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Abstract

A theory, implementation and first application of relativistic four-component TD-DFT-

based for the treatment of quadratic response properties will be presented. The expressions

are based on the non-collinear treatment of the spin density which has been shown to offer

the highest amount of reliability in previous studies. The non-collinear ansatz for the spin

density leads to a large amount of complexity in the expressions for the perturbed analogs

of the spin density which additionally suffer from definition problems for the closed-shell

case (spin density approaching zero). This is overcome by proper modification of the

working equations which are implemented to calculate the third-order derivative of the

exchange-correlation energy and the corresponding spin density contributions.

In a first application study, first hyperpolarizabilities of ortho- and meta-diiodobenzene

are calculated and compared with results obtained with one-component TD-DFT calcula-

tions with and without use of effective core potentials (ECPs). It has been found that the

deviation between the four-component and the one-component/ECP results is not larger

that 6% and that therefore the latter offers an efficient tool for calculations of quadratic
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response properties while the four-component ansatz is useful for validation of the lower-

order results.

1 Introduction

The last years have seen an increasing interest in non-linear optical (NLO) molecular

properties both in science and technology. In general, NLO is a wide field compiling a lot of

different molecular properties which have in common that their strength is not independent

of radiation intensity as in linear optics. This dependency is the reason that normally, NLO

are only observed at high radiation intensities connecting their experimental realization

and technical use to a large extent to the availability of lasers. Therefore, experimental

observation of NLO has started after lasers had become available.[1]

Although there is a big variety of NLO properties they have in common that they are

considered more or less exotic. As for linear optical properties, in a first stepresonant- and

non-resonant NLO properties can be distinguished. With this distinction, NLO properties

can often be interpreted as higher-order analogs of linear optical properties. Consider for

example the interaction of a molecule with a homogeneous electric field with a frequency ω.

As long as ω does not match an excitation energy, the interaction between the molecule and

the field (the induced dipole moment) is described by a frequency-dependent polarizability

αω which corresponds to the refractive index of a macroscopic sample. For ω → ωr with

ωr being an excitation energy, αω becomes infinite and light absorption can be observed

which can be described by a one-photon transition dipole moment.

The higher-order analogs of these well-known properties are the frequency-dependent

first-order hyperpolarizability βω and two-photon absorption (TPA) which correspond to

either the conversion of two photons of frequencies ω1 and ω2 to one photon of frequency

ω1 + ω2 (second harmonic generation, SHG) or the absorption of two photons with fre-

quencies ω1 + ω2 = ωr (TPA).

While TPA sees a lot of promising applications in 3D data storage, multiphoton mi-

croscopy, photodynamic cancer therapy, photochromic layers and drug delivery,[2, 3, 4,

5] materials with good SHG properties are indispensible for frequency upconversion of

lasers.[6] For example, every green laser pointer contains a crystal which upconverts the

radiation of an infrared laser diode to the second harmonic and therefore shifts it into the

visible range of light. Apart from this, also imaging techniques based on SHG have been

considered,[7] namely of biological tissues[8]. These few examples illustrate the big interest

in materials with non-linear optical properties.
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Developent of such materials is often hampered by non-trivial structure-property rela-

tions which have been investigated in a lot of experimental and theoretical studies.[9, 10,

11, 12, 13, 14]

Calculations of non-linear optical properties are still quite an exotic field of quantum

chemistry although there is a variety of implementations available which can calculate

e.g. SHG and TPA using either time-dependent density functional theory (TD-DFT)[15],

multiconfigurational SCF[16] as well as coupled cluster methods[17, 18, 19]. Higher-order

NLO properties such as three-photon absorption and second hyperpolarizabilities have

also been made available.[20] In recent years, recursive calculation techniques have been

introduced which allow for NLO calculations to in principle infinite order.[21, 22, 23]

All these implementations have in common that they use response theory to describe

light-matter interactions[24, 25] and one-component wave functions which offer an efficient

and reliable treatment of organic molecules which do not contain atoms heavier than e.g.

chlorine. For elements from the fourth period on, relativistic effects can no longer be ne-

glected. However, for the fourth and fifth period, the use of effective core potentials (ECPs)

for scalar relativistic effects still leads to reasonable results, also for NLO properties.[26]

Turning to even heavier elements, however, a treatment of relativistic effects through

the Hamiltonian is required which necessitates use of a more-component wave function.

Implementations of NLO using four-component (relativistic) wave functions are scarse and

limited to Hartree-Fock[26, 27] and TD-DFT[28]. As the first implementations of linear

optical properties using four-component wave functions[29], these implementations use the

so-called collinear approach for the description of the spin density[30, 31] (vide infra).

However, it has already been shown by van Wüllen in 2002,[30] that the collinear approach

does not provide a proper description of the spin density as it is e.g. not orientation

invariant. For this reason, both van Wüllen[30] and Wang and Liu[31] recommend use of

the non-collinear approach for the description of the spin density. First implementations of

excitation energies[32] as well as linear-optical properties using this approach[33, 34] have

been presented.

In this work the first TD-DFT implementation of non-linear optical properties using a

non-collinear description of the spin density will be presented.

This article will be organized as follows: In Section 2 the theory of NLO properties

for four-component relativistic quantum chemistry will be derived, in section 3 the imple-

mentation will be presented. Section 4 will address technical details of the calcultions. In

section 5, the results of first application calculations are shown and in section 6 the results

will be discussed and section 7 will give some concluding remarks.
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2 Theory

2.1 Response theory

Time-dependent molecular properties are derived from the time-dependent Schrödinger

equation (
H− i ∂

∂t

)
|0̄(t)〉 = 0, (1)

where H is the Hamiltonian and |0̄(t)〉 is the time-dependent wave function according to

|0̄(t)〉 = exp[−iF (t)]|0̃(t)〉, (2)

with F being a purely time-dependent function.[29] Following the lines of Christiansen

et al.[25], |0̄(t)〉 is the complete wave function and |0̃(t)〉 its phase-isolated part which in

principle remains time-dependent. However it contains time dependence only through the

perturbation and is stationary in the unperturbed limit. The phase-isolated form of the

time-dependent Schrödinger equation can then be written as(
H− i ∂

∂t

)
|0̃(t)〉 =

∂

∂t
F (t) = Q(t), (3)

where Q(t) is the time-dependent quasienergy, a quantity which is a time-dependent analog

of the energy and which approaches the energy in the static case. In the following, time

dependece of |0̃(t)〉 will be suppressed for brevity.

