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Abstract 

Instrumentation of higher order modes (HOMs) excited in accelerating cavities for 

beam phase and position inference provides a noninvasive and economical beam 

diagnostic. The principles and techniques for this purpose are investigated for 

TESLA (TeV Energy Superconducting Linear Accelerator) cavities at the injector 

part of the newly built European XFEL and at FLASH, two free electron laser 

facilities based on the TESLA technology. 

I have designed and instrumented unconventional beam phase monitors based on 

monopole modes in TESLA cavities and demonstrated a routine resolution of 0.1° 

with a broadband setup. The best resolution achieved with this system is 0.03°. The 

resolution is largely limited by the signal power. In order to aid the monitor design 

and study its performance, I have employed a coupled circuit model which indicates 

that the resolution can be further improved by optimizing the SNR (signal to noise 

ratio) and sampling frequency. This is the first type of monitor that is able to probe 

online the beam phase directly w.r.t. the accelerating field in individual accelerating 

cavities. The system can be used for long term RF drifts monitoring and also be 

used to decouple the phase jitter and drift sources in the injector part of a linac. 

Therefore the system can provide valuable information for the low level RF system. 

Beam position monitoring based on dipole modes in TESLA cavities at FLASH was 

demonstrated for the first time to work stably over several months with below 5 μm 

resolution. The improvement is attributed to a focused campaign on various signal 

and analysis techniques. These techniques can be transferred with little effort to the 

similar system, now under design for the European XFEL. As a preparation for the 

beam position monitor for the third harmonic cavities at the E-XFEL, I have 

measured and characterized the HOM spectra for single and coupled cavities. In 

particular there existed no such measurements for eight coupled cavities. These 

measurements pave the way for the instrumentation of 3.9 GHz cavities and show 

that the modes are well damped to the required limit. 
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Chapter 1 - Introduction 

FEL (Free Electron Laser) facilities are gaining popularity worldwide and this is 

driven by various disciplines and industrial applications over the decades. These 

unconventional lasers can provide unique ultra-short light pulses with high intensity, 

high spatial and temporal coherence, and spectral purity, which are required by 

various experiments. FLASH [1] (Free Electron Laser in Hamburg) and the 

E-XFEL [2] (European X-Ray Free Electron Laser) are examples of such facilities 

that are able to produce soft and hard X-ray beams respectively. These photon 

beams are generated by ultra-relativistic
2
 electron beams accelerated by a linear 

accelerator, also known as linac. In order to generate high-quality photon beams, 

stringent requirements on the quality of the electron beams are imposed. Therefore, 

beam diagnostics systems are indispensable. Beam diagnostics and instrumentation 

itself is a wide and quite interdisciplinary field. 

The objective of this thesis is to investigate novel types of beam phase and position 

monitoring based on electron beam excited higher order modes in SRF 

(Superconducting Radio Frequency) accelerating cavities at the E-XFEL. These 

monitors are distinguished from conventional monitors with the same functionalities 

in that the latter are normally based on specially designed beam ‘pickup’ (electrode 

or cavity etc.) components. The main motivation of the project is to develop 

high-performance monitors using existing accelerating cavities of the linac. In this 

sense, the functionalities of accelerating cavities are two-fold: 1. beam acceleration; 

2. beam diagnostics based on the higher order modes excited in the same cavities. 

Therefore the beam diagnostics techniques investigated here are non-invasive to the 

beam. It should be pointed out that along the linac there are also places where there 

is no space for conventional diagnostics components and the monitors developed 

here find their application thereof. 

                                                 
2
 The velocity is very close to the speed of light 𝑐. 
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When a bunch of electrons traverses a cavity, it excites an electromagnetic field 

called wakefield. This can seriously degrade the electron beam quality if left 

unchecked [3] and can cause BBU (Beam Breakup) [4] in the worst case. The 

wakefield can be decomposed into a multipole expansion of modes. Only those with 

a significant impact on the beam are of interests, and hence a relatively small 

number of modes can be used to characterize the beam. The modes with higher 

resonant frequencies than the mode that is used for acceleration are generally 

referred to as HOMs (Higher Order Modes). In order to avoid their damaging 

effects, these HOMs generally have to be damped or detuned [3]. On the other hand, 

the damped HOMs can be used to infer the status of electron beam. The main 

content of the thesis deals with investigation and development of beam diagnostic 

tools based on these damped HOMs from SRF accelerating cavities for the E-XFEL. 

One main part of this thesis is on beam phase monitoring which is of vital 

importance for FEL facilities. Generally speaking, in order to make the electron 

beam participate in the FEL process efficiently, high quality electron beam is 

required. The beam quality is largely determined by the RF system and beam optics. 

Therefore exquisite manipulation of the RF field inside cavities is required. For 

example, both FLASH and the E-XFEL require a stability in the amplitude and 

phase of RF field within 0.01% and 0.01
°
 respectively [2]. 

Klystrons are used to provide power to the cavities in ten MWs range. At FLASH, 

one klystron feeds 16 SRF cavities while the number is increased to 32 at the 

E-XFEL. The accelerating RF field needs to be precisely controlled in terms of 

amplitude and phase as mentioned. Standard diagnostic techniques ascertain the 

beam phase relative to the RF field by inference in a transient excitation of the 

electron beam. This thesis focuses on determining the phase based on beam-induced 

HOMs or HOMBPhM (Higher Order Modes based Beam Phase Monitor) in short. 

The monitor, for the first time, enables us to make an online direct measurement of 

the beam phase w.r.t. the accelerating RF field. Extensive studies have been carried 

out to investigate the principle and optimize the performance. Measurements with a 



23 

 

broadband setup at FLASH and the E-XFEL are complemented by simulations. 

Various effects on the final monitor resolution have been quantified.  

Another part of this thesis is concerned with monitoring the beam position based on 

HOMs in SRF accelerating cavities, or HOMBPM (Higher Order Modes based 

Beam Position Monitor). A large number of conventional BPMs (Beam Position 

Monitors) are installed to monitor and control the beam orbit along the accelerator 

so that its performance is optimized. These monitors are based on different 

techniques but all of them rely on the coupling between the electron beam and 

specially designed ‘pickups’ [5]. The HOMBPMs can be used to monitor the beam 

position inside each accelerating cavity where other types of BPMs cannot provide 

directly. 

HOMBPMs have been developed for both 1.3 and 3.9 GHz cavities at FLASH in 

the past [6], [7]. Since the SRF cavities and HOM couplers have already been 

developed, these monitors only require associated electronics and algorithms to 

infer the beam position. In this sense, they are economical. However, HOMBPMs at 

FLASH can only work for a short time after calibration. This issue has triggered a 

study on the stability of the system. Efforts were made to understand both the 

physics and technical issues. I also focused on the development of HOMBPMs for 

the E-XFEL. The electronics designed for 1.3 GHz cavities are based on a direct 

sampling technique [8] and this is in contrast with the classical down-conversion 

scheme based on a local oscillator. The HOMBPM and HOMBPhM are integrated 

in the same electronics in order to make the system compact and economical at the 

E-XFEL. 

The HOMBPMs for the 3.9 GHz cavities employ a band of modes, in contrary to a 

single mode for the 1.3 GHz cavities. This is due to the difficulty in filtering a 

single mode as it will be shown in Chapter 4. When several cavities are coupled 

together, the dipole spectra get more complicated. For the E-XFEL, eight 3.9 GHz 

cavities are coupled together in a cryomodule as compared to four at FLASH. 
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Therefore, extensive measurements and simulations [9] of the HOM spectra have 

been carried out for both single and coupled cavities.  

Independent of the instability issues mentioned above, the HOMBPM system can be 

used as a power meter to align the electron beam inside the cavities in order to 

minimise the transverse momentum kicks to the beam caused by wakefields. By 

identifying the beam position inside each cavity with minimal dipole power, the 

relative cavity misalignments inside a module can also be deduced. These 

functionalities add extra value to the HOMBPM system. 

In the following sections of this chapter, I first briefly outline the components of a 

linac-based FEL facility. The E-XFEL and FLASH, where my experiments were 

carried out, are introduced. In the last section, an overview of HOM-based beam 

diagnostic systems is presented. 

1.1. Linac-based SASE Free Electron Lasers 

In a linac-based FEL, electron beams travel in a straight line along the accelerating 

structures. Compared with the circular accelerators, they do not suffer from energy 

loss due to synchrotron radiation, and the longitudinal emittance is thus not limited 

by the radiation process. This fact is essential for the lasing process [10]. The 

driving force behind the development of light sources is the optimisation of their 

brilliance (or spectral brightness), a figure of merit for many experiments. For a 

linac-based FEL, the brilliance is many orders of magnitudes higher than for 

synchrotron radiation sources. 

A linac-based FEL facility generally consists of three main parts (see Figure 1.1): a 

particle source which provides free electrons, a linac which accelerates the electrons 

by converting energy from a klystron into electron beam energy, and an undulator 

section which transfers the energy from the energetic electrons to photons beams. It 

is very difficult to directly obtain from the source the high electron beam peak 
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current (kA) required for the FEL process therefore bunch compression schemes are 

implemented. 

 

Figure 1.1 Main components of a linac-based FEL: the electron source, accelerating structures, and 

undulators. (Courtesy of DESY) 

 Electron source – It provides free electrons that are to be accelerated in the 

linac. The electrons are normally obtained through the photoelectric effect. 

Laser pulses are illuminated onto a piece of metal and electrons are emitted. 

The pulses arrive in a periodic manner so that electron bunches are emitted 

periodically. 

 Accelerating structures – They accelerate the electrons and occupy the 

main part of a linac to provide acceleration of electrons. They are usually fed 

with RF power by klystrons. The RF technology is widely used for 

acceleration due to its maturity during 1940s [11]. The RF cavities are either 

normal conducting or superconducting. Superconducting cavities have the 

advantage that they have low wall losses and therefore provide higher 

energy efficiency, at the expenses of high cost and complicated cryogenic 

system. 

 Undulator – After exiting the accelerating section, the electrons are steered 

into an array of permanent magnets called undulators, with alternating poles 

with fixed period. The electrons propagate along a sinusoidal path and 

radiate in a narrow cone in the forward direction. The radiated wavelength is 

governed by the following equation [12]: 
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𝜆𝑢
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𝐾2
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𝐸
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 and  𝐾 =

𝑒𝐵𝑢𝜆𝑢

2𝜋𝑚𝑒𝑐
 ,  

1.1 

 

where 𝜆 is the emitted photon wavelength, 𝜆𝑢 the period of the permanent 

magnets, 𝛾 the Lorentz factor, 𝐾 the undulator parameter, 𝐸 the energy of 

the electrons, 𝑚𝑒 the rest mass of an electron, 𝑐 the speed of light in vacuum 

and 𝐵𝑢 the peak magnetic field on the undulator axis. 

The powerful X-rays are generated in a SASE (Self-Amplified Spontaneous 

Emission) process. The initially emitted photons travel slightly faster than the 

electrons in the undulator. A resonant condition is met when the photon is ahead of 

the electrons by a wavelength 𝜆 after one undulator period 𝜆𝑢. Depending on the 

phase between the electrons and the emitted radiation field, some of electrons are 

accelerated and others decelerated. The net effect is that the electron bunch starts to 

form mirco-bunches. Within each micro-bunch, all the electrons radiate coherently 

and the output power is proportional to the square of the number of electrons. The 

details of the process can be found in [12]. 

From equation 1.1, it is clear that one can vary the photon wavelength by changing 

the energy of electrons that enter the undulator. This property is generally referred 

to as tunability. The fact also indicates that any energy spread in the electron beam 

causes the X-ray impurity. Therefore there is an additional accelerating section at 

both FLASH and the E-XFEL to minimize the energy spread. 

Besides the backbone components mentioned above, other components are required 

in order to achieve the desired figures of merit mentioned at the beginning. These 

components include, but are not limited to, magnets for beam focusing, steering and 

compressing, instrumentation for beam diagnostics etc. 
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1.2.  The E-XFEL and FLASH 

The E-XFEL and FLASH are linac-based FEL facilities that are able to deliver high 

quality X-ray beams for photon experiments. These X-rays benefit a wide range of 

researches spanning physics, chemistry, material science, biology, and 

nanotechnology. 

