LiLa: Linking Latin

Building a Knowledge Base of Linguistic Resources for Latin

The LiLa Team
info@lila-erc.eu

First LiLa Workshop: Linguistic Resources \& NLP Tools for Latin Milan | 3-4 June 2019
LiLiLa

Outlook

Why, What \& How (M. Passarotti)

LiLa Architecture (F. Mambrini)

Resources-1: Derivational Morphology \& Valency Lexicon (E. Litta)

Resources-2: Latin WordNet (G. Franzini \& A. Peverelli)

NLP-1: Part-of-speech Tagging \& Lemmatisation (F. M. Cecchini)

NLP-2: Upcoming Resources in LiLa \& a New Initiative (R. Sprugnoli)

Table of Contents

Why, What \& How (M. Passarotti)

LiLa Architecture (F. Mambrini)

Resources-1: Derivational Morphology \& Valency Lexicon (E. Litta)

Resources-2: Latin WordNet (G. Franzini \& A. Peverelli)

NLP-1: Part-of-speech Tagging \& Lemmatisation (F. M. Cecchini)

NLP-2: Upcoming Resources in LiLa \& a New Initiative (R. Sprugnoli)

Research question

State of affairs

We have built and collected (for Latin and other languages):

- Textual Resources
- Lexical Resources
- NLP Tools

Research question

State of affairs

We have built and collected (for Latin and other languages):

- Textual Resources
- Lexical Resources
- NLP Tools

Scattered and unconnected

Research need

Making sense

To make sense of this quantity of empirical data:

Research need

Making sense

To make sense of this quantity of empirical data:

- to extract maximum benefit from our research investments

Research need

Making sense

To make sense of this quantity of empirical data:

- to extract maximum benefit from our research investments
- to impact and improve the life of Classicists through exploitable computational resources and tools

Research need

Making sense

To make sense of this quantity of empirical data:

- to extract maximum benefit from our research investments
- to impact and improve the life of Classicists through exploitable computational resources and tools

From Information to Knowledge

LiLa Knowledge Base

Approach: Linked Data paradigm

2018-2023

A collection of interoperable linguistics resources (and NLP tools) described with the same vocabulary for knowledge description

Interlinking as a Form of Interaction

LiLa Knowledge Base

Conceptual and structural interoperability

LiLa is based on an ontology made of:

LiLa Knowledge Base

Conceptual and structural interoperability

LiLa is based on an ontology made of:

- Individuals: instances of objects (one specific token, lemma etc.)

LiLa Knowledge Base

Conceptual and structural interoperability

LiLa is based on an ontology made of:

- Individuals: instances of objects (one specific token, lemma etc.)
- Classes: types of objects/concepts (token, lemma, PoS etc.)

LiLa Knowledge Base

Conceptual and structural interoperability

LiLa is based on an ontology made of:

- Individuals: instances of objects (one specific token, lemma etc.)
- Classes: types of objects/concepts (token, lemma, PoS etc.)
- Data properties: attributes that objects can/must have (morphological features for lemmas/tokens)

LiLa Knowledge Base

LiLa is based on an ontology made of:

- Individuals: instances of objects (one specific token, lemma etc.)
- Classes: types of objects/concepts (token, lemma, PoS etc.)
- Data properties: attributes that objects can/must have (morphological features for lemmas/tokens)
- Object properties: ways in which classes and individuals can be related to one another: RDF triples.
Labels from a restricted vocabulary of knowledge description:
hasLemma, hasPoS

LiLa Knowledge Base

LiLa is based on an ontology made of:

- Individuals: instances of objects (one specific token, lemma etc.)
- Classes: types of objects/concepts (token, lemma, PoS etc.)
- Data properties: attributes that objects can/must have (morphological features for lemmas/tokens)
- Object properties: ways in which classes and individuals can be related to one another: RDF triples.
Labels from a restricted vocabulary of knowledge description:
hasLemma, hasPoS
Each component of the ontology is uniquely identified through a URI.