The time-dependent quasienergy allows for the formulation of a time-dependent Hellmann-

Feynman theorem[25] according to

dQ(t)

dεa
=
〈

0̃
∣∣∣∂H

∂εa

∣∣∣0̃〉− i ∂
∂t

〈
0̃
∣∣∣ ∂0̃

∂εa

〉
. (4)

The time (and perturbation) dependence of the Hamiltonian is described by a one-particle

perturbation operator Vx(t) according to

H = H0 + Vx(t). (5)

As long as the perturbations considered are periodic in time, time dependency can be

treated by time averaging. An important premiss for this is that the frequencies of all

perturbations involved are integer multiples of one fundamental frequency according to[25]

ωk = nkω0, nk ∈ Z, (6)

ω0 =
2π

τ
, (7)
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with τ being the time period. This enables Fourier transformation of the perturbation

operator following the lines of Christiansen and coworkers[25]

Vx(t) =
N∑

k=−N

exp[−iωkt]Vx(ωk). (8)

However ω0 can be chosen as small as necessary and therefore, this premiss is not very

restrictive.[29] Time averaging of a function f(t) can then be performed according to

{f(t)}τ =
1

τ

∫ τ
2

− τ
2

f(t)dt, (9)

yielding {f(t)}τ , the time average of f(t). Following those lines, the time-averaged quasienergy

Q = {Q}τ , (10)

is obtained allowing for the formulation of a time-averaged time-dependent Hellman-

Feynman theorem

dQ

dεa
=

{〈
0̃
∣∣∣∂H

∂εa

∣∣∣0̃〉 exp[−iωat]
}
τ

, (11)

=
{〈

0̃
∣∣∣Vεa

∣∣∣0̃〉 exp[−iωat]
}
τ
, (12)

where it has been used that the time average of a time-differentiated periodic function is

zero according to[25] {
∂Z(t)

∂t

}
T

= 0. (13)

The expectation values can now be expanded in orders of the perturbation according to

〈0̃|Vεa |0̃〉 = 〈0|Vεa|0〉+
N∑

b1=−N

〈〈Vεa ; V1(ωb1)〉〉 exp[−iωb1t]+ (14)

N∑
b1,b2=−N

〈〈Vεa ; V1(ωb1),V2(ωb2)〉〉 exp[−i(ωb1 + ωb2)t] + ...

This expansion can be inserted in Eq. (11). Averaging over time yields

dQ

dεa
= 〈0|Vεa|0〉δ(ω) +

N∑
b1=−N

〈〈Vεa ; V1(ωb1)〉〉 exp[−iωb1t]δ(ω + ωb1)+ (15)

N∑
b1,b2=−N

〈〈Vεa ; V1(ωb1),V2(ωb2)〉〉 exp[−i(ωb1 + ωb2)t]δ(ω + ωb1 + ωb2) + ...,

where δ(µ) is zero for µ 6= 0 and unity for µ = 0. The expansion coefficients in Eq.

(15) are called response functions to order n with 〈〈Vεa ; V1(ωb1)〉〉 being the linear and

〈〈Vεa ; V1(ωb1),V2(ωb2)〉〉 being the quadratic response function.
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2.2 Time-dependent density functional theory

2.2.1 Density functional theory

Following the Hohenberg-Kohn-theorem, the energy E of a molecular system can com-

pletely be described as a functional of the electron density ρ.[35] Using the Kohn-Sham-

approach, the energy can be obtained using a self-consistent field procedure analog to

Hartree-Fock theory with the exchange and correlation contributions to the energy being

described by the exchange-correlation functional Exc(ρ).[36] Turning now from the energy

to the time-dependent quasienergy, the exchange-correlation functional is replaced by the

exchange-correlation action Axc(ρ).[32] In the adiabatic approximation, however, which will

be used in the following, the (static) exchange-correlation functional Exc(ρ) is used instead

of the time-dependent exchange-correlation action Axc(ρ) to describe the time-dependent

quasienergy.[37, 31, 32] In the adiabatic approximation, the time-dependent quasienergy

reads

Q[ρ] = T [ρ] + V [ρ] + J [ρ] + (1− ξ)K[ρ] + ξExc[ρ]− S[ρ], (16)

with T and V being the kinetic and potential energy contributions (one-electron part)

and J , K, Qxc and S the Coulomb, (Hartree-Fock) exchange, exchange-correlation (two-

electron) and time-dependent contributions, respectively. The coefficient ξ is a scalar

between 0 and 1 indicating the portion of Hartree-Fock-exchange energy in the system.

For density functionals of the LDA and GGA-types, ξ is 1.

The one-electron, Coulomb and exchange terms are evaluated as analytical integrals

while Qxc[ρ] is evaluated by numerical integration.

2.2.2 The density

Up to now, the density as an input to the exchange-correlation functional has been termed

ρ. The two key contributions to ρ are the charge density n and the spin density ζ. The

definition of the charge density is well-established according to

n(r) =
∑
pq

Ωpq(r)Dpq =
∑
i

Ωii, (17)

=
∑
pq

φ∗pφqDpq, (18)

with Dpq being the elements of the density matrix, r is the position vector and φq a basis

function. In the following, the letters p, q, r, s, t, u will be used for arbitrary molecular

orbitals, a, b, c, ... for virtual and i, j, k, ... for occupied orbitals. The quantity Ω(r) is
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called orbital distribution. Note that both the number density n and Ω(r) are position

dependent.

The most intuitive definition of the spin density is the so-called collinear approach

which interpretes the electron charge of a system to be the sum of the densities of its

electrons with α- and β-spin, hence

n = ρα + ρβ. (19)

In this simple picture, the spin density s is the difference of the α- and β-electron densities,

ζ = ρα − ρβ, (20)

and is therefore zero in the closed-shell case.