The backbone structure of each facility follows what I have described in section 1.1, 

namely electron source, accelerating structures, and undulators. Both the E-XFEL 

and FLASH are based on the niobium TESLA cavities [13], working at 1.3 GHz to 

provide acceleration to the electron beam. These cavities will be detailed in 

Chapter 2. 

1.2.1. The European XFEL (E-XFEL) 

The E-XFEL starting from DESY campus is hosted in the north-west of Hamburg 

and Schenefeld. It is a SASE-FEL facility, which achieves laser amplification and 

saturation within a single passage of the electron bunches through long undulator 

sections. 

The facility aims at generating extremely brilliant, ultra-short pulses with spatial 

coherence, within the hard X-ray range. The wavelength of X-rays in this range has 

the potential to explore tiny structures at atomic scales e.g. the structure of 

important molecules [2]. The high photon intensity can be used to create extreme 

conditions e.g. intense X-ray flashes can be used to create extreme pressures and 

temperatures. The ultra-short pulses enable researchers to record various processes 

that happen on a femtosecond time scale. For example, the film of how a molecule 

forms and separates can deepen our understanding of the catalysis, which can lead 

to optimization of production mechanisms and new products. In the field of biology, 

flashes of X-rays allow researcher to investigate the 3D structure of biomolecules, 

cell constituents and viruses. 
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In order to generate X-ray beams with the figures of merit required by various 

experiments, four operating points in the electron energy are fixed: 17.5 GeV, 

14 GeV, 12 GeV, and 8.5 GeV [14]. The bunch charge varies from 20 pC to 1 nC. 

The peak current required is approximately 5 kA and the normalized RMS 

emittance is between 0.3 and 1 mm·mrad depending on the bunch charge [14]. 

Some of the main parameters of electron and photon beams are summarized in 

Table 1-1. 

Table 1-1 Electron and photon beam parameters at the E-XFEL [15] 

Electron Beam  Photon Beam  

Energy (GeV) 17.5, 14, 12, 8.5 Wavelength (nm) > 0.1 

Bunch charge (nC) 0.02-1 Average single pulse energy (µJ) 10-500 

Bunches / train 1-2700 FWHM pulse duration (fs) 100 

Bunch spacing (µs) 0.2 (4.5 MHz) Peak power (GW) > 20 

Repetition rate (Hz) 10 
Peak brilliance 

[Photons/(s·mrad
2
·mm

2
·0.1%BW)] 

5×10
33

 

Energy spread (MeV) < 1    

The schematic layout of the E-XFEL is shown in Figure 1.2. 

 

Figure 1.2 Layout of the E-XFEL (not to scale). The injector, the main linac, and undulators are shown. 

Three bunch compressors are installed. After the main linac, the electron beam is distributed to three 

undulator sections and then three dumps. Diagnostics components are not shown. The length of the main 

linac and the full facility is approximately 1.7 and 3.4 kilometres respectively. (Courtesy of the E-XFEL) 

The injector which started commissioning in December 2015 hosts, in addition to 

the photoelectric gun, one standard superconducting 1.3 GHz module, one 
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superconducting 3.9 GHz module [16], each with eight cavities,  and a diagnostic 

section. The 3.9 GHz module is used to linearize the energy chirp induced by the 

first accelerating module in the longitudinal phase space [17]. The whole injector is 

45 meters long. 

The linac contains 96 cryomodules with eight TESLA 1.3 GHz cavities inside. Each 

cavity is designed to provide accelerating gradients above 23.6 MV/m. 

Three-hundred-meter long variable gap undulator sections are connected to the end 

of the main linac, where X-rays are produced by the SASE process. 

The E-XFEL operates in the pulsed mode with 10 Hz repetition rate of 

0.6 milliseconds pulse duration. Each pulse contains up to 2700 electron bunches. In 

order to achieve the wavelength of hard X-rays, the required energy of electrons is 

approximately 17.5 GeV.  

1.2.2. FLASH 

FLASH, the world’s first soft X-ray FEL, was originally a test facility for the 

TESLA linear collider project [18] for which the TESLA technology was developed. 

It produces soft X-rays and delivers beam to the photon science user community 

since 2005
3
. The facility has two undulator beamlines [1] and provides two 

experimental halls each with up to six photon beamlines for different experiments. 

In addition, FLASH serves as a pilot facility for the E-XFEL project, a test bed for 

the research on linear collider related superconducting accelerator technology and 

novel plasma acceleration. Many scientific disciplines benefit from this powerful 

soft X-ray source. 

The schematic layout of FLASH is shown in Figure 1.3. The first undulator beam 

line, FLASH1, started operation in 2004, and succeeded in the first lasing in the 

SASE mode at a wavelength of 32 nm. A second beam line, FLASH2, achieved the 

first lasing in August 2014. 

                                                 
3
 In February 2000, the first lasing was observed at 109 nm and the facility was called TTF1 then.  

http://www.xfel.eu/
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Figure 1.3 Layout of FLASH (not to scale) with FLASH1 and FLASH2 undulator beamlines. Magnets, 

diagnostic and other components are not shown. (Courtesy of DESY) 

The electron bunches are produced in a laser driven photon gun. There are seven 

accelerating modules, each of them consisting of eight TESLA cavities working at 

1.3 GHz. There is also one 3.9 GHz module with four cavities to linearize the 

energy chirp that is induced by the first accelerating module in the longitudinal 

phase space [19]. The injector is capable of producing up 800 bunches per pulse. 

The pulse repetition rate is 10 Hz. Two stages of bunch compressing are used at 

electron energies around 150 and 450 MeV respectively in order to achieve the peak 

currents of a few kA required by the SASE process. The energy of the electrons can 

be varied from 350 MeV to 1.25 GeV. The photon radiation is produced in a 

27-m-long undulator with fixed gap and 30-m-long undulator with variable gap at 

FLASH1 and FLASH2 respectively. The typical charge of a bunch is between 

0.08 nC and 1 nC [1]. The main parameters of FLASH are summarized in Table 1-2. 

Both the E-XFEL and FLASH are based on the TESLA cavities for electron beam 

acceleration. As we will see later, when the electron beam is being accelerated, it 

also excites higher order modes. These modes are harmful to the beam quality 

therefore they need to be damped. These higher order modes can also be used for 

beam diagnostic. 

 

 



31 

 

Table 1-2 Electron and photon beam parameters at FLASH [20] 

Electron Beam  Photon Beam  

Energy (MeV) 350-1250 Wavelength (nm) 4-90 

Bunch charge (nC) 0.02-1.2 Average single pulse energy (µJ) 1-600 

Bunches / train 1-800 FWHM pulse duration (fs) < 30-200 

Bunch spacing (µs) 1-25 Peak Power (GW) 1-5 

Repetition rate (Hz) 10 
Peak Brilliance 

[Photons/(s·mrad
2
·mm

2
·0.1%BW)] 

10
28

-10
31

 

Energy spread (MeV) < 1    

1.3. HOM-based Beam Diagnostics for the E-XFEL and FLASH  

Higher order modes are generally unwanted from beam dynamics point of view 

since they dilute the beam quality. They are therefore damped by the specially 

designed HOM couplers. These modes are therefore available at the HOM coupler 

ports and transmitted via RF cables from the tunnel to diagnostic racks. These 

signals serve as the basis for the beam diagnostic system I report in this thesis. 

As it will be discussed in Chapter 5, based on the higher order monopoles in SRF 

cavities, I investigated a monitor which can deliver the beam phase relative to the 

accelerating mode. The proof-of-principle measurements were mentioned in [6]. 

This monitor is, for the first time, able to measure the beam phase relative to the RF 

field directly and for each electron bunch. The monitors are currently being 

developed for 1.3 GHz cavities. Measurements have been carried out both at 

FLASH and the E-XFEL. 

Based on dipole modes, HOMBPMs have been developed in the past for both 

1.3 and 3.9 GHz cavities at FLASH. For these monitors, the calibration issues are 

mainly investigated as it will be discussed in Chapter 6. HOM electronics for the 

E-XFEL 1.3 GHz cavities are currently being developed in collaboration with the 

Warsaw University of Technology (WUT). HOMBPM and HOMBPhM are 
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integrated in the same electronics [8]. The electronics is based on a technique called 

direct sampling. 

The HOMBPM electronics for the 3.9 GHz cavities is under development for the 

E-XFEL [21]. Compared with the 1.3 GHz cavity case, these monitors are more 

complicated in terms of dipole spectra used for beam position extraction. The 

complication is due to the fact that for 3.9 GHz cavities most of the dipole modes 

are above the cut-off of the beam pipe and therefore the cavities are coupled with 

each other. The coupling of cavities makes the dipole spectra dense. In addition, at 

the E-XFEL there are eight cavities as compared to four at FLASH. Therefore 

extensive measurements of the HOM spectra have been carried out in the E-XFEL 

3.9 GHz cavities. The HOMBPM system will use a band of dipole spectra for beam 

position extraction similar to the system at FLASH [7]. 

In order to process the RF signal from HOM couplers, normally three schemes of 

signal processing are used: 1. Down convert the RF signal into an IF (Intermediate 

Frequency) signal and then sample it with an ADC (Analog to Digital Converter). 

The samples can be processed for example with matured DSP (Digital Signal 

Processor) techniques. 2. The RF signal is sampled directly with a fast ADC. The 

samples are then processed with a processor. 3. Up convert the RF signal to the 

optical range so that all the processing can be performed with matured optical 

techniques. The HOM-based beam phase and position monitors developed for 

FLASH and the E-XFEL are based on schemes 1 and 2. 

In summary, the main advantage of the accelerating cavity based beam monitors is 

the low costs. These monitors find their applications when there is a constraint of 

space for other beam monitors as it is the case inside the cryomodules. Also, the 

HOMBPM can be used for beam alignment in order to minimise the transverse 

momentum kick due to wakefields. The relative misalignment of cavities inside a 

cryomodule can also be deduced based on instrumented dipole modes [22]. Last but 

not least, the beam diagnostics presented here is non-invasive to the beam. These 

monitors will be valuable tools for beam diagnostics both at FLASH and the 
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E-XFEL. My contributions mainly lie in three parts: 1. the beam phase 

measurements for 1.3 GHz cavities. With the experimental setup and simulation 

tools developed by me, the performance of such a monitor is investigated. 2. The 

beam position measurements for the 1.3 GHz cavities. For the first time, I proved 

that such a system can be used as beam position monitors with µm resolution over 

several months period at FLASH. A set of beam position prediction algorithms 

developed can be used to the similar system at the E-XFEL. 3. The beam position 

measurements at the 3.9 GHz cavities. This portion of work is mainly focused on 

the measurements and characterization of the HOM spectra of each single cavity 

and the string of eight coupled cavities. Previously no measurements existed for 

eight coupled cavities and no simulations had been performed for a string of eight 

cavities because of the complexity of the structure. 

The thesis is organized in the following way: 

In chapter two, the figures of merit for an RF cavity and the concept of 

superconductivity are introduced first. The concepts of wakefields and impedance 

are presented there. These provide the theoretical basis for the HOM-based beam 

monitors. The working principle of these monitors will then become clear. 

In chapter three, a single chain circuit model focused on one band of higher order 

modes is introduced. It is developed to simulate the beam-excited HOMs for 

1.3 GHz SRF cavities and to facilitate the development of the HOM-based beam 

phase monitors.  

In chapter four, the measurements and characterization of spectra for both 1.3 and 

3.9 GHz cavities are shown for the E-XFEL and FLASH. The spectra measured are 

essential to gain insight into the HOM behaviour in single and coupled cavities. 

In chapter five, the HOM-based beam phase monitor is described based on both 

simulations and experiments. Measurements were made with a broadband setup and 

the results are compared with simulations. 
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In chapter six, the HOM-based beam position monitors are described. The focus 

here is curing drifts in the calibration over time. The influence of the beam 

trajectory angle with respect to the cavity axis is investigated as well. 