LiLa Knowledge Base

Lexically-based architecture and (meta)data sources

Table of Contents

Why, What \& How (M. Passarotti)

LiLa Architecture (F. Mambrini)

Resources-1: Derivational Morphology \& Valency Lexicon (E. Litta)

Resources-2: Latin WordNet (G. Franzini \& A. Peverelli)

NLP-1: Part-of-speech Tagging \& Lemmatisation (F. M. Cecchini)

NLP-2: Upcoming Resources in LiLa \& a New Initiative (R. Sprugnoli)

General principles

"Reuse standards, reuse standards, reuse standards".

The golden rule:
Reuse as many standards as you can.

General principles

"Reuse standards, reuse standards, reuse standards"...

The golden rule:
Reuse as many standards as you can. Extend, when you need to.

General principles

"Reuse standards, reuse standards, reuse standards"...

The golden rule:
Reuse as many standards as you can. Extend, when you need to. Create from scratch, if you really must.

General principles

"Reuse standards, reuse standards, reuse standards"...

The golden rule:
Reuse as many standards as you can. Extend, when you need to.
Create from scratch, if you really must.
LiLa is based on:

- the Ontolex family, for lexical information
- the OLiA bundle, for PoS tagging
- NIF (and POWLA?) for corpus annotation

"In the beginning was... the Lemma!"

The lemma as gateway to linguistic resources

LEMLAT

- 43,432 lemmas from Georges, 1913-1918; OLD and Gradenwitz, 1904;
- 82,556 lemmas from Du Cange, 1883-1887;
- 26,250 lemmas from Forcellini, 1940.
- WFL added.

Francesco@gazelle:Proo--7bin/iemlat/ifinux_embedded
File Edit View Search Terminal tabs Heip
francesco@gazelle-Pro:-/Desktop
SEGMENTATION: am -ant

Mood: Active Indicative
Tense: Present
Number: Plural
Person: Third

V1 al705

PoS: Verb
Type: Main
Inflexional Category: I conjug
IS DERIVED: NO

A prototypical case

 amo, amareontolex:Form

A more complex case: hypolemmas

doctus, -a, -um

Corpora in LiLa

A token from PROIEL (Rev. 1.18)

Already available resources and tools

Caution: work in progress!

- PROIEL (Universal Dependencies)
- Index Thomisticus Treebank (ITTB), both UD and original
- a portion of the Late Latin Charter Treebank (LLCT) (Timo Korkiakangas)

Already available resources and tools

- PROIEL (Universal Dependencies)
- Index Thomisticus Treebank (ITTB), both UD and original
- a portion of the Late Latin Charter Treebank (LLCT) (Timo Korkiakangas)

Try it out!

https://lila-erc.eu/data/

Open challenges

1. Include metadata about authors, texts, editions...

Open challenges

1. Include metadata about authors, texts, editions...

- Include canonical references

Open challenges

1. Include metadata about authors, texts, editions...

- Include canonical references

2. link to distributed content (texts are maintained by their providers)

Open challenges

1. Include metadata about authors, texts, editions...

- Include canonical references

2. link to distributed content (texts are maintained by their providers)
3. more lemmatisation!

Open challenges

1. Include metadata about authors, texts, editions...

- Include canonical references

2. link to distributed content (texts are maintained by their providers)
3. more lemmatisation!

- improve the performance of lemmatisers (Flavio, Rachele)

Open challenges

1. Include metadata about authors, texts, editions...

- Include canonical references

2. link to distributed content (texts are maintained by their providers)
3. more lemmatisation!