This approach, which of course requires that electrons have either α- oder β-spin is

called the ”collinear approach” for the definition of the spin density as it assumes that all

electron spins are either parallel or antiparallel to each other. However, as the z-component

of the spin is no longer a good quantum number as soon as relativistic effects and spin-

orbit coupling come into play, this requirement is inappropriate for a proper relativistic

treatment of molecular properties. This has also been proven in several studies either

theoretically[30] or by comparison of calculated results[31, 38]. All these studies have

shown that the non-collinear treatment of the spin density yields much better results than

the collinear one.

In the non-collinear treatment, the spin density is no longer the difference between ρα

and ρβ but the norm of the spin magnetization vector m according to

ζ2 = m ·m =
∑
i=x,y,z

∑
pq

Dpqφ
∗
pσiφq =

∑
i=x,y,z

∑
pq

DpqΩpq,i (21)

where σi are the components of the vector of Pauli spin matrices. The elements of the

density matrix are defined as

Dpq = 〈0̃|a†paq|0̃〉, (22)

where a†p and aq are the creation and annihilation operators of 2nd quantization.[39] It is

important to note that the collinear approach can be interpreted as a simplification of the

non-collinear case where only one spatial component of the vector m has been taken into

account.[30]

Furthermore, it is important to note that the non-collinear spin density can never be

negative due to its defintion as a norm (Eq. (21)).
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2.2.3 Perturbation behaviour of the density

As discussed in the previous section, both the number and spin densities are constructed

from the orbital distribution or its spin-magnetization analog and the density matrix. In

the following, the time- and therefore also the perturbation dependency of the density will

be considered.

In the previous sections, it was already mentioned that the phase-isolated wave function

|0̃〉 depends on time only through the perturbation. For a proper parametrization, the

time-dependent orbital rotation operator κ̂(t) is introduced

κ̂ =
∑
pq

κpqa
†
paq, (23)

which is unitary and enters the wave function expression through an exponential function

according to

|0̃〉 = exp[−κ̂(t)|0〉. (24)

The orbital rotation parameters κ will carry the whole time- and perturbation dependence

of the wave function. They can be interpreted as perturbation corrections to the wave

function. Therefore, the unperturbed parameters κ will be chosen zero, hence there is no

correction in the unperturbed case.

In accordance with the Fourier transform of the perturbation discussed in 2.1, the time

dependence of the orbital rotation parameters can be written as

κpq =
N∑

k=−N

κpq exp[iωkt]. (25)

The quasienergy is assumed to be stationary with respect to the orbital rotation parameters

dQ

dκpq

∣∣∣
ε=0

= 0, (26)

at a perturbation strength of zero.

Applying this to the definition of the number and spin densities (Eqs. (17) and (21)),

it is noted that the position dependence is completely located in the orbital distribution

while time- and perturbation dependencies are condensed in the density matrix according

to

ρ(r,κ) = 〈0̃|ρ|0̃〉 =
∑
pq

Ω∗pq(r)Dpq(κ), (27)
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with ρ being the general density operator. This expression holds for both the number

density and the components of the spin magnetization vector depending on the definition

of the orbital distribution. This is indicated by the asterisk. As κ depends on time, all time

dependencies will be substituted by dependencies on κ in the following for the description

of the perturbation dependency of the density matrix. Invoking Eq. (24) in Eq. (22) and

performing a Baker-Campbell-Hausdorff expansion of the exponential terms, the density

matrix can be written as

Dpq(κ) = 〈0|a†paq|0〉+ 〈0|
[
κ̂, a†paq

]
|0〉+

1

2
〈0|
[
κ̂,
[
κ̂, a†paq

]]
|0〉+ ..., (28)

showing the dependence of the density matrix on the orbital rotation parameters. Inserting

Eq. (28) into the definition of the (number or spin) density, Eq. (27), and collecting terms

to first order, we get[29]

〈0| [κ̂,κ] |0〉 = κaiΩai − Ωiaκai, (29)

which is a one-index transformation of the orbital distribution with the orbital rotation

parameters.

In a similar manner, also the higher-order nested commutators shown in Eq. (28) can

be written in terms of nested one-index transformations of the orbital distribution.

It is important to recall that this theory works completely analogous for both the

”primitive” orbital distribution corresponding to the number density n as well as the

orbital distributions involving the Pauli spin matrices which lead to the components of

the spin magnetization vector. Hence, the perturbation behaviour of the number and the

spin densities can be treated completely analogous.

With this, the quasienergy can be written as a function of of ρ and a functional of κ

according to

Q[ρ(κ)] = Q0 +
N∑

k=−N

∑
x

εx(ωk)Qx(ωk), (30)

where the first term is the unperturbed quasienergy

Q0 =

{
hpqDpq(κ) +

1

2
[(pq|rs)− ξ(ps|rq)]Dpq(κ)Drs(κ) + Exc[ρ(κ)] + VNN − S[ρ(κ)]

}
τ

,

(31)

with the time-dependent contribution

S[ρ] =

{
〈0̃|i ∂

∂t
|0̃〉
}
, (32)

9



and the second term is the perturbation contribution

Qx(ωk) =
{
〈0̃|Vεa|0̃〉 exp[−iωt]

}
T
. (33)

The quadratic response function can be obtained by differentiating the time-dependent

quasienergy w.r.t. the perturbations. After some simplifications following the lines of Ref.

25, the expression reads

d3Q

dεadεbdεc

∣∣∣
εa=εb=εc=0

=
∂3Q

∂εa∂εb∂εc
+

Pabc

2

(
∂3Q

∂εa∂κpq∂κrs

∂κpq
∂εb

∂κrs
∂εc

+
∂3Q

∂εa∂εb∂κpq

∂κpq
∂εc

)
+

(34)

∂3Q

∂κpq∂κrs∂κtu

∂κpq
∂εa

∂κrs
∂εb

∂κtu
∂εc

,

where Pabc is a permutation operator which interchanges perturbations εa, εb, εc. Note that

in this formulation, the quadratic response function only depends on first-order derivatives

of the orbital rotation parameters obtained by solving the response equations

d2Q

dκpqdεa
=

∂2Q

∂κpq∂κrs
κapq +

∂2Q

∂κpq∂εa
= 0, (35)

where the short-hand notation κapq for the derivatives of the orbital rotation parameters

has been introduced. Eq. (35) can be considered a perturbed version of the variational

condition, Eq. (26). Eqs. (26) and (35) have also been used to eliminate all higher-order

derivatives of the orbital rotation parameters from Eq. (34) in accordance with the 2n+1-

rule of response theory.[25] This means that only the first-order response of the orbital

rotation parameters is needed for the calculation of the quadratic response function.