Chapter seven summarizes the thesis. Future prospects for these novel HOM-based 

monitors development are also discussed. 
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Chapter 2 - Wakefields and Impedances in SRF Cavities 

Most of the linac of an FEL facility is occupied by accelerating cavities. These 

provide energy to the electron beam through RF fields. In this chapter the SRF 

accelerating technology used for acceleration at FLASH and the E-XFEL will be 

introduced, as well as the main figures of merit used to characterize these cavities. 

These figures of merit are equally applicable to NC (Normal Conducting) 

accelerating structures. TESLA and the third harmonic cavities, which are used by 

both FLASH and the E-XFEL, will be used to illustrate the discussion in section 2.1. 

These cavities form a large part of the hardware that are used for beam phase and 

position measurements as it will be detailed in Chapters 5 and 6 respectively. In 

section 2.2, the concepts of wakefield, HOM, wake potential, and impedance are 

introduced.  

2.1. Superconducting Radio Frequency Cavities 

In the context of accelerator physics or RF engineering, a cavity is a hollow space 

bounded with metal. The geometry and size of a cavity determines the field profiles 

and frequencies of the resonances that can be excited. Cavities with metal walls 

made of superconducting material are referred to as superconducting cavities. 

2.1.1. Superconductivity 

The discovery of superconductivity in 1911 by H. Onnes [23] led to the 

development of its technological use in many fields, including particle accelerators. 

Superconductors are used mainly for accelerating cavities and magnets with the 

goal to reduce the power consumption. For an accelerating cavity, the maximum 

accelerating gradient is limited by the critical magnetic field. Taking the niobium 

TESLA cavity as an example, the critical magnetic field is approximately 

200-240 mT [13] and this implies a maximum accelerating gradient of 

approximately 50-60 MV/m [13], [24]. However, the typical accelerating gradient 

for TESLA cavities in operation is significantly lower as it is ~25 MV/m. High 

gradient, no more than 50 MV/m, has been achieved for single cell re-entrant and 
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low loss cavities [25], [26]. The maximum gradient achieved for a nine cell cavity 

(for International Linear Collider) is approximately 40 MV/m [27]. 

In contrast to the DC case, losses are caused by the RF field, which can penetrate 

into the surface layer of the superconductor and induce oscillations of the electrons 

that are not bounded to the Cooper pairs [24]. The number of these unpaired 

electrons depends on the temperature. Therefore, in order to minimize it, extremely 

low temperatures - in the vicinity of the absolute zero temperature - are required. 

The surface resistance, 𝑅𝑠(𝑇, 𝜔) = 𝑅𝐵𝐶𝑆(𝑇, 𝜔) + 𝑅𝑖 , does not vanish at 𝑇 = 0 𝐾, 

but has a temperature-independent residual resistance 𝑅𝑖.  The 

temperature-dependent part, 𝑅𝐵𝐶𝑆(𝑇), can be written as [24]: 

 𝑅𝐵𝐶𝑆(𝑇, 𝜔) ∝
𝜔2

𝑇
𝑒(−

1.76𝑇𝑐
𝑇

) , 
2.1 

 

where 𝑇𝑐  is the critical temperature of the superconductor and  is the angular 

frequency. For cavities made of niobium, 𝑅𝑠 is in the range of tens of nΩ at 2 K for 

a 1.3 GHz field. 

There is also another contribution to the surface resistance, which is due to the 

trapped DC magnetic field resulting from insufficient shielding of external DC 

magnetic field [28]. At 1.3 GHz the surface resistance amounts to 3.5 nΩ/µT for 

niobium. Taking the magnetic field at the earth surface into account, the surface 

resistance is up to several tens of nΩ, therefore the quality factor, as it will be 

discussed in section 2.1.3, drops by one order of magnitude. Consequently, a better 

cavity performance can be obtained by shielding the cavity from external magnetic 

fields [13]. 

2.1.2. Electromagnetic modes in a cavity 

The electromagnetic field can be expanded in terms of modes in an enclosed cavity 

by Condon method [29]. Each mode has a distinct frequency (in the case of 
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non-degeneracy) and a field distribution. For a cylindrically symmetric cavity, the 

time-harmonic electric and magnetic fields 𝑬 and 𝑩 can be written in cylindrical 

coordinates (𝑟, 𝜃, 𝑧) in terms of phasors: 

 𝑬(𝑟, 𝜃, 𝑧, 𝑡) =  �̃�(𝑟, 𝜃, 𝑧)𝑒−𝑗𝜔𝑡 , 2.2 

 

 𝑩(𝑟, 𝜃, 𝑧, 𝑡) =  �̃�(𝑟, 𝜃, 𝑧)𝑒−𝑗𝜔𝑡 . 2.3 

 

Provided the cavity is axially symmetric, �̃�(𝑟, 𝜃, 𝑧) and �̃�(𝑟, 𝜃, 𝑧) can be expanded 

as: 

�̃�(𝑟, 𝜃, 𝑧)  =  ∑ �̅�(𝑚)

∞

𝑚=0

                     

= ∑(𝐸𝑟
(𝑚)(𝑟, 𝑧) cos(𝑚𝜃) 𝒆𝒓 + 𝐸𝜃

(𝑚)(𝑟, 𝑧) sin(𝑚𝜃) 𝒆𝜽

∞

𝑚=0

 

                                      +𝐸𝑧
(𝑚)(𝑟, 𝑧) cos(𝑚𝜃) 𝒆𝒛), 

2.4 

 

�̃�(𝑟, 𝜃, 𝑧)  =  ∑ �̅�(𝑚)

∞

𝑚=0

= ∑(𝐵𝑟
(𝑚)(𝑟, 𝑧) sin(𝑚𝜃) 𝒆𝒓 + 𝐵𝜃

(𝑚)(𝑟, 𝑧) cos(𝑚𝜃) 𝒆𝜽 

∞

𝑚=0

 

                                       +𝐵𝑧
(𝑚)(𝑟, 𝑧) sin(𝑚𝜃) 𝒆𝒛), 

2.5 

 

where 𝑚 = 0, 1, 2, …, corresponds to the monopole, dipole, quadrupole modes, etc., 

𝒆𝒓, 𝒆𝜽 , and 𝒆𝒛  are the unit vectors in the 𝑟, 𝜃 and 𝑧 direction respectively. These 

modes correspond to one polarization, while the other polarization is obtained by 

rotating the (𝑟, 𝜃) plane by 
𝜋

2𝑚
. 

2.1.3. Figures of merit of a cavity 

Due to the finite resistance, a cavity consumes power whether normal conducting or 

superconducting. However, the power consumption is of course much lower for the 



38 

latter. For mode 𝑚 , the time averaged stored energy 𝑈(𝑚) within a cavity volume 𝑉 

consists of the energy stored in the electric field and in the magnetic field: 

 𝑈(𝑚) =
1

4
(휀0 ∫|�̅�(𝑚)|

2

𝑉

𝑑𝑉 + 𝜇0 ∫|�̅�(𝑚)|
2

𝑉

𝑑𝑉). 
2.6 

 

Since the time averaged energy in the electric field equals that in the magnetic field, 

the total energy is given by: 

 𝑈(𝑚) =
1

2
휀0 ∫|�̅�(𝑚)|

2

𝑉

𝑑𝑉 =  
1

2
𝜇0 ∫|�̅�(𝑚)|

2

𝑉

𝑑𝑉. 
2.7 

 

The average dissipated power 𝑃𝑠𝑢𝑟
(𝑚)

 due to the surface resistance 𝑅𝑠 is given by the 

integral of the square of the amplitude of magnetic field �̅�(𝑚) over the interior 

cavity surface
4
 𝑆: 

 𝑃𝑠𝑢𝑟
(𝑚)

=
1

2
𝑅𝑠 ∫|�̅�(𝑚)|

2

𝑆

𝑑𝑆. 
2.8 

 

The unloaded quality factor of mode 𝑚 is defined to quantify the power dissipated 

in the cavity walls as: 

 𝑄0
(𝑚)

= 
𝜔𝑟𝑈

(𝑚)

𝑃𝑠𝑢𝑟
(𝑚)

, 
2.9 

 

                                                 
4
 Here I have assumed that the surface resistance does not vary over the cavity surface. 
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where 𝜔𝑟 is the angular frequency of mode 𝑚. By taking into account the power 

loss through couplers and beam pipes, 𝑃𝑒𝑥𝑡
(𝑚)

, the external quality factor, 𝑄𝑒𝑥𝑡
(𝑚)

, can 

be defined as: 

 𝑄𝑒𝑥𝑡
(𝑚)

= 
𝜔𝑈(𝑚)

𝑃𝑒𝑥𝑡
(𝑚)

. 
2.10 

 

The loaded quality factor 𝑄𝐿
(𝑚)

 can be defined by considering both the power loss 

to the walls and the power loss due to the external coupling as: 

 𝑄𝐿
(𝑚)

 =  
𝜔𝑈(𝑚)

𝑃𝑒𝑥𝑡
(𝑚)

+ 𝑃𝑠𝑢𝑟
(𝑚)

.  
2.11 

 

𝑄𝐿
(𝑚)

 is related to the external and unloaded quality factors by:  

 
1

𝑄𝐿
(𝑚)

=
1

𝑄𝑒𝑥𝑡
(𝑚)

+ 
1

𝑄0
(𝑚)

 . 2.12 

 

The shunt impedance 𝑅𝑠ℎ is defined as the ratio between the longitudinal voltage 

of mode m, 𝑉∥
(𝑚)

, and the dissipated power 𝑃𝑠𝑢𝑟
(𝑚)

: 

 𝑅𝑠ℎ
(𝑚)

= 
|𝑉∥

(𝑚)
|
2

𝑃𝑠𝑢𝑟
(𝑚)

= 
|𝑉∥

(𝑚)
|
2

𝑄0
(𝑚)

𝜔𝑈(𝑚)
 . 

2.13 
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The longitudinal voltage 𝑉∥
(𝑚)

 at a radial offset 𝑟 is defined as the magnitude of the 

line integral of the electric field seen by an ultra-relativistic particle in the 𝑧 

direction: 

 𝑉∥
(𝑚)(𝑟) = |∫𝐸𝑧

(𝑚)(𝑟, 𝑧) cos(𝑚𝜃) 𝑒−𝑖(𝑘𝑧−𝜙)𝑑𝑧|, 
2.14 

 

where 𝑘 = 𝜔𝑟/𝑐 is the wave number and 𝜙 an arbitrary phase. 

By normalizing the shunt impedance to 𝑄0
(𝑚)

, a new parameter called 𝑅/𝑄 (R over 

Q), (
𝑅

𝑄
)
(𝑚)

, is defined as: 

 (
𝑅

𝑄
)
(𝑚)

 =
1

𝑟2𝑚
 
|𝑉∥

(𝑚)
(𝑟)|

2

2𝜔𝑟𝑈
(𝑚)

. 
2.15 

 

A factor of 1/2 is added due to the conversion from peak to RMS voltage. Since 

𝑉∥
(𝑚)(𝑟) ∝ 𝑟𝑚  [30], the voltage squared is normalized with 𝑟2𝑚 . For monopole 

modes, 𝑅/𝑄 has the unit of [𝛺], while a dipole mode [𝛺 ⋅ 𝑐𝑚−2 or 𝛺 ⋅ 𝑚−2]. 

The shunt impedance 𝑅𝑠ℎ  should be large for the accelerating mode so that the 

dissipated power is minimized. The 𝑅/𝑄 determines the level of mode excitation by 

a beam travelling through the cavity. The higher 𝑅/𝑄, which is only dependent on 

the cavity shape, the stronger the beam-cavity interaction is. The 𝑅/𝑄  needs to be 

small for HOMs because these tend to dilute the beam quality [3]. 

2.1.4. TESLA and third harmonic cavities 

There are two types of accelerating cavities installed in FLASH and the E-XFEL: 

TESLA and third harmonic cavities. The acceleration is solely provided by the 
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TESLA cavities working at 1.3 GHz [13]. The third harmonic cavities can be 

regarded as a scaled down version of the TESLA cavity as shown in Figure 2.1. The 

iris size and the beam pipe diameter are not directly scaled by one-third, but they are 

larger in order to increase the damping of the HOMs. These have further 

consequence on the HOM spectrum as it will be shown in Chapter 4. 