- improve the performance of lemmatisers (Flavio, Rachele)
- agree on an annotation scenario with the content managers

Table of Contents

Why, What \& How (M. Passarotti)
LiLa Architecture (F. Mambrini)
Resources-1: Derivational Morphology \& Valency Lexicon (E. Litta)
Resources-2: Latin WordNet (G. Franzini \& A. Peverelli)
NLP-1: Part-of-speech Tagging \& Lemmatisation (F. M. Cecchini)
NLP-2: Upcoming Resources in LiLa \& a New Initiative (R. Sprugnoli)

Word Formation Latin (WFL)

WFL: Word formation-based lexicon for Classical Latin

- LEMLAT Base lexical basis
- Word Formation Rules (WFRs) are modelled as directed one-to-many input-output relations between lemmas
- Relationships between lemmas (nodes) of the same "word formation family" are represented as the edges in a directed graph with a hierarchical tree-like structure
- Compounding is also shown as an intersection between word formation families
- Can be browsed by WFR, Affix, PoS and Lemma
- 763 WFRs, 32,428 input-output relations.

WFL: tree-shaped directed graph

WFL: hierarchical structure

Troubles

But: directed graphs are not completely satisfactory in representing the full range of relationships included within a word formation family. Main problems:

- Directionality
- Non-linear derivations.

WFL: hierarchical structure

Word Formation in LiLa

New approach to Word Formation:

- Structure: declarative rather than procedural
- No directionality
- No morphotaxis.

Words are described in their formative elements => these are organised in classes of objects in the ontology.

Word Formation in LiLa

Three classes of objects:

1. Lemmas
2. Affixes (prefixes and suffixes)
3. Bases (connectors between lemmas of the same WF family)

Connected by three possibile relationships:

1. hasPrefix
2. hasSuffix
3. hasBase

Stella

3382

Latin Vallex

Latin Vallex: Valency Lexicon for Classical Latin

- Built in conjunction with the semantic and pragmatic annotation of two Latin treebanks:
- The Index Thomisticus Treebank (Thomas Aquinas),
- The Latin Dependency Treebank (Classical era).
- Structure inspired by the Valency Lexicon for Czech PDT- Vallex.

Latin Vallex

termino - V

- Word entries => sequence of frame entries for each lemma.
- Each frame entry => one sense.
- Each frame entry => description of the valency frame + frame attributes.
- Valency frame: sequence of frame slots.
- Frame slot: one complementation of the given lemma.
- Attributes: semantic roles ('functors') used to express types of relations between lemmas and their complementations.
- Frame Entry 1 ('to mark the boundaries of something'):
- Valency Frame:
- Frame Slot 1: subj.
- Frame Slot 2: direct obj.
- Frame Attributes:
- Functor 1: ACT
- Functor 2: PAT
- Frame Entry 2 ('to limit something to something else'):
- Valency Frame:
- Frame Slot 1: subj.
- Frame Slot 2: dir. obj.
- Frame slot 3: in+ dir. obj.
- Frame Attributes:
- Functor 1: ACT
- Functor 2: PAT
- Functor 3: DIR3

Valency Lexicon

First Steps in LiLa

- From evidence to intuition-based
- Cross reference Whitaker's Words definitions with EngVallex valency frames (English Valency Lexicon developed at Úfal)
- Evaluation and Validation (work in progress)
- Addition of new data.

Table of Contents

```
Why, What & How (M. Passarotti)
LiLa Architecture (F. Mambrini)
Resources-1: Derivational Morphology & Valency Lexicon (E. Litta)
```

Resources-2: Latin WordNet (G. Franzini \& A. Peverelli)

NLP-1: Part-of-speech Tagging \& Lemmatisation (F. M. Cecchini)

NLP-2: Upcoming Resources in LiLa \& a New Initiative (R. Sprugnoli)

WordNet

What is it?

WordNet [...] is perhaps the most widely used electronic dictionary [...] and serves as the lexicon for a variety of different NLP applications including Information Retrieval (IR), Word Sense Disambiguation (WSD), and Machine Translation (MT).

