. MONOTONE 1–IN–3 3SAT
INSTANCE: A Boolean formula φ in 3CNF such that there is no clause

which contains a negated literal.
QUESTION: Is there a truth assignment for φ such that each clause in φ has

exactly one true literal?
REMARKS: MONOTONE 1–IN–3 3SAT is in NP–complete [5].

Definition 2. 2SET PACKING
INSTANCE: A collection C of finite sets and a positive integer K ≤ |C| such

that for all c ∈ C we have |c| ≤ 2 where | . . . | is the cardinality function.
QUESTION: Does C contain at least K mutually disjoint sets?
REMARKS: 2SET PACKING is solvable in polynomial time by matching

techniques [5].

Theorem 1. MONOTONE 1–IN–3 3SAT ≤p 2SET PACKING.

Proof. Consider a Boolean formula φ in 3CNF with m clauses such that there is
no clause which contains a negated literal in which the positive literal x appears
k times. We replace the first occurrence of x by x1, the second by x2, and so on,
where x1, x2, . . . , xk are k new variables. Later, we add

(⇁ x1 ∨ x2) ∧ (⇁ x2 ∨ x3) ∧ . . . ∧ (⇁ xk ∨ x1)

to a new Boolean formula φ′ in CNF which contains the modified clauses of φ
plus these above clauses of fewer than 3 literals where we do this procedure for
each positive literal x in φ. Note, this is logically equivalent to

x1 ⇒ x2 ⇒ . . .⇒ xk ⇒ x1

such that the resulting expression in φ′ satisfies the condition for a truth assign-
ment on x. In this new formula φ′ every variable appears at most 3 times. If
k = 1, then the literal x1 appears once. If k > 1, for every integer i between 1
and k, we have that the literal xi appears twice and ⇁ xi appears once. Suppose
we have the following instance φ of MONOTONE 1–IN–3 3SAT

. . . (x ∨ w ∨ g) ∧ . . . ∧ (x ∨ y ∨ z) . . .

then the transformed expression φ′ in CNF over the variable x is

. . . (x1 ∨ w ∨ g) ∧ . . . ∧ (x2 ∨ y ∨ z) . . . (⇁ x1 ∨ x2) ∧ (⇁ x2 ∨ x1)

where

– the variable x1 appears thrice and,
– the literal x1 appears twice and,
– the literal ⇁ x1 appears once.

6 Frank Vega

Now from the expression φ′ in CNF , we create an instance of 2SET PACKING
in the following two steps:

1. In the first step, we create a set for each literal that appears in every clause.
For every variable xi, we assign the set {x1,i, x2,i} to the negated literal
⇁ xi, for the positive literal xi in the clause of three literals the set {x1,i}
and for the positive literal xi in the clause of two literals the set {x2,i}.

2. In the second step, for each clause ci of three literals we add to the set
assigned to its literals a single element di which is unique for every clause ci of
three literals obtaining three sets of two elements. Moreover, for each clause
cj of two literals, there is a negated literal ⇁ xi with a set {x1,i, x2,i} and
another positive literal xjwith a set of a single element {x2,j}, therefore we
add to the set of cardinality equal to one the another element x1,i obtaining
the set {x2,j , x1,i} of two elements.

If we consider an instance of 2SET PACKING created from the sets of each
literal from every clause of φ′, then the first step guarantee that we should
analyze separately the sets from the positive literals in relation to the set of
the single negated literal. In this way, in the first step there is no a possibility
where we could choose the three sets for a single variable in φ′ at the same time
because they are not mutually disjoint sets. For that reason, we can assure if we
choose some K mutually disjoint sets from this instance, then we can assign as
true the literals which are represented by these sets, since there is no a violation
when for some variable xi the literals xi and ⇁ xi could be both true or false at
the same time.

In the second step, we guarantee this truth assignment created from a K
mutually disjoint sets of this instance complies that every clause of three literals
in φ′ has exactly one true literal since the sets from the literals of a clause of
three literals are not mutually disjoint since they contain the single element di
which is unique for every clause ci of three literals. Moreover, this second step
makes possible that exactly one literal for a clause of two literals in φ′ can be
true just making possible the condition of assignment for every variable x in
the original φ. Note, that we add to the set of the positive literal of clauses of
two literals in φ′, the element x1,i and not x2,i from the negated literal ⇁ xi,
because that guarantee there should not be a violation against the same truth
assignment between the variables xj and xi that represents the variable x over
two distinct clauses of three literals that contain xj and xi in φ′ respectively.