Both the TESLA and third harmonic cavities are made of niobium and have nine 

cells. The mid-cell length is synchronized with the half period of the accelerating 

mode, while the end cells have slightly different shape to have equal field 

amplitudes and prevent the trapping of HOMs [13] with higher 𝑅/𝑄. Each cavity 

has a fundamental power coupler to input the RF power from a klystron and a field 

probe to detect the accelerating field for calibration and control used in the LLRF 

system as it will be discussed in Chapter 5. Two additional couplers are installed to 

damp the beam-excited HOMs [13]. The whole cavity is cooled to below 2 K with 

superfluid helium to operate in the superconducting state. 

 

Figure 2.1 Picture of a nine cell niobium superconducting TESLA cavity and a third harmonic cavity. 

They are 1 meter and 0.35 meters long respectively. Both are equipped with two HOM couplers, one 

fundamental power coupler and one RF field pickup. (Courtesy of DESY) 

The parametric description of the half-cell can be found in [13] for the TESLA 

cavity and in [31] for the third harmonic cavity. The parametric contour of the 

TESLA cavity is reproduced in Figure 2.2. The associated parameters are 

summarized in Table 2-1. The two end cells have slightly different geometry. 
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Figure 2.2 Parametric contour of a half-cell of the TESLA cavity 

Table 2-1 TESLA half-cell shape parameters (all dimensions in mm) 

 Midcup Endcup 1 Endcup 2 

Equator radius Requator 103.3 103.3 103.3 

Iris radius Riris 35 39 39 

Radius of circular arc Rc 42.0 40.3 42 

Horizontal half axis a 12 10 9 

Vertical half axis b 19 13.5 12.8 

Half-cell length 𝐿𝑐𝑒𝑙𝑙 57.5 56.0 57.0 

A schematic drawing of a TESLA cavity is shown in Figure 2.3. 

 
 

Figure 2.3 (a) Drawing of the TESLA cavity with one power coupler, one pickup probe and two HOM 

couplers. (b) The two HOM couplers span an angle of 115°. By convention, the HOM coupler close to the 

power coupler is called HOM coupler 1 or HOM1 and the other HOM2. (Courtesy of DESY) 

(a) (b) 
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The accelerating gradient of TESLA cavity is designed to be 23.6 MV/m with a 

unloaded quality factor 10
10 

[32]. The 𝑅/𝑄 for the fundamental mode is 518 Ω [13]. 

Eight cavities, and two quadrupole magnets are placed in a cryomodule [32]. The 

E-XFEL contains 97 such cryomodules while FLASH has seven. 

In contrast, a third harmonic cavity works with a fundamental frequency of 3.9 GHz. 

The designed accelerating gradient is 14 MV/m [33]. The 𝑅/𝑄 for the fundamental 

mode is 375 Ω. Eight cavities are organized in a special cryomodule which is used 

for linearization of the longitudinal phase space of the electron beam [16] at the 

E-XFEL. 

2.2. Wakefields and Impedances 

Wakefields are a consequence of the beam-cavity interaction. They can be described 

as a summation of HOMs in time domain. Equivalently, these fields can also be 

described in frequency domain by the impedances. 

2.2.1.  Wakefields 

When a bunch of relativistic electrons traverses a cavity, it excites wakefields. 

These fields can exert forces on the bunch itself and on the following bunches. 

Therefore one can distinguish between short-range and long-range wakefields. 

These wakefields can be calculated based on the wake functions from a point charge 

(or delta function charge distribution) by convolution with the bunch charge 

distribution [34]. 

To illustrate the wakefields some of the main aspects will be investigated. Figure 

2.4 shows a leading charge 𝑞1 with cylindrical coordinates (𝑟1, 𝜃1, 𝑧1) traveling in 

the 𝒆𝒛 direction, followed by a trailing charge 𝑞2 with coordinates (𝑟2, 𝜃2, 𝑧2) at a 

distance 𝑠  behind  𝑞1 . The Lorentz force experienced by 𝑞2  due to the fields 

generated by the leading charge 𝑞1can be calculated as in equation 2.16: 
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Figure 2.4 A point charge 𝒒𝟏 (leading charge) with coordinates (𝒓𝟏, 𝜽𝟏, 𝒛𝟏) and a trailing charge 𝒒𝟐 with 

coordinates  (𝒓𝟐, 𝜽𝟐, 𝒛𝟐)  travel at speed of light c along the 𝒆𝒛  axis. The accelerating structure is 

considered to be cylindrical symmetric around this axis. The distance between the two charges is 𝒔 = 𝐳𝟏 −
𝒛𝟐 [35]. 

 𝑭 = 
𝑑𝒑

𝑑𝑡
=  𝑞2(𝑬 + 𝑐𝒆𝒛 × 𝑩).  

2.16 

 

The wake potential is defined as the integral of the Lorentz force experienced by a 

unit of trailing charge 𝑞2 along the length 𝐿 of the structure due to a unit of leading 

charge 𝑞1: 

𝑾(𝑟1, 𝜃1, 𝑟2, 𝜃2, 𝑠) =  
1

𝑞1𝑞2
∫ 𝑭𝑑𝑧

𝐿

0

= 
1

𝑞1
∫ 𝑑𝑧(𝑬 + 𝑐𝒆𝒛 × 𝑩)𝑡=(𝑧+𝑠)/𝑐

𝐿

0

.  
2.17 

 

For ultra-relativistic charges, causality (no signal can travel faster than the speed of 

light) requires that the wake potential is 0 for 𝑠 <  0 (𝑞2 ahead of 𝑞1). The wake 

potential can be decomposed into a longitudinal part 𝑾∥ (along 𝒆𝒛 direction) and a 

transverse part 𝑾⊥  (in the r-𝜽  plane). The two components are related by the 

Panofsky-Wenzel theorem [36]: 

 
𝜕

𝜕𝑠
𝑾⊥(𝑟1, 𝜃1, 𝑟2, 𝜃2, 𝑠) =  −𝛁⊥𝑾∥(𝑟1, 𝜃1, 𝑟2, 𝜃2, 𝑠) .  2.18 
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Equation 2.18 indicates that the transverse wake potential can be calculated by 

integration of the transverse gradient of the longitudinal wake potential. It should be 

noted that the theorem applies to a cavity with arbitrary geometry and it does not 

require cylindrical symmetry. 

Provided that the cavity exhibits cylindrical symmetry, the longitudinal and 

transverse wake potentials can be written as a multipole expansion [30]: 

𝑾∥(𝑟1, 𝜃1, 𝑟2, 𝜃2, 𝑠) =  ∑ 𝑟1
𝑚

∞

𝑚 = 0

𝑟2
𝑚𝑊∥

(𝑚)(𝑠) cos(𝑚𝜃1 − 𝑚𝜃2) 𝒆𝒛, 
2.19 

 

𝑾⊥(𝑟1, 𝜃1, 𝑟2, 𝜃2, 𝑠)

=  ∑ 𝑚𝑟1
𝑚

∞

𝑚 = 1

𝑟2
𝑚−1𝑊⊥

(𝑚)(𝑠)[cos(𝑚𝜃1 − 𝑚𝜃2)𝒆𝒓

+ sin(𝑚𝜃1 − 𝑚𝜃2) 𝒆𝜽], 

2.20 

 

where 𝑊∥
(𝑚)(𝑠) and 𝑊⊥

(𝑚)(𝑠)  are the 𝑚 -pole longitudinal and transverse wake 

potential respectively. They are related by: 

 𝑊⊥
(𝑚)(𝑠) =  −∫ 𝑑𝑠′

𝑠

−∞

𝑊∥
(𝑚)(𝑠′),  for 𝑚 > 0. 

2.21 

 

The consequence of equation 2.20 is that there is no transverse monopole wake 

potential. The dipole wake potential does not depend on the offset of the test 

charge 𝑞2, but is proportional to the offset 𝑟1of the leading charge 𝑞1. 
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The longitudinal and transverse 𝑚-pole wake potentials can be written as a sum of 

𝑚-pole modes [4]: 

 𝑊∥
(𝑚)(𝑠) =  −∑𝜔𝑚𝑛 (

𝑅

𝑄
)
(𝑚𝑛)

𝑛

cos (
𝜔𝑚𝑛𝑠

𝑐
)𝐻(𝑠), 

2.22 

 

 𝑊⊥
(𝑚)(𝑠) =  𝑐 ∑(

𝑅

𝑄
)
(𝑚𝑛)

𝑛

sin (
𝜔𝑚𝑛𝑠

𝑐
)𝐻(𝑠),𝑚 > 0,  

2.23 

 

where (
𝑅

𝑄
)
(𝑚𝑛)

and 𝜔𝑚𝑛 are the 𝑅/𝑄 and angular frequency of the 𝑛𝑡ℎ 𝑚-pole mode 

respectively. 𝐻(𝑠) is the Heaviside step function (derived in Appendix C): 

 𝐻(𝑠) = {

1 𝑠 > 0 ,
1

2
𝑠 = 0 ,

0 𝑠 < 0 .

 
2.24 

 

In a well-designed linac the beam travels with a small offset as compared to the 

radius of the beam pipe. In this case, the longitudinal wake potential is dominated 

by monopole modes, and the transverse one by dipole modes [35]. Therefore, for 

small beam offsets one can approximate: 
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𝑾∥ ≅ −∑𝜔0𝑛 (
𝑅

𝑄
)
(0𝑛)

𝑛

cos (
𝜔0𝑛𝑠

𝑐
)𝐻(𝑠)𝒆𝒛, 

2.25 

 

𝑾⊥ ≅ 𝑟1𝑐 ∑(
𝑅

𝑄
)
(1𝑛)

𝑛

sin (
𝜔1𝑛𝑠

𝑐
)𝐻(𝑠) [cos(𝜃1 − 𝜃2)𝒆𝒓

+ sin(𝜃1 − 𝜃2) 𝒆𝜽 ]. 

2.26 

 

For small beam offsets, the longitudinal wake potential is approximately 

independent of the beam offset of the leading bunch, while the transverse wake 

potential has an approximately linear dependence of the beam offset of the leading 

bunch. Also, the monopole mode has no azimuthal dependence on the transverse 

position. This feature of monopole modes enables the measurements of the beam 

phase with respect to the accelerating RF field inside the cavity. The details will be 

discussed in Chapter 5. For dipole modes, the linear dependence on the beam offset 

allows us to measure the beam position, which is the topic of Chapter 6. 

2.2.2. Impedances 

The wake potential can be calculated in time domain as in section 2.2.1. It can also 

be equivalently expressed in frequency domain, with the help of the Fourier 

transform. 

The longitudinal and transverse impedances can be defined by the Fourier transform 

of the longitudinal and transverse wake functions respectively as: 
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𝑍∥(𝑟1, 𝜃1, 𝑟2, 𝜃2, 𝜔) =  ∫ 𝑑𝑡 [𝑾∥(𝑟1, 𝜃1, 𝑟2, 𝜃2, 𝑠)𝑒
−𝑗𝜔𝑡]𝑡=(𝑧+𝑠)/𝑐

∞

−∞

 , 
2.27 

 

𝑍⊥(𝑟1, 𝜃1, 𝑟2, 𝜃2, 𝜔) =  𝑗 ∫ 𝑑𝑡 [𝑾⊥(𝑟1, 𝜃1, 𝑟2, 𝜃2, 𝑠)𝑒
−𝑗𝜔𝑡]𝑡=(𝑧+𝑠)/𝑐

∞

−∞
 . 

2.28 

 

The impedance 𝑍∥, in general, is a complex quantity and can be decomposed into a 

real part 𝑍𝑟  and an imaginary part 𝑍𝑖: 

 𝑍∥(𝑟1, 𝜃1, 𝑟2, 𝜃2, 𝜔) = 𝑍𝑟(𝑟1, 𝜃1, 𝑟2, 𝜃2, 𝜔) + 𝑗𝑍𝑖(𝑟1, 𝜃1, 𝑟2, 𝜃2, 𝜔) . 
2.29 

 

𝑍𝑟(𝜔) and 𝑍𝑖(𝜔) are even and odd functions of 𝜔 respectively. 