Recalling now the definition of the time-dependent quasienergy Q[ρ(κ)] (Eqs. (30) f ),

it is noted that apart from the perturbation contribution Qx the complete perturbation

dependency of Q is through the orbital rotation parameters κ. This is of special interest

for the exchange-correlation contribution Exc[ρ].

2.2.4 Derivatives of the exchange-correlation density funtional

As the exchange-correlation energy depends on the perturbation only through the orbital

rotation parameters κ and the derivatives of κ are known, the different orders of Exc[ρ] in

κ have to be evaluated which afterwards are combined with the responses of κ.

The first derivative of the exchange-correlation functional is called the exchange-correlation

potential

∂exc
∂κpq

=
δexc
δρ

∂ρ

∂κpq
, (36)
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and is already needed to set up the unperturbed Kohn-Sham matrix.[40] In these expres-

sions, δ indicates the derivative of a functional and ∂ the partial derivative of a function.

For the treatment of linear response properties and excitation energies, also the exchange-

correlation kernel is needed which is the second derivative of the exchange-correlation

functional w.r.t. the orbital rotation parameters according to[29, 38, 32, 41]

∂2exc
∂κpq∂κrs

=
δ2exc
δρ2

∂ρ

∂κpq

∂ρ

∂κrs
. (37)

Note that in the previous two equations ρ has been used as a general parameter for the

unperturbed number or spin density or (in the case of GGA functionals) its gradient.

In contrast to the exchange-correlation potential, the exchange-correlation kernel is never

calculated explicitly but always as contraction either with a trial vector[32] (calculation

of excitation energies or solution of response equations like Eq. (35)) giving a matrix or

with two perturbed κ vectors giving a scalar[42] (for calculation of molecular properties).

In these cases, e.g. the second derivative of the xc-functional w.r.t. the perturbations is

calculated according to

exc
dεadεb

(38)

where the term depending on the second-order perturbed orbital rotation parameters κabpq
is zero due to the variational condition (Eq. (26)).

For the treatment of the quadratic response function, which is the third derivative of

the energy, the second exchange correlation kernel is needed which in the following will

be discussed in detail. In this work, the second exchange-correlation kernel will only be

needed in a full contraction with three perturbed orbital rotation vectors. The derivation

of the second kernel is based on the expressions for the kernel presented by Bast and

coworkers[32] and Komorovsky and coworkers[42] which in contrast to Eq. 37 already show

explicit dependencies on number and spin densities.

An expression for the second kernel involving number and spin densities as well as their

gradients becomes extremely long. Therefore, for the sake of brevity, the derivation will

only be shown for the case of an LDA functional (i.e. without density gradients). As the

definition of the quadratic response function used in this work explicitly excludes terms

which depend on the orbital rotation parameters higher than first order, also terms which

will use such high-order derivatives are excluded from the beginning. However, a treatment

including density gradients is completely analogous and its final results will also be shown.

11



For an LDA functional, the complete third derivative of the exchange-correlation energy is

∂3exc
∂κpq∂κrs∂κtu

=

∫ (δ3exc
δn3

∂n

∂κpq

∂n

∂κrs

∂n

∂κtu
+ Ppq,rs,tu

δ3exc
δn2δζ

∂n

∂κpq

∂n

∂κrs

∂ζ

∂κtu
+ (39)

Ppq,rs,tu
δ3exc
δnδζ2

∂n

∂κpq

∂ζ

∂κrs

∂ζ

∂κtu
+
δ3exc
δζ3

∂ζ

∂κpq

∂ζ

∂κrs

∂ζ

∂κtu
+

Ppq,rs,tu
δ2exc
δn2

∂n

∂κpq

δ2n

∂κrs∂κtu
+ Ppq,rs,tu

δ2exc
δnδζ

( ∂2n

∂κpq∂κrs

∂ζ

∂κtu
+

∂2ζ

∂κpq∂κrs

∂n

∂κtu

)
+

Ppq,rs,tu
δ2exc
δζ2

∂ζ

∂κpq

∂2ζ

∂κrs∂κtu
+
δexc
δn

∂3n

∂κpq∂κrs∂κtu
+
δexc
δζ

∂3ζ

∂κpq∂κrs∂κtu

)
dr.

The functional derivatives in (39) can be calculated using the well-established automatic

differentiation scheme presented which is based on a Taylor expansion of the correspod-

ing expressions and allows also for the calculation of functional derivatives to arbitrary

order.[43, 44] This scheme receives the differentiated densities as an input which in four-

component theory have to be formed from the complete manifold of wave functions.

For the derivatives of the charge density n, this is straightforward using the nested

commutators exemplified in Eq. (29) while especially for closed-shell systems, this requires

special treament of the spin density.

2.2.5 Derivatives of the non-collinear spin density

Differentiation of the non-collinear spin density w.r.t. either geometrical distortions (e.g.

for treatment in GGA density functionals) or external fields (for the treatment of spec-

troscopical properties) requires differentiation of the expression in Eq. (21). Expressions

for the first and second derivatives of the non-collinear spin density have already been

introduced in Ref. 32. As the spin density is the norm of the spin magnetization vector,

these derivatives require use of the chain rule and, to higher-order than one, also use of

the quotient rule.

Starting point is the derivative of a norm w.r.t. the corresponding vector

∂ζ

∂m
=

m

ζ
, (40)

which is nothing more but the normalized vector and can be obtained from straightforward

differentiation of every vector component using the chain rule. Eq. (40) is an important

building block for the differentiation of the spin density following the lines of Ref. 32.