Fellbaum (1998, p. 52)

WordNet

A database of synsets (sets of synonymous lemmas)

Synset ID ${ }^{\text {Lang }}$ Lemma(s) | Definition |
| :--- |

WordNet

A database of synsets (sets of synonymous lemmas)

Synset ID	Lang	Lemma(s)	Definition
a\#00430275	ENG	cloudy	full of or covered with clouds

WordNet

A database of synsets (sets of synonymous lemmas)

Synset ID	Lang	Lemma(s)	Definition
a\#00430275	ENG	cloudy	full of or covered with clouds
a\#00430275	ITA	annuvolato nuvolo nuvoloso	

WordNet

A database of synsets (sets of synonymous lemmas)

Synset ID	Lang	Lemma(s)	Definition
a\#00430275	ENG	cloudy	full of or covered with clouds
a\#00430275	ITA	annuvolato nuvolo nuvoloso	
a\#00430275	LAT	nubilosus nubilus	

WordNet

Example synset

A database of synsets (sets of synonymous lemmas)

Synset ID	Lang	Lemma(s)	Definition
a\#00430275	ENG	cloudy	full of or covered with clouds
a\#00430275	ITA	annuvolato nuvolo nuvoloso	
a\#00430275	LAT	nubilosus nubilus	

Relations between synsets
Hypernymy/hyponymy, meronymy/holonymy, antonymy, entailment, etc.

WordNet

Example synset

A database of synsets (sets of synonymous lemmas)

Synset ID	Lang	Lemma(s)	Definition
a\#00430275	ENG	cloudy	full of or covered with clouds
a\#00430275	ITA	annuvolato nuvolo nuvoloso	
a\#00430275	LAT	nubilosus nubilus	

Relations between synsets
Hypernymy/hyponymy, meronymy/holonymy, antonymy, entailment, etc.

Only two historical language WordNets.

Latin WordNet (LWN)

Overview

- Who: Stefano Minozzi, University of Verona
- When: 2004
- How: generated from the MultiWordNet ${ }^{1}$
- What: limited coverage
- 9,378 lemmas
- 8,973 synsets
- 143,701 relations
- How well: quite noisy

La copertura lessicale e i risultati dell'assegnazione automatica necessiterebbero di una ulteriore fase di valutazione e di controllo.

Minozzi (2017, p. 130)
${ }^{1}$ http://multiwordnet.fbk.eu/english/home.php

Latin WordNet (LWN)

LiLa objectives \& method

1. Phase 1: evaluate existing LWN data

Latin WordNet (LWN)

LiLa objectives \& method

1. Phase 1: evaluate existing LWN data

- Custom algorithm checks Latin resources (Whitaker's Words and Lewis \& Short) against MultiWordNet to propose missing senses.

Latin WordNet (LWN)

LiLa objectives \& method

1. Phase 1: evaluate existing LWN data

- Custom algorithm checks Latin resources (Whitaker's Words and Lewis \& Short) against MultiWordNet to propose missing senses.
- Test evaluation: 5 raters independently evaluate the same set of 100 lemmas (25 per PoS) using a custom app; synsets to evaluate include both LWN data and computed suggestions. ${ }^{2}$

[^0]
Latin WordNet (LWN)

LiLa objectives \& method

1. Phase 1: evaluate existing LWN data

- Custom algorithm checks Latin resources (Whitaker's Words and Lewis \& Short) against MultiWordNet to propose missing senses.
- Test evaluation: 5 raters independently evaluate the same set of 100 lemmas (25 per PoS) using a custom app; synsets to evaluate include both LWN data and computed suggestions. ${ }^{2}$
- Calculate the inter-rater agreement and the quality of the evaluations against a Gold Standard.

[^1]
Latin WordNet (LWN)

LiLa objectives \& method

1. Phase 1: evaluate existing LWN data

- Custom algorithm checks Latin resources (Whitaker's Words and Lewis \& Short) against MultiWordNet to propose missing senses.
- Test evaluation: 5 raters independently evaluate the same set of 100 lemmas (25 per PoS) using a custom app; synsets to evaluate include both LWN data and computed suggestions. ${ }^{2}$
- Calculate the inter-rater agreement and the quality of the evaluations against a Gold Standard.
- Compare the computed assignments against manual evaluation.