∫ 𝑍𝑟(𝑟1, 𝜃1, 𝑟2, 𝜃2, 𝜔) cos(𝜔𝑡) 𝑑𝜔
∞

−∞

= ∫ 𝑍𝑖(𝑟1, 𝜃1, 𝑟2, 𝜃2, 𝜔) sin(𝜔𝑡) 𝑑𝜔.
∞

−∞

 

2.30 

 

The transverse and longitudinal impedances are related by equation 2.31 following 

from the Panofsky-Wenzel theorem described in section 2.2.1: 

 𝑍⊥(𝑟1, 𝜃1, 𝑟2, 𝜃2, 𝜔) =  
𝑐

𝜔
∇⊥𝑍∥(𝑟1, 𝜃1, 𝑟2, 𝜃2, 𝜔) . 

2.31 

 

In summary, metallic cavities based on superconducting technology can be used to 

accelerate electron beams. The figures of merit of a RF cavity are generally used to 
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compare different cavity designs in accelerator physics. The accelerating gradient of 

a cavity is designed to be as high as possible to reduce the linac’s length. The 

maximum achievable accelerating gradient is limited by the surface magnetic field 

for superconducting cavities. 

The sum of beam-excited HOMs in an accelerating cavity constitutes the wakefield. 

The eigenmodes can be found by using computer codes like CST [37] based on 

finite element method. Wakefields can be also directly probed by beam-based 

experimental setups such as ASSET [38] or be measured by a bench-top wire 

measurement [39]. When the beam travels close to the cavity axis, monopole and 

dipole modes dominate the longitudinal and transverse wakefields respectively. 

Under such an approximation, longitudinal wakefields have no dependence on the 

offset of the excitation bunch (leading bunch), while transverse wakefields depend 

linearly on it. 

Each mode as described in section 2.1.2 can be indexed as either 𝑇𝑀𝑚𝑛𝑝 or 𝑇𝐸𝑚𝑛𝑝 

according to the field variation in all three dimensions (𝜃, 𝑟, 𝑧): 𝑚 (𝑚 = 0, 1, 2, 3, …) 

is the number of full period variations in 𝜃 of the field components. The subscript 

𝑛 (𝑛 = 1, 2, 3, …) is the number of zeros of the axial field component in the radial 

direction in the range 0 < 𝑟 ≤ 𝑅𝑐  where 𝑅𝑐  is the cell radius. The subscript 𝑝 

(𝑝 = 0, 1, 2, 3, …) is the number of half period variations in 𝒆𝒛 of the fields [11]. 

These modes are grouped into different passbands and obey the dispersion relation 

of an infinite periodic structure. The field distribution of these modes can be 

measured with a bead pulling technique [24]. 

In the next chapter, a circuit model is used to study the modes from the TM010 and 

TM011 bands of the TESLA cavity. A single mode can be studied by a resonant 

circuit. A chain of coupled resonant circuits can be used to represent a band of 

modes. The mode excitation by a beam is then simulated with this coupled circuit 

model.
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Chapter 3 - A Circuit Model of Higher Order Modes in the Cavity 

RLC
5
 circuits are widely used in filter synthesis [40] and various other applications. 

RF cavities driven by a beam or klystron can also make use of these circuits through 

carefully designed models [41], [42]. The intrinsic properties of the cavities such as 

their eigenmodes can be calculated as well [43], [44]. 

The coupled circuit model was originally applied to multi-cell accelerating cavities 

by D. Nagle, E. Knapp and B. Knapp [43]. The circuit model is focused on a 

particular band of modes. For a monopole band, in general a single chain of coupled 

circuit is sufficient [45], while for dipole bands, two chains of coupled RLC circuits 

are required to represent two coupled bands (Appendix D). Therefore the 

computation is time and computer memory efficient. The advantage is evident when 

the structure is highly complicated [46]. 

The coupled circuit model is presented in section 3.1. The dispersion curve can be 

obtained from an infinite periodic coupled circuit. The infinite circuit is then 

truncated to find the mode frequencies and their distribution. In section 3.2, the 

truncated circuit is driven with beam. The HOM response can be studied thereof. 

The model is used to aid the HOMBPhM development in Chapter 5. 

3.1. Single Chain Circuit Model 

Each cell, in principle, can support an infinite number of modes. These modes can 

be represented by simple RLC circuits. When cells are coupled together, each mode 

from the single cell is split into a number of normal modes depending on the 

number of coupled cells. The coupling between the cells can be either inductive or 

capacitive [46]. 

                                                 
5
 RLC represents Resistor, Inductor and Capacitor.  
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3.1.1. Infinite periodic coupled circuit 

In order to obtain the dispersion relation of a monopole band, an infinite periodic 

coupled circuit is used. The model is shown in Figure 3.1. Each circuit unit 𝑛 

consists of two inductors 2𝐿𝑛, one capacitor 𝐶𝑛 and one conductor 𝐺𝑛 . A current 

source 𝐼𝑛  is included to represent a beam excitation. Adjacent circuit units are 

coupled magnetically via the mutual inductances 𝑀𝑛−1,𝑛 and 𝑀𝑛,𝑛+1, 

 𝑀𝑛−1,𝑛 = 𝜅𝑛−1,𝑛√2𝐿𝑛−1 × 2𝐿𝑛,  𝑀𝑛,𝑛+1 = 𝜅𝑛,𝑛+1√2𝐿𝑛 × 2𝐿𝑛+1. 
3.1 

 

where 𝜅𝑛−1,𝑛 is a coupling constant between cells 𝑛 − 1 and 𝑛. 

 

Figure 3.1 Chain of coupled parallel RLC circuits. The conductance G represents the losses in each cell. 

The circuit has an infinite number of identical units, each representing a cell in a multi-cell cavity. 

The parameters 𝐿𝑛, 𝐶𝑛, and 𝐺𝑛 are related to the parameters of a RF cavity by [41]: 

 
Inductance: 𝐿𝑛 = 

(
𝑅
𝑄)

(𝑛)

𝜔𝑛
, 

3.2 

 

 
Capacitance: 𝐶𝑛 = 

1

(
𝑅
𝑄)

(𝑛)

𝜔𝑛

,  3.3 
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Conductance: 𝐺𝑛 = 

1

(
𝑅
𝑄)

(𝑛)

𝑄0
(𝑛)

, 3.4 

 

From equations 3.2 and 3.3, it is clear that: 

 𝜔𝑛 =
1

√𝐿𝑛𝐶𝑛

, 3.5 

 

 (
𝑅

𝑄
)

(𝑛)

= √
𝐿𝑛

𝐶𝑛
 . 

3.6 

 

The circuit can be analyzed based on Kirchhoff’s law in the time domain or in the 

frequency domain. The dynamics of cell 𝑛 are described by equation 3.7 as derived 

in [41]: 

 
1

𝜔𝑛
2

𝑑2𝑣𝑛

𝑑𝑡2
+

1

𝑄𝑛

1

𝜔𝑛

𝑑𝑣𝑛

𝑑𝑡
+ 𝑣𝑛 =

1

2
𝜅(𝑣𝑛−1 + 𝑣𝑛+1) +

1

𝜔𝑛

𝑑𝑖𝑛
𝑑𝑡

, 
3.7 

 

where I assumed 𝜅𝑛−1,𝑛 =  𝜅𝑛,𝑛+1 ≡ 𝜅, the 𝑣𝑛 and 𝑖𝑛 are given by, 

 𝑣𝑛 = √𝐶𝑛𝑉𝑛 , 𝑖𝑛 = √𝐿𝑛𝐼𝑛. 
3.8 
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Imposing the condition 𝑖𝑛 = 0 (no beam), 𝑄𝑛 is infinite (lossless), and the Floquet 

periodic condition [11] 𝑣𝑛 = 𝑣𝑛−1𝑒
𝑗𝜙 , the analytic dispersion relation can be 

obtained: 

 𝜔2 = 𝜔𝑟
2(1 − 𝜅 cos𝜙), 

3.9 

 

where 𝜔𝑟 is the resonant frequency of a mode in a single cell, and 𝜙 the phase 

advance per cell. The coupling term 𝜅 can be obtained either from the fitting of data 

from single cell simulation or from the 0 and π mode of each band, 

 𝜔𝑟 = √
2𝜔0

2𝜔𝜋
2

𝜔0
2+𝜔𝜋

2
= 𝜔𝜋

2
, 

3.10 

 

 𝜅 =  
 𝜔𝜋

2 − 𝜔0
2

𝜔0
2 + 𝜔𝜋

2
. 

3.11 

 

The fractional bandwidth is defined as, 

 𝛿𝜔 ≈ 𝜔𝑟𝜅. 
3.12 

 

A number of quantities can be calculated from the circuit model and are 

summarized in Figure 3.2. In a TESLA cavity, the TM011 band shows group 

velocity 𝑣𝑔 < 0, while the TM010 and TE111 bands exhibit 𝑣𝑔 > 0. 
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Figure 3.2 Dispersion curve for forward wave; the phase and group velocities can be calculated from the 

curve. The phase advance 𝝓 per cell equals the wave number 𝒌 times the cell length 𝑳𝒄𝒆𝒍𝒍. 

 

3.1.2. Coupling from the nearest neighbour and beyond 

If only the nearest neighbour coupling (coupling between unit 𝑛 and 𝑛 − 1 or 𝑛 + 1) 

is considered, as depicted in Figure 3.1, the dispersion relation is given by 

equation 3.9. If the next nearest neighbour coupling (coupling between unit 𝑛 and 

𝑛 − 2 or 𝑛 + 2) is included, the dynamics of cell 𝑛 can be extended as: 

1

𝜔𝑛
2

𝑑2𝑣𝑛

𝑑𝑡2
+ 𝑣𝑛 =

1

2
𝜅1(𝑣𝑛−1 + 𝑣𝑛+1) +

1

2
𝜅2(𝑣𝑛−2 + 𝑣𝑛+2) +

1

𝜔𝑛

𝑑𝑖𝑛
𝑑𝑡

, 
3.13 

 

where 𝜅1 is the nearest coupling and 𝜅2 the next nearest neighbour coupling. The 

second term in equation 3.7 is negligible due to the small losses in SRF cavities. 

This equation can be extended in a straightforward manner if more coupling terms 
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are considered. If 𝑁 coupling terms are taken into account, equation 3.13 can be 

extended to: 

 
1

𝜔𝑛
2

𝑑2𝑣𝑛

𝑑𝑡2
+ 𝑣𝑛 =

1

2
∑𝜅𝑖(𝑣𝑛−𝑖 + 𝑣𝑛+𝑖)

𝑁

𝑖=1

. 
3.14 

 

The dispersion relation again can be obtained by applying Floquet periodic 

condition as: 

 𝜔2 = 𝜔𝑟
2 (1 − ∑𝜅𝑖cos (𝑖𝜙)

𝑁

𝑖=1

). 
3.15 

 

3.1.3. Finite coupled circuit 

The dispersion relation describes the eigenmode solution to an infinitely periodic 

structure. For a nine cell TESLA cavity, the infinite model has to be truncated by 

specifying the boundary conditions as it will be discussed in the next two sections. 

Equations 3.13 (for 𝑛  = 1…9) form a set of nine homogeneous differential 

equations that can be written in matrix form as: 

 𝑯 ∙ 𝒗 =  𝜔2𝒗, 
3.16 

 

where 𝑯 contains the information about the system, and 𝒗 is its eigen vector. The 

angular frequency 𝜔 serves as the eigen values of the system. An example of matrix 

𝑯 for the case 𝑁 =  1 is shown in equation 3.17. The coupling term 𝜅𝑐 represents 

the coupling strength to the beam pipes. 
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 𝑯 =

[
 
 
 
 
1 + 𝜅𝑐

𝜅1/2
𝜅1/2

1
⋯

0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
1

𝜅1/2
𝜅1/2
1 + 𝜅𝑐]

 
 
 
 

 .  
3.17 

 

In the following subsections, the coupling strength 𝜅𝑖 will be obtained for the first 

and second monopole bands separately by fitting equation 3.15 to the eigenmodes 

of a TESLA cavity. With the coupling terms determined, the infinite circuit is then 

truncated to find nine eigenmodes in each monopole band supported by the nine cell 

cavity. 