Using these relations, the first and second derivatives with respect to the parameters κpq
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κrs, respectively, are obtained according to[32]

∂ζ

∂κpq
=

m

ζ

∂m

∂κpq
, (41)

∂2ζ

∂κpq∂κrs
=

1

ζ

( ∂m

∂κpq

∂m

∂κrs

)
− 1

ζ

(m

ζ

∂m

∂κpq

)(m

ζ

∂m

∂κrs

)
+

m

ζ

∂2m

∂κpq∂κrs
. (42)

Note that already between Eqs. (41) and (42), there is an strong increase in complexity

due to the use of the quotient rule which is necessary to get Eq. (42). Formulation of the

third derivative of ζ requires extensive use of the quotient, product and chain rules and

yields

∂ζ

∂κpq∂κrs∂κtu
=

m

ζ

∂3m

∂κpq∂κrs∂κtu
+

3

ζ2

(
m

ζ

∂m

∂κpq

)(
m

ζ

∂m

∂κrs

)(
m

ζ

∂m

∂κtu

)
+ (43)

Ppq,rs,tu
1

2ζ

(
∂m

∂κpq

∂2m

∂κrs∂κtu

)
−Ppq,rs,tu

1

2ζ

(
m

ζ

∂m

∂κpq

)(
m

ζ

∂2m

∂κrs∂κtu

)
−

Ppq,rs,tu
1

2ζ2

(
m

ζ

∂m

∂κpq

)(
∂m

∂κrs

∂m

∂κtu

)
.

For closed-shell systems, this expression is running into defintion problems as ζ → 0 and

all terms apart from the first one depend on a division by ζ. The treatment in the closed

shell case will be discussed in the following.

2.2.6 Simplification for the closed shell-case

The treatment of the second xc-kernel in the closed shell case allows for simplification

of both the functional derivatives and the perturbed spin density. Modifications of the

exchange-correlation functional derivatives is explained most easily using a technique intro-

duced by Wang and coworkers in 2003 who modifiy the charge and spin densities according

to[31]

ρ± =
1

2
(n± ζ) , (44)

such that

n = ρ+ + ρ−; ζ = ρ+ − ρ−, (45)

which is analogous to the collinear definition of the spin density. Using these expressions,

the derivatives of the exchange-correlation functional can be rewritten.[31, 38] For the first

derivative w.r.t. the spin density, this e.g. yields

δexc
δζ

=
1

2

δexc
δ(ρ+ − ρ−)

=
1

2

(
δexc
δρ+
− δexc
δρ−)

)
. (46)
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For ζ → 0, this expression becomes zero, as well as the mixed second derivative of the

xc-functional w.r.t. n and ζ.[38, 32] The third-order derivative w.r.t. the spin density, is

δ3exc
δζ3

=
1

8

(
δ3exc
δ3ρ+

− 3
δ3exc

δ2ρ+δρ−
+ 3

δ3exc
δρ+δρ2−

− δ3exc
δ3ρ−

)
, (47)

which is zero as well for the closed-shell case. Analyzing the other expressions from Eq.

(39) using this technique, it is noted that, that all terms vanish which depend on an odd-

order derivative w.r.t. the spin density. This holds also for expressions depending on the

spin density gradient if GGA functionals are involved.

In order to have the second xc-kernel defined properly in the closed-shell case, divisions

by the spin density can be removed using the following relation which orginate from de

l’Hôpital’s rule:[38, 32]

1

ζ

δexc
δζ

=
δ2exc
δζ2

for ζ → 0. (48)

In the following, also the higher analog to this expression will be used,

1

ζ

δ2Exc
δζδn

=
δ3exc
δnδζ2

for ζ → 0, (49)

as well as the a modification of Eq. (48),

1

ζ

δ2Exc
δζ2

=
1

ζ

(
1

ζ

δexc
δζ

)
for ζ → 0. (50)

Using these expressions, Eq. (39) can be simplified for the closed shell case to

∂3Exc
∂κpq∂κrs∂κtu

=

∫ (δ3exc
δn3

∂n

∂κpq

∂n

∂κrs

∂n

∂κtu
+

Ppq,rs,tu

2

δ2exc
δn2

∂n

∂κpq

∂2n

∂κrs∂κtu
+ (51)

Ppq,rs,tu

2

δ3exc
δnδζ2

( ∂m

∂κpq

∂m

∂κrs

) ∂n

∂κtu
+

Ppq,rs,tu

2

δ2Exc
δζ2

( ∂m

∂κpq

∂2m

∂κrs∂κtu

)
+

δexc
δn

∂3n

∂κpq∂κrs∂κtu

)
dr for ζ → 0.

Note that this expression does no longer depend on the spin density ζ at all but just on

the spin magnetization vector m. This allows for diving Eq. (51) into two parts: A scalar

one which just contains dependencies on n and its derivatives as well as the vectorial part

which depends on m.[32] As all m-dependencies are in pairs, their contributions can be

interpreted as scalar products of differentiated spin magnetization vectors.
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The expression for the derivative of a GGA-functional can be evaluated in a similar

manner as leads to

∂3Exc
∂κpq∂κrs∂κtu

=

∫ [δ3exc
δn3

∂n

∂κpq

∂n

∂κrs

∂n

∂κtu
+
δ2exc
δn2

Ppq,rs,tu

2

∂n

∂κpq

∂2n

∂κrs∂κtu
+
δexc
δn

∂3n

∂κpq∂κrs∂κtu
+

δ3exc
δn2δ∇n

Ppq,rs,tu
∂n

∂κpq

∂n

∂κrs

∂∇n
∂κtu

+
δ3exc
δnδ∇n2

Ppq,rs,tu

2

∂n

∂κpq

∂∇n
∂κrs

∂∇n
∂κtu

+

δ3exc
δ∇n3

∂∇n
∂κpq

∂∇n
∂κrs

∂∇n
∂κtu

+
δ2exc
δnδ∇n

Ppq,rs,tu

2

( ∂n

∂κpq

∂2∇n
∂κrs∂κtu

+
∂2n

∂κpq∂κrs

∂∇n
∂κtu

)
+

δ2exc
δ∇n2

Ppq,rs,tu

2

∂∇n
∂κpq

∂2∇n
∂κrs∂κtu

+
δexc
δ∇n

∂3∇n
∂κpq∂κrs∂κtu

+

δ3exc
δnδζ2

Ppq,rs,tu

2

∂n

∂κpq

∂m

∂κrs

∂m

∂κtu
+
δ2exc
δζ2

Ppq,rs,tu

2

∂m

∂κpq

∂2m

∂κrs∂κtu
+ (52)