[^2]
Latin WordNet (LWN)

LiLa objectives \& method

1. Phase 1: evaluate existing LWN data

- Custom algorithm checks Latin resources (Whitaker's Words and Lewis \& Short) against MultiWordNet to propose missing senses.
- Test evaluation: 5 raters independently evaluate the same set of 100 lemmas (25 per PoS) using a custom app; synsets to evaluate include both LWN data and computed suggestions. ${ }^{2}$
- Calculate the inter-rater agreement and the quality of the evaluations against a Gold Standard.
- Compare the computed assignments against manual evaluation.
- Further automate where possible, e.g. remove obvious noise.

[^3]
Latin WordNet (LWN)

LiLa objectives \& method

1. Phase 1: evaluate existing LWN data

- Custom algorithm checks Latin resources (Whitaker's Words and Lewis \& Short) against MultiWordNet to propose missing senses.
- Test evaluation: 5 raters independently evaluate the same set of 100 lemmas (25 per PoS) using a custom app; synsets to evaluate include both LWN data and computed suggestions. ${ }^{2}$
- Calculate the inter-rater agreement and the quality of the evaluations against a Gold Standard.
- Compare the computed assignments against manual evaluation.
- Further automate where possible, e.g. remove obvious noise.

2. Phase 2: data-driven enrichment of the LWN by attaching it to textual tokens in LiLa (effectively performing Word Sense Disambiguation).
[^4]
Latin WordNet (LWN)

Examples of noise to be removed:

Lemma	Synset	Definition
ager	n\#WoO21124	in un database, ogni area in cui vengono registrate le singole informazioni che compongono il record (ad esempio nomi, nu- meri ecc.).
capitolium	n\#06188340	the federal government of the United States.
voco	v\#OO720710	send a message or attempt to reach someone by radio, phone, etc; make a signal to in order to transmit a message; Hawaii is calling!; A transmitter in Hawaii was heard calling.

Latin WordNet (LWN)

Evaluation

E.g. velociter

		S1	S2	S3	S4
S1 $=r \# 00051957$	Rater 1	1	1	1	0
S2 $=r \# 00082992$	Rater 2	1	1	1	1
S3 $=r \# 00102338$	Rater 3	1	1	1	0
S4 $=r \# 00285860$	Rater 4	1	1	1	1
	Rater 5	1	1	0	0

We measure:

- Inter-rater reliability: ${ }^{3} A_{o}=\frac{a b s\left(N_{c}-N_{R}\right)}{N_{V}} \rightarrow$ Here: 0.6
- $A_{o}=$ observed agreement
- $N_{C}=n$. of Confirmed assignments
- $N_{R}=n$. of Rejected assignments
- $N_{V}=n$. evaluations
- Quality: correctness against a Gold Standard

[^5]
Latin WordNet (LWN)

Inclusion of LWN in LiLa

Collaboration with University of Exeter

EXETER
 LATIN WORDNET 2.0

Table of Contents

> Why, What \& How (M. Passarotti)

> LiLa Architecture (F. Mambrini)

> Resources-1: Derivational Morphology \& Valency Lexicon (E. Litta)

> Resources-2: Latin WordNet (G. Franzini \& A. Peverelli)

NLP-1: Part-of-speech Tagging \& Lemmatisation (F. M. Cecchini)

NLP-2: Upcoming Resources in LiLa \& a New Initiative (R. Sprugnoli)

The missing link

Lemmatisation and part-of-speech tagging are essential and necessary tasks

- for the linguistical analysis of Latin...
- rich morphology, ambiguity, ...
- ... and the inclusion of textual resources into LiLa!
- the lemma as center stage of its architecture

Lack of annotated resources

Unfortunately, most Latin corpora are not provided with annotation at morphological, grammatical or syntactical level, and not even lemmatisation.