Look at the example of the Figure 1 and see how is applied the first step and
finally the second step which is represented in the Figure 2 over this reduction.
We have the clause ci = (x1 ∨ y2 ∨ z3) of three literals and the clauses cj = (⇁
x1 ∨x2) and cr = (x1∨⇁ xk) of two literals. Note, the variable x1 only appears
in these three clauses. According to the first step in the Figure 1, we add the
set {x1,1, x2,1} to the negated variable ⇁ x1 and the another sets {x1,1} and
{x2,1} to the positive literals in the clause ci of three literals and the clause cr
of two literals respectively. We also see how is applied the second step in the
Figure 2 where it is added the element di to all the sets of the literals in the

The P versus NP Problem 7

x1 y2 z3

{x1,1} {y1,2} {z1,3}

⇁ x1 x2

{x1,1, x2,1} {x2,2}

x1 ⇁ xk

{x2,1} {x1,k, x2,k}

ith clause (∨ ∨)

Initial Assigned Sets

jth clause (∨)

Initial Assigned Sets

rth clause (∨)

Initial Assigned Sets

.

. . .
. . .

Fig. 1. First step

8 Frank Vega

x1 y2 z3

{x1,1, di} {y1,2, di} {z1,3, di}

⇁ x1 x2

{x1,1, x2,1} {x2,2, x1,1}

x1 ⇁ xk

{x2,1, x1,k} {x1,k, x2,k}

ith clause (∨ ∨)

Final Modified Sets

jth clause (∨)

Final Modified Sets

rth clause (∨)

Final Modified Sets

.

.

Fig. 2. Second step

The P versus NP Problem 9

clause ci of three literals. The transformation in the clauses of two literals in the
second step is also visible in the Figure 2 where it is added the element x1,1 to
the set {x2,2} assigned to the positive literal x2 in the clause cj of two literals.
With these two steps, we obtain the sets of each literal from every clause have a
cardinality equal to 2.

Now, if the Boolean formula φ′ has m′ clauses, then the collection C of sets
for each literal from every clause complies that

φ ∈ MONOTONE 1–IN–3 3SAT if and only if (C,m′) ∈ 2SET PACKING.

Is it the case that C contains m′ mutually disjoint sets and φ is not a Boolean
formula in MONOTONE 1–IN–3 3SAT? The answer is no. Think for example
in some m′ mutually disjoint sets, then we can transform them in a truth as-
signment T evaluating every literal assigned in these sets as true. In this truth
assignment T from the clauses of two literals exactly one literal would be true and
from the clauses of three literals exactly one literal would be true in the Boolean
formula φ′. Certainly, we guarantee that since the literals of every clause have
not mutually disjoint sets in φ′ after the reduction. In this way, the truth assign-
ment T will be a satisfying assignment for the Boolean formula φ′ where every
clause has exactly one true literal which also implies that the original Boolean
formula φ will be in MONOTONE 1–IN–3 3SAT. Take into account that we
assume that K = m′ since at least the m′ clauses which contains φ′ should be
satisfiable with this truth assignment T in order to satisfy the original Boolean
formula φ as well.

This is a polynomial time reduction:

– We can create the Boolean formula φ′ in time O(m2) just replacing the mod-
ified clauses of three literals and adding the clauses of two literals. Certainly,
we can go each time through every clause φ just adding the new clauses of
two literals and modifying the other clauses of three literals which are at
most m− 1.

– After that, we create the instance for 2SET PACKING in time O(m) just
creating the new sets in the first step and modifying them in the second step.
Notice there at most two clauses of two literals for each variable in φ′. Since
the amount of variables in φ′ is linear in relation to the number of clauses in
φ, then we can assume the creation and the modification of these sets can
be done in time O(m).

Certainly, we can create the instance (C,m′) just running the whole reduction
in time O(m2) and thus, the proof is completed.

Theorem 2. P = NP .

Proof. The known NP–complete problem MONOTONE 1–IN–3 3SAT can be
reduced in polynomial time to 2SET PACKING where 2SET PACKING ∈ P [5].
Consequently, MONOTONE 1–IN–3 3SAT ∈ P . If any NP–complete problem
can be solved in polynomial time, then every language in NP has a polynomial
time algorithm [4]. In conclusion, we finally prove that P = NP .

10 Frank Vega

References

1. Aaronson, S.: P ? NP. Electronic Colloquium on Computational Complexity, Report
No. 4 (2017)

2. Arora, S., Barak, B.: Computational complexity: a modern approach. Cambridge
University Press (2009)

3. Cook, S.A.: The P versus NP Problem. Clay Mathematics Institute (April 2000),
at http://www.claymath.org/sites/default/files/pvsnp.pdf

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, 3rd edn. (2009)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edn. (1979)

6. Gasarch, W.I.: Guest column: The second P ? NP poll. ACM SIGACT News 43(2),
53–77 (2012)

7. Goldreich, O.: P, NP, and NP-Completeness: The basics of computational complex-
ity. Cambridge University Press (2010)

8. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
9. Sipser, M.: Introduction to the Theory of Computation, vol. 2. Thomson Course

Technology Boston (2006)