3.1.4. Circuit model for the 1st monopole band of the TESLA cavity 

The first monopole band of the TESLA cavity contains the 1.3 GHz mode used for 

acceleration. In order to obtain the coupling strength, equation 3.15 is used to fit, in 

a least square sense, the first monopole band of a TESLA cavity, as shown in Figure 

3.3 (a). The eigenmode frequencies and the associated phase advances of the 

TESLA cavity are cited from the TESLA cavity simulation reported in [35]. The 

simulation was computed with computational code MAFIA. Therefore later the 

eigenmode data from this report is referred to as MAFIA results or data for the 

convenience of discussion. The discrepancies between the fitting and MAFIA 

results are shown in Figure 3.3 (b). 
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Figure 3.3 (a) Dispersion curve for the first monopole band. N indicates the number of coupling terms 

used in the calculation of the dispersion curve, e.g. 𝑵 =  𝟏  means the nearest neighbour coupling. 

MAFIA stands for the eigenmodes of a TESLA cavity that are cited from [35]. (b) The absolute difference 

of eigen frequencies calculated from the circuit model and the MAFIA simulation. 

The nearest neighbour coupling strength 𝜅1is found to be 1.8 % (equation 3.11 also 

gives 1.8 % based on 𝜔𝜋  and 𝜔0) and the next nearest neighbour coupling 𝜅2  is 

below 0.01%. Therefore, it is sufficient to represent the first monopole band by 

using the nearest neighbour coupling to get absolute error below 0.1 MHz, which is 

within the precision of the results in [35]. 

(a) 

(b) 
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Next, the infinite circuit is truncated to a nine-unit circuit with inclusion of 

additional coupling term 𝜅𝑐 to the beam pipe for the first and the ninth unit. The 

method of how to truncate the circuit model to obtain the desired 𝜋 mode field 

flatness is descried in [24]. 𝜅𝑐 is found to be twice 𝜅1. 

The eigen vectors of 𝑯 in equation 3.16 represent the field distribution for each 

mode. The phase advance 𝜙(𝑧) per cell can be calculated as [35]: 

 𝜙(𝑧) = cos−1   [
𝐸𝑧(𝑟, 𝑧 − 𝐿𝑐𝑒𝑙𝑙) + 𝐸𝑧(𝑟, 𝑧 + 𝐿𝑐𝑒𝑙𝑙)

2𝐸𝑧(𝑟, 𝑧)
], 

3.18 

 

where 𝐸𝑧(𝑟, 𝑧)  is the electric field strength (components in an eigenvector) at 

position (𝑟, 𝑧), 𝐿𝑐𝑒𝑙𝑙 is the length of a single cell. The field distribution obtained for 

each mode in the 1
st
 monopole band is shown in Figure 3.4. For the TESLA cavity, 

a standing wave structure, the 𝜋 mode (resonant at 1.3 GHz) in this TM010 band is 

used for electron beam acceleration [13] to get higher acceleration efficiency 

(higher shunt impedance) compared to other modes in the same band. 
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Figure 3.4 Field distributions of the 1st monopole band calculated by the circuit model; the eigen values 

and the eigen vectors in equation 3.16 correspond to the eigenmode frequencies and the field distributions 

respectively. The amplitudes are normalized with the maximum of the eigen vector value. 𝝓 is the phase 

advance per cell of each mode. 

In summary, by fitting the analytic dispersion curve to the mode information from 

EM simulation, the inter-cell coupling constant for the fundamental band of the 

TESLA cavity is found to be 𝜅1 ~1.8 %. The additional coupling term introduced 

due to the beam pipe is found to be 2𝜅1. The bandwidth of the first monopole band 

is ~20 MHz. The narrow bandwidth indicates the weak coupling compared to the 

second monopole band as it will be shown in next section. 

3.1.5. Circuit model for the 2nd monopole band 

The methodology described in section 3.1.4 is applied for the 2
nd

 monopole band to 

study these modes excited by beam in section 3.2 and to aid the beam phase monitor 
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design in Chapter 5. The dispersion curve and the frequency discrepancy are shown 

in Figure 3.5 (a) and (b) respectively. 

 

 

Figure 3.5 (a) The dispersion curve for the 2nd monopole band; 𝑵 indicates the number of coupling terms 

used in the calculation of dispersion curve, e.g. 𝑵 =  𝟏 means the nearest neighbour coupling. MAFIA 

stands for the eigenmodes of a TESLA cavity that are cited from [35]. (b) The absolute difference of eigen 

frequencies calculated from the circuit model and the MAFIA simulation. 

The nearest neighbour 𝜅1 and next nearest neighbour 𝜅2, are found to be -3% and -

 0.2% respectively. The coupling strength in this band is approximately 1% stronger 

(a) 

(b) 
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than that in the 1
st
 monopole band. In order to get the frequency discrepancy close 

to 0.1 MHz, two coupling terms are required as show in Figure 3.5 (b). 

The infinite circuit is truncated to nine circuit units with the inclusion of additional 

coupling terms to the beam pipes. The model is similar to the model for the first 

monopole band. Take unit 1 in the circuit as an example: in addition to the coupling 

to units 2 and 3, there are two coupling terms 𝜅𝑐1 and 𝜅𝑐2 to the beam pipe. These 

two coupling terms can be obtained in principle by scanning the parameter space. 

However, an analytic approach was adopted based on the coefficients of the 

characteristic polynomial of matrix 𝑯  in equation 3.16 (see Appendix B). The 

eigenmode frequencies from the MAFIA simulation are used to construct the 

characteristic polynomial. The coupling terms  𝜅𝑐1  and 𝜅𝑐2  are found to be 1.4% 

and 0.03% respectively. This circuit model is referred to as tuned model later. By 

setting 𝜅𝑐1 and 𝜅𝑐2 to zero, an untuned model is obtained. With the tuned model, the 

eigenmode frequencies and the eigen vectors (field distributions) are obtained, as 

shown in Figure 3.6. 
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Figure 3.6 Field distributions of the 2nd monopole band from the tuned circuit model; the eigen values 

and the eigen vectors in equation 3.16 correspond to the eigenmode frequencies and the associated field 

distributions respectively. The amplitudes are normalized with the maximum of the eigen vector value. 

The field distribution pattern is reversed as compared to the one in Figure 3.4. The 

mode frequency increases as the phase advance decreases, because of the negative 

group velocity. 

The eigenmodes calculated from the tuned and the untuned circuits are shown in 

Figure 3.7. The discrepancies between the untuned model and MAFIA simulation 

are on average 4 MHz in frequency and 7° in phase advance. By tuning the model, 

the discrepancies decrease to 0.2 MHz and 0.8° respectively. 
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Figure 3.7 Dispersion curve for the 2nd monopole band and the eigenmodes from MAFIA and circuit 

model (tuned and untuned model). The tuning process here is essentially the way to find the numerical 

values of the unknown coupling terms.  

In summary, by fitting the analytic dispersion curve, in a least square sense, to the 

mode information from EM simulation, two inter-cell coupling constants for the 2
nd

 

monopole band of the TESLA cavity are found to be -3% and -0.2% respectively. 

The additional coupling terms introduced due to the beam pipes are 1.4% and 0.03% 

respectively. The bandwidth is 79 MHz. After tuning, the circuit is ready to be 

driven by beam in order to investigate the beam phase determination, which will be 

discussed in Chapter 5 

3.2. Beam-driven Circuit Model 

The tuned circuit driven by beam is shown in Figure 3.8. There are nine circuit units 

coupled together magnetically by the mutual inductances 𝑀1 and 𝑀2. The circuit is 

driven by a set of Gaussian current pulses. The time delay 𝑡0 between subsequent 

pulses corresponds to a half period of the 1.3 GHz accelerating mode in order to 

simulate the beam propagation. The coupled equation in unit 𝑛 for the model is: 
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1

𝜔𝑟
2

𝑑2𝑣𝑛

𝑑𝑡2
+ 𝑣𝑛 =

1

2
𝜅1(𝑣𝑛−1 + 𝑣𝑛+1) +

1

2
𝜅2(𝑣𝑛−2 + 𝑣𝑛+2) +

1

𝜔𝑟

𝑑𝑖𝑛
𝑑𝑡

, 
3.19 

 

where 𝑖𝑛  represents a Gaussian beam current applied to the circuit unit 𝑛 , and 

𝑖𝑛(𝑡) = 𝑖𝑛−1(𝑡 − 𝑡0) . The tuned circuit model is constructed in Simulink
®6

 and 

solved with a 5 ps step. The voltage signals at the first and ninth circuit units 

𝑣1 and 𝑣9 are monitored. These signals will be used for the analysis of the beam 

phase in Chapter 5. 

 

Figure 3.8 Nine unit circuit driven by a propagating Gaussian pulse 𝑰𝒏. The pulses are separated by 𝒕𝟎 , 

which is equal to half period of the 1.3 GHz signal. Two magnetic coupling terms 𝑴𝟏  and 𝑴𝟐 are 

incorporated in the circuit. 

In summary, the band of eigenmodes of an accelerating cavity can be modeled by a 

coupled circuit. The analytic dispersion relation of a coupled LC circuit can be 

found by setting Floquet periodic boundary condition. The coupling parameters 

associated with the dispersion curve can be obtained by fitting the circuit to EM 

simulations of a multi-cell cavity. In order to find the eigenmode solutions for a 

cavity, the infinite periodic circuit has to be truncated. This is accomplished by 

truncating the infinite circuit and introducing additional coupling terms. After the 

necessary parameters for the finite circuit model are determined, the model can be 

driven with beam. The voltage evolution over time in each cell can be studied 

                                                 
6
 The reason for choosing Simulink is that there are seamlessly integrated signal processing 

algorithms for visualization. 

𝑡0 =
1

2
⋅

1

1.3
𝑛𝑠 
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accordingly. The main motivation of the circuit model presented here is to aid the 

beam phase monitor development, as it will be presented in Chapter 5. 

In next chapter, the eigenmode frequencies are measured for the TESLA and third 

harmonic cavities. The beam-excited mode frequencies are monitored over time to 

reveal their stability. The characterization of these modes is discussed. 
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Chapter 4 - HOM Spectra Measurements and Characterization 

Knowledge of HOM spectra is important for HOMBPhM and HOMBPM design 

and optimization. Therefore it was important to measure these spectra and 

investigate their behaviour. 

This chapter is arranged in the following way: the modal structure of an isolated 

TESLA cavity is presented in section 4.1. A statistical study of the HOMs was made 

to investigate the frequency variation from cavity to cavity for both FLASH and the 

E-XFEL. This is important to decide the electronics processing bandwidth. The 

frequency stability of beam-induced HOMs is of interest in itself and of particular 

importance for the long term operation of HOMBPM and HOMBPhM. Therefore 

the mode frequencies were monitored at FLASH over months. In section 4.2, the 

HOM spectra of the E-XFEL 3.9 GHz cavities are shown for both the single and 

coupled cavities. 

4.1. HOM Spectra of TESLA Cavities 

This section presents the transmission spectrum measured in a test cavity and a 

study of the stability of beam-excited spectra. The stability of the mode frequencies 

is of great importance because any shift in frequency will modulate the original 

signal (see Appendix B). The modes in a TESLA cavity are grouped into bands [35]. 

The focus is on the modes which are intended for beam diagnostics. More 

specifically, I report on the TM011, TE111, TM110 bands of the 1.3 GHz cavities 

[35]. 

4.1.1. Transmission spectra of a single cavity 

To illustrate the HOM band structure of a TESLA cavity and for the convenience of 

later discussion, the transmission S21 (see Appendix E) of a test cavity was 

measured with a VNA (Vector Network Analyser) of type HP8720c with a 

frequency range from 50 MHz to 20 GHz. The transmission was measured from one 

antenna installed in one beam pipe to the other one at the other end as shown in 
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Figure 4.1. The cavity is filled with argon at 293 K. The frequency is scanned from 

1600 MHz to 2600 MHz with a step of 2.5 kHz, which contains the TE111 (1
st
 

dipole band), TM110 (2
nd

 dipole band) and TM011 (2
nd

 monopole band) bands. The 

mode close to the light line
7
, such as mode TE111-6, is strongly excited by beam 

and can be instrumented with high sensitivity. 