Our goal

To survey the existing tools for Latin lemmatisation and PoS-tagging
To automate annotation of resources and ease their inclusion into LiLa

Again, LEMLAT!

LEMLAT is a powerful morphological analyser for Latin.

Morphological analysis entails lemmatisation.

> aere
> \ldots Aere (f, PROPN)?
> \ldots Aer (m, PROPN)?
> \ldots aer (m/f, NOUN)?
> \ldots aerus (ADJ)?
> \ldots aes ($\mathrm{n}, \mathrm{NOUN}) ?$

However, it can not disambiguate according to context!

Part-of-speech taggers and/or lemmatisers

Part of speech $\leftrightarrow \rightsquigarrow$ Lemma

We have selected and collected many tools and models for Latin:
CLTK: TnT, CRF, 1-2-3-gram backoff, all trained on Perseus
Collatinus: LASLA
Deucalion LASLA
LaPOS: Perseus, IT-TB UD 2.3
NLP-Cube: UD 2.3 Latin treebanks
NLTK: TnT, CRF, 1-2-3-gram backoff, all trained on IT-TB UD 2.3
MarMot: Capitula+PROIEL(+Patr. Lat.+Collex-LA) (Eger et al. 2016), IT-TB UD 2.3
RDRPOSTagger: IT-TB UD 2.3, PROIEL UD 2.3, Perseus UD 2.3
RNNTagger: IT-TB
TreeTagger: IT-TB UD 2.3, IT-TB, OMNIA (Bon 2011), Brandolini

$$
\text { UDpipe: IT-TB UD 2.3, PROIEL UD 2.3, Perseus UD } 2.3
$$

... and also the lemmatiser LatMor (acontextual), based on the Berlin Latin Lexicon.
We primarily focus on existing models rather than training new ones.

Different viewpoints

Adverbs and participles and more...

Each corpus uses different standards \Rightarrow Different PoS tagger annotations
perennius 'more lastingly'

- ADV - perennius
- ADV - perenniter
- ADJ-perennis
sanctus 'holy; saint'
- ADJ-sanctus
- NOUN - sanctus
- VERB - sancio

Each annotation standard has its own motivation!
Diachronic changes also have to be taken into account.

Harmonised evaluation

LEMLAT as a common reference

We want to be able to compare automated or manual annotations of parts of speech and lemmas wich follow different standards.

LEMLAT as a lexical hub

We exploit its vast coverage of lexicon and orthographical variants to correctly evaluate all possibilities.

affrementissime 'in a most roaring way'

adfrementissime/affrementissime ADV/D/... adfrementissimus/affrementissimus adfremens/affremens adfremo/affremo ADJ/A/QLF/...
VERB/V/VBE/...or ADJ/... VERB/... will all be accepted as correct analyses!

We adopt the Universal POS Tags of UD (Petrov et al. 2011) as reference https://universaldependencies.org/u/pos/index.html

Some results

Top3s - Work in progress

De Divinatione by Cicero, 1st c. BC (Gold: LiLa)

PoS:	TreeTagger (Brandolini)	90.7%
	MarMot (Capitula)	88.7%
	UDpipe (PROIEL)	87.1%
Lemmas:	UDpipe (PROIEL)	90.3%
	TreeTagger (Brandolini)	89.9%
	MarMot (Capitula)	89.8%

Confessiones I-III by Augustinus, 4th c. AD (Gold: LiLa)
PoS: TreeTagger (Brandolini) 93.6\%
MarMot (Capitula) 92.2\%
RDRPOSTagger (PROIEL) 91.6\%
Lemmas: TreeTagger (Brandolini) 95.0\%
MarMot (Capitula) 92.4\%
UDpipe (PROIEL) 92.3\%
Hist. Langobardorum Beneventanorum by Erchempertus, 9th c. AD (Gold: Comp. Hist Sem.)