δ3exc
δζ2δ∇n

Ppq,rs,tu

2

∂m

∂κpq

∂m

∂κrs

∂∇n
∂κtu

+
δ3exc

δnδζδ∇ζ
Ppq,rs,tu

∂n

∂κpq

∂m

∂κrs

∂∇m

∂κtu
+

δ3exc
δsδ∇nδ∇s

Ppq,rs,tu
∂m

∂κpq

∂∇n
∂κrs

∂∇m

∂κtu
+

δ2exc
δsδ∇s

Ppq,rs,tu

2

( ∂m

∂κpq

∂2∇m

∂κrs∂κtu
+

∂2m

∂κpqκrs

∂∇m

∂κtu

)]
dr for s→ 0.

Analogous to the LDA-case, also for the GGA expression, scalar and vectorial parts can

be formulated which depend on either n and ∇n or n, ∇n, m and ∇m, respectively.

3 Impementation

3.1 The quadratic response function

In contrast to the theory, which was completely derived in the MO basis, property cal-

culations will be carried out in the AO basis. AO-basis and density-matrix based ap-

proaches for molecular property calculations have become increasingly popular during

the past years, especially as they promise a better scaling behaviour for larger molecu-

lar systems.[39, 45, 46, 47] For molecular property calculations, the shift from MO to AO

basis is quite straightforward as in all cases matrices and vectors are contracted to a scalar.

This might be exemplified on the expression for the number density n (Eq. (17))

n =
∑
i

φ∗iφi =
∑
i

∑
µν

c∗iµφ
∗
µciνφν =

∑
µν

φµφν
∑
i

c∗iµciν =
∑
µν

ΩµνDµν , (53)

where c are the LCAO transformation coefficients and greek letters indicate the atomic

orbital indices. Also in the AO basis, the integrals will carry the position dependence
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while the density matrix carries the dependence on time and perturbation. The quadratic

response function will be described in the AO basis based on the approach presented by

Kjærgaard at al. in 2008.[39] This formulation was for non-relativistic theory, however

it can straightforwardly be generalized to four-component theory. Following the lines of

Kjærgaard and coworkers, the so-called supermatrix notation will be used, where index

pairs are collapsed to one index resulting in a more compact notation. Vectors and ma-

trices in supermatrix notation will be written in italic boldface and their elements will

be indicated by uppercase indices while matrices and vectors in classical notation will be

written in roman boldface and their elements will be indicated by lowercase indices. The

quadratic response function can then be written as

〈〈A; B,C〉〉 =
∑
IJ

(A
[2]
IJ + A

[2]
JI)κ

b
Iκ

c
J +

∑
IJ

XA
I B

[2]
IJκ

c
J +

∑
IJ

κaIκ
b
JC

[2]
IJ+ (54)∑

IJK

κaI(E
[3]
IJK + E

[3]
IKJ − ωiS

[3]
IJK − ωiS

[3]
IKJ)κbJκ

c
K ,

where the numbers in square brackets denote the order of derivative w.r.t. the unperturbed

parameters κ. The quantities E[2], E[3], S[2], S[3] and A[2] can be obtained from the

expression for the time-dependent quasienergy (Eq. (16) according to

E[2] =
∂2

∂κ2

(
T [ρ] + V [ρ] + J [ρ] + Exc[ρ]

)
, (55)

E[3] =
∂3

∂κ3

(
T [ρ] + V [ρ] + J [ρ] + Exc[ρ]

)
, (56)

S[2] =
∂2

∂κ2

(
S[ρ]

)
, (57)

S[3] =
∂3

∂κ3

(
S[ρ]

)
, (58)

A[2] =
∂2

∂κ∂εa

(
T [ρ] + V [ρ] + J [ρ] + Exc[ρ]

)
. (59)

Note that the derivative of S[ρ] w.r.t. εa is always zero and hence, there is no S[ρ]-

dependency in A[2]. For a detailed description of the derivation of Eq. (54), the reader

is referred to Ref. 39.

In this work, the focus will not be on the implementation of the shown matrices as such

but on their complete contractions with the perturbation parameters to a scalar value.

Therefore, the following types of contractions can be identified:

1. Contraction of the A[2]-type matrices with two perturbation parameter vectors

2. Contraction of the E[3]-type matrices with three perturbation parameter vectors
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3. Contraction of the S[3]-type matrices with three perturbation parameter vectors.

As Kjærgaard et al. have shown, the contractions of the S[3]-type matrices are always

zero and hence, they will not further be discussed here.

The contraction of the A[2]-type matrices can be written as∑
IJ

A
[2]
IJκ

b
Iκ

c
J = Tr[ST , [ST ,A]κb ]DTκ

c, (60)

where the commutator[39, 45]

[A,C]B = ABC−CBA, (61)

has been introduced. D is the unperturbed one-electron density matrix, S is the overlap

matrix.

In a computationally advantageous treatment, the nested commutator in Eq. (60) is

decomposed according to∑
IJ

A
[2]
IJκ

b
Iκ

c
J = Tr[ST ,Mab]DTκ

c = TrMab[ST ,κc,T ]DT = TrMabDc, (62)

Mab = [ST ,A]κb Dc = [ST ,D]κc , (63)

where A is the matrix of first-order perturbed one-electron integrals (e.g. electric dipole

integrals in case the considered perturbation is an electric field). Using this formulation,

the nested commutator can be simplified remarkably.