 

Figure 4.1 Measurement setup of a single 1.3 GHz cavity. The transmission S21 is measured between 

antennas installed in the two beam pipes. A VNA up to 20 GHz and a laptop running MATLAB are used 

for data acquisition. 

                                                 
7
 The phase velocity of the mode is equal to the speed of the light c and a straight line can be drawn 

as: ω(𝜙) =
c

Lcell
𝜙, e.g. the line in Figure 3.5(a) and Figure 3.7. Therefore the mode is synchronized 

with the ultra-relativistic electron beam and is excited strongly. 

GPIB-USB 
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Figure 4.2 TE111, TM110 and TM011 bands of a TESLA cavity. The first two bands are dipole bands, 

and the last one is the first higher order monopole band. The coloured vertical lines correspond to the 

simulation result in [35]. 

These bands occupy the frequency ranges approximately from 1620 to 1800 MHz, 

1830 to 1890 MHz, and 2380 to 2450 MHz respectively. The modes in each band 

are well separated and can be identified with the help of simulation, which makes 

the instrumentation of one particular mode feasible. In the TE111 band, modes 6 

and 7 show larger 𝑅/𝑄 relative to others and therefore have the potential of giving a 

high sensitivity when used for beam position monitoring. Mode TE111-6 (~1.7 GHz) 

has been chosen for beam position monitoring. Modes TM011-8 and TM011-9 in 

the second monopole band also show larger 𝑅/𝑄  and are used for beam phase 

monitoring as it will be described in Chapter 5. 

In order to ensure that the HOMs have been well damped, the external quality 

factors are extracted from the transmission spectra between the two HOM couplers 

when the cavities were tuned at 1.8 K. A summary of the external quality factors for 

the cavities in the 5
th

 cryomodule in FLASH and the injector cryomodule in the 

E-XFEL [47], [48] are shown in Figure 4.3. All modes with higher 𝑅/𝑄, which can 

be detrimental to the beam, are damped below 10
5 

as required [49]. 
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Figure 4.3 Quality factors of TE111, TM110 and TM011 modes for the 5th cryomodule in FLASH (a) and 

the injector cryomodule in the E-XFEL (b). 

For each dipole mode, the two polarizations have different frequencies due to the 

influence of the couplers and the imperfection of the cavity itself. In this thesis, the 

polarization 1 is defined as the peak with lower frequency and the other peak as 

polarization 2. For the TE111-6 mode, the largest variations for polarizations 1 and 

2 are 5 MHz and 7 MHz respectively among the cavities in the 5
th

 cryomodule at 

FLASH and 10 MHz in injector module at the E-XFEL. The maximum difference 

(a) 

(b) 
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between the two polarizations is 0.3 MHz and the minimal is below 1 kHz for 

FLASH, while the maximum is 0.6 MHz and the minimum is 0.1 MHz for the 

E-XFEL. The difference between the average frequency of the TE111-6 mode at 

FLASH and the E-XFEL is ca. 4 MHz. 

The maximum frequency variation from cavity to cavity for the TM011-8 mode is 

5 MHz in the 5
th

 cryomodule at FLASH and 14 MHz in the injector module at the 

E-XFEL. The variation for the TM011-9 mode is 5 MHz at FLASH and 15 MHz at 

the E-XFEL. The minimum and maximum mode frequencies are summarized in 

Table 4-1. 

Table 4-1 Summary of frequency variations of the TE111-6, TM011-8 and TM011-9 modes. The data is 

from the cavity database [47], [48]. 

 TE111-6 

Polarization 

1 

TE111-6 

Polarization 

2 

TM011-8 TM011-9 

FLASH 

Min(MHz) 1700.719 1698.130 2449.731 2455.682 

Max(MHz)  1705.536 1705.536 2455.188 2461.127 

E-XFEL 
Min(MHz) 1698.015 1698.170 2445.412 2450.865 

Max(MHz) 1707.819 1708.475 2459.042 2459.042 

The HOMBPM electronics for the 1.3 GHz cavities at FLASH has a narrow 

bandwidth of 20 MHz. The mode frequency variation is within the bandwidth of 

each HOMBPM channel. For the HOM electronics that is under development for 

the E-XFEL, the bandwidth will be approximately 150 MHz and 300 MHz for the 

TE111 and TM011 channel respectively, which are sufficiently wide to 

accommodate modes TE111-6 and TM011-8, 9.  

4.1.2. Beam-excited HOM spectra 

The beam-excited spectra were measured at the first cavity in the 6
th

 cryomodule at 

FLASH with a Tektronix
®

 spectrum analyser (RSA6114a) with a frequency range 

from 9 kHz to 14 GHz. The data was recorded at 1697.007 MHz with a frequency 

span of 1 MHz that contains the two polarizations of TE111-6 mode. The frequency 
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step is ca. 100 Hz. Modes TM011-7, 8, 9 were measured in the vicinity of 

2452 MHz, with a frequency span of 30 MHz. The frequency step is 2.9 kHz. 

Figure 4.4 shows one example of beam-induced mode spectra. The frequencies of 

the polarizations 1 and 2 of TE111-6 are 1696.733 and 1697.006 MHz respectively. 

The difference between the two polarizations is 0.273 MHz. The frequencies of 

modes TM011-7, 8, 9 are 2439.135, 2449.736, 2456.964 MHz respectively. In 

Figure 4.4 (b), there are other peaks which might come from neighbouring cavities 

or may be just spurious modes. However, these peaks do not interfere with beam 

diagnostics and thus are not critical. 

  

Figure 4.4 (a) The two polarizations of mode TE111-6 from the HOM coupler 1 of the 1st cavity of the 6th 

cryomodule at FLASH. The frequency difference between the two polarizations is 0.273 MHz. (b) Modes 

TM011-7, 8, 9 of the second monopole band. 

Each HOM peak in the spectrum can be described by a Lorentzian function [50]. 

This is justified by considering a simple RLC circuit (see Appendix C). By using a 

global fitting technique from PeakFit
®
, it is possible to extract the mode frequencies 

and the quality factors based on equations 4.1 and 4.2: 

 
𝑦 =  ∑

𝑎0𝑖

1 + (
𝑥 − 𝑎1𝑖

𝑎2𝑖
)
2

𝑖

 , 4.1 

 

where 𝑖 is the peak index, 𝑎0𝑖 the peak amplitude, 𝑎1𝑖  the central frequency and 𝑎2𝑖 

the HWHM (Half Width at Half Maximum) of the peak. The quality factor is given 

by: 

Peak1: 1696.733 MHz 

Mode 7: 
2439.135 MHz 

 

 

Peak2: 1697.006 MHz 
Mode 8: 

2449.736 MHz 

 

(a) 
Mode 9: 

2456.964 MH

z 

 

 

(b) 
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 𝑄𝑖 =
𝑎1𝑖

2𝑎2𝑖
. 

4.2 

 

The measurement was repeated several times within four months in order to 

investigate the stability of the dipole mode frequencies. The frequencies of the 

polarizations 1 and 2 in Figure 4.4 (a) are shown in Figure 4.5. Table 4-2 summaries 

the statistical information over time. The mean values of peaks 1 and 2 are 1696.710 

and 1697.015 MHz respectively. Their standard deviations are 0.011 and 

0.005 MHz respectively. The frequency variation will introduce amplitude 

modulations (see Appendix B). The implication of this will be discussed in 

Chapter 6. The measured signal strength for the TE111-6 was normally 

approximately -100 and -105 dBm for peaks 1 and 2 respectively with a beam 

charge of 0.5 nC, which is only several dBm above the noise floor (-110 dBm) of 

the system. 

 

Figure 4.5 Frequency of the two polarizations of dipole mode TE111-6 over time measured from the 

HOM coupler 1 at the 1st cavity of the 6th cryomodule at FLASH. RSA refers to the measurement with a 

real time spectrum analyser. PeakFit indicates that the frequencies are obtained by fitting. 
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Table 4-2 Statistics of the TE111-6 frequency over time based on PeakFit results (see Figure 4.5). 

Peak Average Frequency 

(MHz) 

Standard deviation 

(MHz) 
Relative Error 

1 1696.710 0.011 0.0006% 

2 1697.015 0.005 0.0003% 

The average quality factor obtained is approximately 20,000. 

The frequency variation of modes TM011-7, 8, 9 is shown in Figure 4.6 and 

summarized in Table 4-3. The mean values of modes TM011-7, 8, 9 are 2439.132, 

2449.737 and 2456.967 MHz respectively. The corresponding standard deviations 

are 0.002, 0.001 and 0.000 MHz respectively. As it will be shown in Chapter 5, the 

frequency variation in the range of kHz has very small impact on the resolution of 

beam phase determination. The measured signal strength for the modes TM011-8 or 

9 was approximately –80 dBm for a beam charge of 0.5 nC, which is a few tens of 

dBm above the noise floor (-110 dBm) of the system.  
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Figure 4.6 Frequencies of monopole modes TM011-7, 8, 9 over time at HOM coupler 1 of the 1st cavity in 

the 6th cryomodule at FLASH. RSA refers to the measurement done with a real time spectrum analyser. 

PeakFit indicates that the frequencies are obtained by fitting. 

Table 4-3 Statistics of the TM011-7, 8, 9 frequencies over time based on PeakFit results (see Figure 4.6). 

Mode 
Average Frequency 

(MHz) 

Standard deviation 

(MHz) 
Relative Error 

7 2439.132 0.002 0.00008% 

8 2449.737 0.001 0.00004% 

9 2456.967 0.000 0.00000% 

Modes TM011-7, 8 show on average quality factors of approximately 25,000, while 

mode TM011-9 has 60,000. 
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In summary, the mode frequency variation was investigated from cavity to cavity in 

the 5
th

 cryomodule at FLASH and in the injector module at the E-XFEL. The 

variations of frequencies are mainly due to the shape variation from cavity to cavity 

during the cavity fabrication and tuning process. The ten MHz variation from cavity 

to cavity of the mode TE111-6 is within the bandwidth of the HOM electronics
8
. 

The HOM electronics at the E-XFEL has sufficient bandwidth (hundred MHz) to 

accommodate these variations. For the same cavity, the frequencies of the 

beam-excited modes TE111-6 and TM011-7, 8, 9 showed a variation of a few kHz. 

This is because of the dynamic environment that the cavity is situated in and, the 

cavity shape being slightly deformed due to various processes (such as Lorentz 

force detuning, microphonic and the tuning forces applied to compensate the 

frequency change for the accelerating mode). As it will be shown in Chapters 5 and 

6, these frequency variations have little impact on beam instrumentation. 

4.2. HOM Spectra of Third Harmonic Cavities  

As a preparation for the development of HOMBPMs for the third harmonic cavities 

at the E-XFEL, the HOM spectra were measured. There are eight 3.9 GHz cavities 

in the module (named AH1) at the E-XFEL compared to four at FLASH. Doubling 

the number of cavities complicates the higher order mode spectra significantly. 

Following the motivation of the HOMBPM for 3.9 GHz cavities at FLASH [7], the 

band of spectra that has the strongest beam position dependence needs to be 

identified. The HOM spectra for the FLASH third harmonic module are reported in 

[52]. The measurements for the E-XFEL 3.9 GHz cavities are summarized in [53]. 

Each cavity for the E-XFEL went through several tests after fabrication: 

measurement of the fundamental 3.9 GHz mode, tuning of the HOM couplers, 

vertical test etc.[54]. In the course of cavity tests, I have measured the S21 of single 

cavities and of the coupled cavities at 1.8 K and 293 K. These measurements serve 

as a database for the current HOMBPM development and its future use. 

                                                 
8
 The bandwidth of the electronics at FLASH is 20 MHz [51] 
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4.2.1. Single cavity measurements at 293 K 

The measurement setup is similar to the one for the 1.3 GHz cavity (section 4.1.1). 

It contains three parts: the device under test, which is one single or several coupled 

cavities, a vector network analyser (VNA) and a laptop to control the instrument. A 

picture of the measurement setup for a single cavity is shown in Figure 4.7. 