PoS:	MarMot (Capitula)
TreeTagger (Brandolini)	89.3%
CLTK - CRF	87.7%
Lemmas:	MarMot (Capitula)
UDpipe (PROIEL)	85.9%
TreeTagger (Brandolini)	79.6%

Remarks and future work

- Wide diachronic coverage seems to be more important than sheer size for training
- Diachronic variations seem to affect lemmatisation more than part-of-speech tagging

Future directions

- Fine-tuned harmonised evaluation, e.g.
- diachronic point of view
- evaluation per part of speech
- Training and evaluation of new models
- Survey on existing annotation standards and comparisons
- Automated conversion of annotation standards to UD

Table of Contents

```
Why, What & How (M. Passarotti)
LiLa Architecture (F. Mambrini)
Resources-1: Derivational Morphology & Valency Lexicon (E. Litta)
Resources-2: Latin WordNet (G. Franzini & A. Peverelli)
NLP-1: Part-of-speech Tagging & Lemmatisation (F. M. Cecchini)
```

NLP-2: Upcoming Resources in LiLa \& a New Initiative (R. Sprugnoli)

Creating, collecting and connecting Latin data

Creating, collecting and connecting Latin data

- Lexical resources

Creating, collecting and connecting Latin data

- NLP Tools

Creating, collecting and connecting Latin data

- Word Embeddings

Creating, collecting and connecting Latin data

- Annotated corpora

Lexical Resources

- Valency Lexicon
- Latin WordNet
- de Vaan, M. (2008). Etymological Dictionary of Latin. Leiden, The Netherlands: Brill.

stēlla 'star' [f. $\bar{a}]$ (PI. +)
Derivatives: stēlläns 'starry' (Lucr.+), stëllumicäns 'shining with stars' (Varro), stèl(l)iō 'kind of lizard, gecko' (Verg.+).
PIt. *stērlā-.
PIE * h_{2} stēr-s, * h_{2} ster- [m.] 'star'. IE cognates: OIr. ser, W. seren (pI. ser), Co. sterenn (pI. steyr) , Bret. sterenn 'star' < PCl. *ster-; Olr. sell [m.] 'iris' < *stillo-, MIr. sellaid 'to see', MW syllu 'to gaze', Bret. sellout 'to watch' < PCI. *stirlo- 'star' < *h h_{2} stēr-lo-; Hit. hašter(a)- [c.] 'star’ (nom.sg. hašterza/Hstert') < *h ${ }_{2}$ ster-; Skt. tấrah [nom.pl.], stơbhih [instr.pl.], Av. star- [m.] (YAv. acc.sg. stāram, nom.pl. stārō, acc.pl. strāuš for *sträs̆, gen.pl. strq̨m), Khot. stāraa- 'star'; Gr. ḋơifp, -Époc, Arm. astl, Go. stairno, ToB ścirye 'star'.
Schrijver 1995 has established that Olr. sell 'iris' can go back to PCl. *stirlo-; together with Lat. stēlla, this points to an Italo-Celtic formation *stēr-lo/ā- 'star'.
Bibl.: WH II: 587f., EM 646, IEW 1027f., Schrijver 1995: 421-423, Meiser 1998: 123.

Lexical resources

Information about reconstructed Indo-European forms

NLP tools

Models trained on "Opera Latina", a corpus manually annotated by the Laboratoire d'Analyse Statistique des Langues Anciennes (LASLA) for:

1. Tokenisation
2. PoS Tagging
3. Lemmatisation
4. Inflectional features identification

NLP tools

Models trained on "Opera Latina", a corpus manually annotated by the Laboratoire d'Analyse Statistique des Langues Anciennes (LASLA) for:

1. Tokenisation
2. PoS Tagging
3. Lemmatisation
4. Inflectional features identification

Models trained on:

1. the whole corpus
2. texts by single authors (i.e. author-specific models)

Word embeddings

Pre-trained word vectors learned on the whole LASLA corpus using:

1. word 2 vec
2. fastText

Word embeddings

word2vec versus fastText

- Different word representations:

FELIX	
word2vec	fastText
beatus	infelix
fortunatus	felicitas
inuideo	feliciter
felicitas	fel
infelix	infelicitas
infelicitas	fortunatus
miser	detestor
bonum	gaudeo

IUDICO	
word2vec	fastText
puto	abiudico
sum	diiudico
dico	adiudico
debeo	praeiudico
existimo	iudicatum
ergo	iudicium
sapiens	praeiudicium
delibero	dico

Annotated corpora

Ancient Latin texts taken from the Perseus Digital Library:

- different authors (Caesar, Seneca, Cicero, Catullus...)
- different genres (treatises, letters, poems...)
- automatically annotated with our new author-specific models

A new initiative...

How can we promote the development of resources and language technologies for the Latin language?

How can we foster collaboration among scholars working on Latin and attract researchers from different disciplines?

A new initiative...

How can we promote the development of resources and language technologies for the Latin language?

How can we foster collaboration among scholars working on Latin and attract researchers from different disciplines?

EvaLatin

EvaLatin

EvaLatin

- Evaluation campaign designed following a long tradition in NLP (MUC, ACE, SemEval, CoNLL...)
- Shared tasks, shared training and test data, shared evaluation metrics

EvaLatin

EvaLatin

- Evaluation campaign designed following a long tradition in NLP (MUC, ACE, SemEval, CoNLL...)
- Shared tasks, shared training and test data, shared evaluation metrics
- 3 tasks:

1. PoS tagging
2. Lemmatisation
3. Inflectional features identification

- 3 sub-tasks for each task:

1. Basic
2. Cross-Genre
3. Cross-Time

EvaLatin

Tentative Timeline

The LiLa Team
 Università Cattolica del Sacro Cuore CIRCSE Research Centre

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme - Grant Agreement No. 769994

Works cited

- Bon, B. (2011) 'OMNIA : outils et méthodes numériques pour l'interrogation et l'analyse des textes médiolatins (3)', Bulletin du centre d'études médiévales d'Auxerre (BUCEMA). URL: http: / / journals.openedition.org/cem/12015, DOI: 10.4000/cem. 12015
- Eger, S., Gleim, R. and Mehler, A. (2016) 'Lemmatization and Morphological Tagging in German and Latin: A comparison and a survey of the state-of-the-art', Proceedings of the 10th International Conference on Language Resources and Evaluation (LREC 2016).
- Fellbaum, C. (1998) 'Towards a Representation of Idioms in WordNet', Proceedings of the workshop on the Use of WordNet in Natural Language Processing Systems (Coling-ACL), pp. 52-57.
- Minozzi, S. (2017) 'Latin WordNet, una rete di conoscenza semantica per il latino e alcune ipotesi di utilizzo nel campo dell'information retrieval', Strumenti digitali e collaborativi per le Scienze dell'Antichità, 14, pp. 123-133. DOI: 10.14277/6969-182-9/ANT-14-10
- Petrov, S., Das, D. and McDonald, R. (2011) 'A Universal Part-of-Speech Tagset', arXiv:1104.2086.

[^0]: ${ }^{2}$ Andrea Peverelli, Helena Sanna, Edoardo Signoroni, Viviana Ventura, Federica Zampedri.

[^1]: ${ }^{2}$ Andrea Peverelli, Helena Sanna, Edoardo Signoroni, Viviana Ventura, Federica Zampedri.

[^2]: ${ }^{2}$ Andrea Peverelli, Helena Sanna, Edoardo Signoroni, Viviana Ventura, Federica Zampedri.

[^3]: ${ }^{2}$ Andrea Peverelli, Helena Sanna, Edoardo Signoroni, Viviana Ventura, Federica Zampedri.

[^4]: ${ }^{2}$ Andrea Peverelli, Helena Sanna, Edoardo Signoroni, Viviana Ventura, Federica Zampedri.

[^5]: ${ }^{3}$ Percentage of agreement without chance correction.