The contraction of the E[3]-type matrices can be written as∑
IJK

E
[3]
IJKκ

a
Iκ

b
Jκ

c
K = Tr

(1

2
[ST , [ST , [ST , (FKS)T ]κa ]κb ]Dκ

c+ (64)

[ST , [ST , (GKS)T (Da)]κb,T ]Dκ
c+

1

2
[ST , (GKS)T ([κa,Db]S)]DTκ

c+

1

2
[ST , (Txc)T (Da,Db)]Dκ

c
)
,

where FKS, GKS(M) and Txc are the Kohn-Sham matrix, the complete two-electron con-

tribution to the Kohn-Sham matrix contracted with the matrix M (see below) and the

second kernel of the exchange-correlation functional, respectively. The latter term requires

a special treatment which will be discussed in the next section.

The first term of Eq. (64) will be zero due to the variational condition.
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The two-electron integral contributions G(M) can in general be written as

Gµν =
∑
λκ

(
gµνλκ − (1− ξ)gµκλν

)
Mλκ, (65)

where gµνλκ is the Coulomb contribution to the Kohn-Sham matrix, gµκλν is the exact ex-

change contribution and Mλκ is the one-electron density matrix (perturbed or unperturbed)

used for the contraction.

Comparing the second and the third term in Eq. (64) it is noted that in both cases, the

two-electron integral contributions once are contracted with a density matrix transformed

with one first-order perturbation parameter vector and once with a density matrix trans-

formed with two first-order perturbation parameter vectors. Expanding and rearranging

the nested commutators the second term can be written according to

Tr[ST , [ST , (GKS)T (Da)]κb,T ]Dκ
c = Tr(GKS)T (Da)[κb,T ,Dc]S, (66)

= Tr(GKS)T (Da)Dbc, (67)

where the second-order perturbed density matrix and Dbc have been introduced.

In a similar manner, the third term of Eq. (64) can be rewritten to get

Tr[ST , (GKS)T ([κa,Db]S)]DTκ
c = Tr(GKS)T (Dab)Dc, (68)

which according to Eq. (65) would mean that the two-electron integral contributions con-

tracted with the second-order perturbed density matrix are needed. However, re-writing

the contraction in component-wise form according to

Tr(GKS)T (Dab)Dc =
∑
µνκλ

(gµνλκ − (1− ξ)gµκλν)Dab
µνD

c
κλ, (69)

=
∑
µν

GC
µνD

ab
µν , (70)

= Tr(GKS)T (Dc)Dab. (71)

Contractions of the two-electron integrals with second-order perturbed density matrices

can completely be avoided which reduces both operation count and memory demand of

the program as the amount of second-order perturbations is much larger than the one of

first-order ones.

The contribution of the second kernel in Eq. (64) can be rewritten as

[ST , (Txc)T (Da,Db)]Dκ
c = Tr(Txc)T (DA,DB)DC . (72)
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With these findings, Eq. (64) can be written according to∑
IJK

E
[3]
IJKX

A
I X

B
J X

C
K = Tr

(
(GKS)T (DC)DAB + (GKS)T (DB)DAC+ (73)

(GKS)T (DA)DBC + (Txc)T (DA,DB)DC
)
.

This contribution can be calculated using the XCFun program library[48] and the proper

first-order perturbed number- and spin densities following the lines of Eq. (51). The term

in Eq. (74) covers all terms of Eq. (51) which contain a third-order derivative of the

xc-functional. Terms with lower-order derivatives in Eq. (51) contribute to the exchange-

correlation contributions to the terms in Eqs. (67) and (71).

3.2 The vectorial contribution to the second kernel using XCFun

In 2.2.6 it was shown that for the closed-shell case, the second kernel contribution has been

divided in a scalar and a vectorial part with the scalar part just depending on the number

density n and its gradients and derivatives while the contributions depending on the spin

density and its derivatives and gradients are contained in the vectorial part which does not

contain the spin density ζ itself but the spin magnetization vector m or its gradients or

derivatives.

For the calculation of the functional derivatives in Eqs. (51) and (52) the XCFun

library is used. This program module differentiates density functionals using the automatic

differentiation technique based on a Taylor expansion of the density functional.[43, 44] It

also provides the infrastructure for the multiplication of the functional derivative with the

perturbed input densities. For the scalar part, this is straightforward as it contains all

possible derivatives w.r.t. n and ∇n and can therefore be considered ”complete”. As a

consequence, calculation of the scalar contribution can be done in one single step.

With the modifications for the closed-shell case, calculation of the vectorial part is

less straightforward as some contributions have been eliminated and the scalar value of s

has been replaced by the vector m. Inspecting Eqs. (51) and (52) it is noted that terms

depending on m always appear in pairs. Therefore, they can be interpreted as dot products

which allows for an evaluation in a loop over components of m.

As the vectorial part is in addition ”incomplete” in that sense that several xc-functional

derivatives have been eliminated in the modification process, XCFun requires a modification

either in the source code or in the input to make sure that only the sought after terms

are calculated. This problem is solved by dividing the vectorial part of Eq. (52) into three

different sub-parts which are then calculated with selective density inputs.
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The first sub-part contains all terms which depend on a second-order derivative w.r.t.

ζ which are the 10th, 11th and 12th term in Eq. (52), hence

δ3exc
δnδζ2

nkmlmm, (74)

δ3exc
δ∇nδζ2

∇nkmlmm, (75)

δ2exc
δδζ2

mklmm. (76)

In this example, k, l and m represent three different combinations of perturbations (electric

field directions) and their corresponding frequencies. For the calculation of these three

contractions, the XCFun library is called in a loop over the three spatial components of m

with the unperturbed number density n and gradient ∇n, the unperturbed spin density

ζ and gradient ∇ζ (which are zero in the closed-shell case), and the first-order number

density nk and gradient ∇nk as well as with the corresponding components of the spin

magnetization vectors ml and mm as well as the second-order spin magnetization vector

mkl. All other input quantities to the XCFun library are set to zero in order to make sure

that only the listed contributions will be calculated.

Another looped call of the XCFun library calculates the contributions

δ2exc
δdδ∇ζ

(
mk∇mlm + mkl∇mm

)
. (77)

Apart from the unperturbed input densities named earlier, this call only contains the

corresponding elements of the spin magnetization vector mk, mkl and its gradients ∇mm

and ∇mkl.

The last looped call of the XCFun library calculates the contributions

δ3exc
δnδζδ∇ζ

nkml∇mm, (78)

δ3exc
δ∇nδζδ∇ζ

∇nkml∇mm. (79)

4 Computational details

Benchmark calculations have been carried out on the ortho- and meta-diiodobenzene

molecules. Molecular geometries have been optimized using the TURBOMOLE program

package[49], the PBE density functional[50, 51] and the TZVP basis set[52]. On the iodine
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atoms, Stuttgart-type ECPs have been used.[53] The molecules have been oriented such

that the dipole moment vector is oriented parallel to the z axis.

Hyperpolarizability calculations have been carried out using the uncontracted Dyall-

cvdz basis set.[54, 55, 56] For the four-component calculations, perturbation parameters,

MO coefficients, perturbation parameters and perturbed and unperturbed one- and two-

electron integrals have been calculated using the ReSpect program.[34, 57] One-component

calculations have been carried out using the Dyall-cvdz basis set, Stuttgart-type ECPs and

TURBOMOLE[49]. Molecular property calculations have been carried out using the PBE

and BLYP[58, 59, 60] density functionals.

Contributions of the second kernel have been calculated by a standalone program which

received the mentioned quantities as an input and performed the numerical calculation of

the exchange-correlation contributions on an integration grid consisting of a radial[61] and

an angular part[62] in an open-source implementation module[63].

5 Applications

As ECP techniques are well established for the treatment of scalar relativistic effects, in

a first application study of the newly implemented four-component code, results from the

four-component (4c) code will be compared with numbers obtained using non-relativistic

one-component TD-DFT with ECPs for the treatment of scalar relativistic effects (1c/ECP)

and without ECPs (1c)

In Table 1 an overview is given of the non-zero tensor elements of both the polarizability

α and the hyperpolarizability β.

Comparing the results in general it is noted immediately that the difference between the

three approaches is much more significant for β than for α. For α, the deviations between

the 4c results and the 1c results with or without ECPs is in the range of 1% or lower while

deviations for β are up to 8% with deviations between 4c and 1c/ECP results being up

to 6%. This is in line with the results of Henriksson et al.[64, 27, 28] who have reported

similar differences in the influence of relativistic effects on α and β for calculations using

the collinear approach for the description of the spin density.

For all α values as well as for most β values, the results from 1c/ECPs calculations

have found to be the lowest values. For most βxxz and βzzz values, the 4c results are found

to be between the 1c/ECP and the 1c results with the 1c calculations yielding the highest

values in most cases.

Comparing the deviations for the βxxz, βyyz and βzzz elements it is noted that the
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Table 1: Overview of the calculation results on diiodobenzenes.

Polarizability [a.u.] First Hyperpolarizability [a.u.]

αxx αyy αzz βxxz βyyz βzzz

ortho-diiodobenzene, BLYP

4c 140.7 63.4 164.1 234.3 68.8 486.8

1c/ECP 139.5 63.1 163.1 220.2 68.4 461.4

1c 140.6 63.2 164.1 241.5 73.5 495.8

ortho-diiodobenzene, PBE

4c 140.7 63.6 164.0 230.3 67.4 479.7

1c/ECP 139.6 63.3 163.1 218.9 67.5 458.5

1c 140.7 63.4 164.0 236.9 72.2 488.3

meta-diiodobenzene, BLYP

4c 189.2 64.5 127.7 247.2 43.5 231.6

1c/ECP 187.0 64.2 127.0 238.6 43.3 220.4

1c 188.4 64.5 127.0 265.3 47.2 225.2

meta-diiodobenzene, PBE

4c 189.4 64.7 127.4 250.0 42.3 223.7

1c/ECP 187.5 64.4 126.8 243.5 42.5 215.3

1c 188.6 64.5 127.1 269.6 45.6 227.2
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4c and 1c/ECP results for the βyyz values are much more similar than for the βxxz and

βzzz elements. It appears that spin-orbit coupling effects on βyyz elements are much less

pronounced than for the βxxz and βzzz elements.

6 Discussion and Outlook

Comparison of the results for β obtained with 4c, 1c/ECP and 1c calculations have shown

that the discrepancy between 1c/ECP and 1c calculations is significant and hence that there

are reasonable relativistic effects on the elements of the first hyperpolarizability while the

relativistic effects on the polarizability are low. In the case of large deviations between

4c and 1c/ECP results, 4c results have been found to be in between the 1c/ECP and

the 1c results which indicates that use of ECP overestimates relativistic effects which is

compensated by the spin-orbit coupling which is introduced by the four-component ansatz

for the Hamiltonian.

On the other hand, non-linear optical property calculations have just moderate require-

ments regarding accuracy in most cases as they usually support molecular design and are

to give semi-quantitative assessements of proposed materials prior to synthesis. As the

deviations found between the 4c and the 1c/ECP-results has been found to be in the range

of 6% it appears reasonable that the use of 1c/ECP is an efficient tool for such calculations

which also offers an acceptable amount of reliability. However, the 4c method can serve as

a reference for 1c/ECP calculations and in addition offers a reliable opportunity to treat

compounds of even heavier elements.

Furthermore, a four-component treatment can be useful for the calculation of properties

of open-shell systems. The present code is not yet able to treat open-shell systems but

offers the potential of extension.

7 Conclusion

Theory and implementation of a four-component relativistic TD-DFT method for calcu-

lations of quadratic response properties using the non-collinear formulation of the spin

density have been presented. As in the non-collinear formulation, the spin density is in-

terpreted as the norm of the spin magnetization vector, every degree of differentiation of

the spin density with respect to perturbations leads to a significant increase in complexity.

Expressions have been reformulated to avoid definition problems for the closed-shell case

(spin density approaching zero).
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The expressions have been implemented into an own program code which reads orbital

and perturbation parameters as well as one- and two-electron integrals from a previous run

of the ReSpect program. A first series of application calculations has been carried out on

meta- and orth-diiodobenzene in order to compare the non-zero hyperpolarizability tensor

elements from the four-component code with results from one-component calculations with

and without use of effective core potentials. In the examples under consideration it has

been found that the deviation between four-component and one-component results is up

to 8%.
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