 

Figure 4.7 Measurement setup of a single 3.9 GHz cavity. The transmission S21 from one HOM coupler to 

the other is measured. A laptop running MATLAB is used for data acquisition. A VNA up to 20 GHz is 

used to perform the transmission measurements. The IF bandwidth for the VNA is chosen as 3 kHz for 

the 1st and the 2nd dipole band and 300 Hz for the 5th dipole band.  

The transmission S21 from one HOM coupler to the other is measured. A laptop 

running MATLAB
®

 is used for data acquisition. The measurements were carried 

out with a VNA (HP8720c) at a step of: 5 kHz for the first and second dipole bands 

and 500 Hz for the 5
th

 dipole band. The IF bandwidth of the VNA is 3 kHz for the 

1
st 

and the 2
nd

 dipole band and 300 Hz for the 5
th

 dipole band. 

The cavities installed in the AH1 module are named, in the beam direction, as 

follows: 3HZ010, 3HZ005, 3HZ012, 3HZ013, 3HZ008, 3HZ007, 3HZ004 and 

3HZ011. All cavities have been measured at 293 K in vacuum state except 3HZ007. 

Only one cavity (3HZ010) was cooled to 1.8 K. The measured transmission spectra 

of cavity 3HZ010 at 1.8 K and at 293 K are compared in Figure 4.8. The vertical 
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dashed lines are the mode frequencies from a simulation of a single cavity without 

couplers [7]. 

 

Figure 4.8 The 1st and 2nd dipole band of the cavity 3HZ010 at 1.8 K (blue), 293 K (red) in vacuum. The 

vertical dashed lines correspond to the modes in the 1st(magenta) and 2nd(cyan) dipole band from a 

simulation of single cavity [7]. 

The spectra of a single cavity are already more complicated than for the TESLA 

cavity. This is due to the fact that the iris radii are larger than one third of the iris 

radii for the TESLA cavity in order to better damp higher order modes. In principle, 

there are nine modes and eighteen peaks (two polarizations) in each band. However, 

as it can be observed in the spectra, there are more peaks present and it is difficult to 

identify the modes even with the help of simulations. Therefore a band of modes is 

used for beam position monitoring unlike the case for the 1.3 GHz cavities where 

only one mode is used. 

The spectra measured for the tuned cavities at 293 K are shown in Figure 4.9. Two 

spare cavities (3HZ006 and 3HZ009) are also included. The spectra of the 1
st
 and 

the 2
nd

 dipole bands (Figure 4.9 (a)) of all cavities resemble each other except for 

cavity 3HZ010
9
. The second dipole band (~5.3 GHz to 5.5 GHz), used by the 

                                                 
9
 There was an issue with the fundamental power coupler, which was later fixed. 
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HOMBPM, is narrow, which makes the narrowband of electronics [55] (see 

Appendix F) feasible for beam position monitoring. The discrepancies in the spectra 

are mainly due to: 1. the geometry variation from cavity to cavity; 2. the different 

influence of the HOM and input couplers; 3. the different tuning of each cavity. The 

5
th

 dipole band spectra for the various cavities are quite different from each other, as 

one can observe in Figure 4.9 (b). This is due to their higher sensitivity to the cavity 

geometry than for the 1
st
 and the 2

nd
 dipole bands. 
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Figure 4.9 HOM spectra of 3.9 GHz cavities for the E-XFEL at 293 K. (a) The 1st and the 2nd dipole bands 

(b) The 5th dipole band. Note: cavities 3HZ006 and 3HZ009 are not used in the AH1 module. The vertical 

dashed lines correspond to modes in the 1st (magenta), 2nd (cyan) and 5th (green) dipole band from 

simulation of a single cavity [7]. 

Taking cavity 3HZ010 at 1.8 K as an example, the measured spectra and fitting 

results (based on equations 4.1 and 4.2) are shown in Figure 4.10. Each dipole band 

was fitted separately with the PeakFit program. Within each band, more than 18 

peaks were found and it is difficult to account for their origin. It comes from the fact 

that these peaks tend to fit the shape of the spectrum which might give non-physical 

modes. 

(a) 

(b) 
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Figure 4.10 The 1st (a), 2nd (b) and 5th (c) dipole bands of cavity 3HZ010 at 1.8 K; Each plot shows the 

experimental data (exp. data) points and the peaks found by Lorentz fit. 

ω/2π (GHz) 

(c) 

𝜔/2𝜋 (GHz) 

𝜔/2𝜋 (GHz) 

(b) 
𝜔/2𝜋 (GHz) 

(a) 

Exp. data 

Lorentz fit 

data 

Exp. data 

Lorentz fit 

data 

Lorentz fit 

data 

Exp. data 
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The fitting results are summarized in Table 4-4. It can be observed that all the 

HOMs are damped to be below 30,000. The modes in the 5
th

 dipole band present 

higher Q values due to the fact that they are trapped inside the cavity [52]. 

Table 4-4 Summary of peak frequencies and quality factors for cavity 3HZ010 obtained by fitting (see 

Figure 4.10). 

1
st
 dipole band 2

nd
 dipole band 5

th
 dipole band 

freq. (GHz) Q freq. (GHz) Q freq. (GHz) Q 

4.3001 4.80E+02 5.3216 1.06E+03 9.0112 1.24E+04 

4.3688 1.37E+02 5.3305 7.90E+02 9.0222 1.77E+04 

4.4033 1.32E+02 5.3364 6.35E+02 9.0384 1.49E+04 

4.4213 1.53E+02 5.3908 3.84E+02 9.0392 1.81E+04 

4.4443 2.00E+02 5.4214 5.75E+02 9.0457 1.63E+04 

4.4572 3.07E+02 5.4300 7.10E+02 9.0463 2.89E+04 

4.4664 8.40E+01 5.4374 7.50E+03 9.0521 1.53E+04 

4.5194 2.92E+02 5.4531 1.01E+03 9.0733 1.38E+04 

4.5353 1.45E+02 5.4651 2.06E+03 9.0812 1.47E+04 

4.5505 3.46E+02 5.4729 1.01E+03 9.0842 5.15E+03 

4.5898 6.00E+02 5.4820 1.23E+03 9.0903 1.34E+04 

4.6367 1.08E+02 5.4897 7.85E+02 9.0918 3.40E+03 

4.6686 2.40E+02     

4.6856 1.02E+02     

4.7384 1.31E+02     

4.7828 2.07E+02     

4.7938 1.04E+02     

4.8248 3.41E+02     

4.8386 2.54E+02     

4.8605 1.10E+03     

4.8796 2.35E+02     

4.9008 2.25E+02     

4.9391 1.63E+02     

4.9514 2.31E+02     

4.9699 8.95E+02     

The same analysis was performed for every cavity I have measured. The complete 

results can be found in [53]. 
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4.2.2. Coupled cavities measurements at 293 K and 1.8 K 

Transmission measurements were made at the string of eight cavities before it was 

placed into the cryomodule and after it was installed at the E-XFEL injector. 

 

Figure 4.11 The string of coupled 3.9 GHz cavities before installation in the module. The cavities are filled 

with argon. The transmission spectra were measured from cavity 3HZ010 to 3HZ005, 3HZ012 and so on 

until 3HZ011. 

Figure 4.11 shows the string of cavities ready to be installed into the cryomodule. 

The HOM coupler 1 and power coupler are always in the upstream with respect to 

the HOM coupler 2, which differs from the configuration at FLASH [7]. The other 

HOM couplers, the power coupler and RF pickup were left open. Measurements 

were performed from the HOM coupler 1 (upstream, in the beam direction) of the 

first cavity to the HOM coupler 2 of each cavity along the string of cavities. The 1
st
, 

2
nd

 and 5
th

 dipole bands were measured. 

Figure 4.12 shows a summary of the measurements at 293 K and in superconducting 

state. It can be observed that the spectrum gets more complicated due to the 

coupling between the cavities. In principle, each mode in a cavity splits into eight 

Beam direction 

Beam direction 
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modes if the string of cavities is viewed as a super-cavity structure. The bandpass 

structure becomes finer and finer as more cavities are coupled. In addition, there are 

also beam pipe modes and coupler modes as observed in simulations [56]. 

 

 

Figure 4.12 Transmission spectra for a string of cavities (a) at 293 K (b) at 1.8 K; Digits 010 means 

transmission through cavity 3HZ010 when it is coupled with other cavities. 010+005 means the 

transmission through cavity 3HZ010 and cavity 3HZ005 and so on. 

(a) 

(b) 
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The measurements were repeated after the third harmonic module was installed into 

the E-XFEL injector. The cryomodule was in superconducting state and the cavities 

were tuned. When the transmission was measured for a certain pair of HOM 

couplers, the rest of the HOM couplers were terminated with 50 Ω loads. By 

comparing Figure 4.12 (a) and (b), it is easily observed that the noise floor is several 

dB higher at 1.8 K than at 293 K. This is mostly due to the longer cables used. For 

comparison, the transmission from the first to the last cavity is shown in Figure 4.13 

at 293 and 1.8 K. As the module is cooled, there is a shift of a few tens of MHz. 

The transmitted power level at 1.8 K is approximately 20 dB less than at 293 K. 

This is due to the fact that the channels were terminated during the measurements at 

1.8 K, while they were left open at 293 K in Figure 4.12 (a). The cavity wall losses 

at 293 K (normal conducting) also contribute to the difference. 

 

Figure 4.13 Comparison of full module transmission between 293 K (red) and 1.8 K (blue); as for the 

single cavity case, there is a few tens of MHz frequency shift. The transmitted power is approximately 

20 dB less at 1.8 K than at 293 K. 

The transmission measurements of 3.9 GHz cavities presented above, together with 

the experience at FLASH, provide the basis for the instrumentation of the HOMs at 

the E-XFEL. The results will facilitate future beam-based HOM electronics tests 

and its development. 
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In summary, one TESLA cavity was measured to reveal the HOM modal structure. 

The modes within the band used for beam instrumentation can be identified with the 

help of eigenmode simulations. The beam-induced spectra are monitored at FLASH 

to investigate the stability of the mode frequencies. The variation is within a few 

kHz over months. 

HOM measurements have been carried out also for single and coupled 3.9 GHz 

cavities for the E-XFEL. The spectra become more complicated when more cavities 

are coupled together. The measurements were mainly made for the first and the 

second dipole bands. The frequency range of 9-9.1 GHz shows negligible 

transmission since the modes in this range are trapped in a cavity [57]. These 

measurements can be used as a reference for future tuning of the HOM electronics 

and also provide a reference for the beam-induced modes. 

In next chapter, beam phase measurements based on the modes from the TM011 

band of a TESLA cavity will be presented. The stability study of these modes 

provides a solid basis for the monitor development. 
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Chapter 5 - HOM-based Beam Phase Monitoring 

The accelerating RF fields in the TESLA cavities must be controlled to a precise 

level as variations in the field can result in beam energy spread and arrival time 

jitter. This in turn can lead to a reduction in the quality of the photon beam. Both the 

amplitude and phase of the RF field have to be monitored and controlled. This 

chapter investigates a new type of beam phase determination technique based on 

beam-excited HOMs in the TESLA cavities, which differs from the standard 

scheme used by the LLRF (Low Level Radio Frequency) system [58] at the 

E-XFEL and FLASH. All the measurements in this chapter are made at the injector 

part of the E-XFEL unless otherwise specified. 

The LLRF at the E-XFEL is briefly introduced in section 5.1. A simulation based on 

a coupled circuit is used to facilitate the development of HOM-based beam phase 

monitor in section 5.2. Phase measurements are presented in section 5.3. A 

summary and a brief description of the prototype electronics end the chapter. 

5.1. Beam Phase Control for SRF Cavities 

The RF fields along the 1.7 km linac of the E-XFEL must be controlled to a high 

precision in order to provide reproducible high quality photon beam pulses. At the 

E-XFEL and FLASH, the amplitude and the phase of the RF field are regulated by a 

sophisticated digital control system [2], [58], [59]. This locks the RF field of an 

accelerating cavity to the operating parameters. The stability of the amplitude and 

phase are required to be below 0.01% and 0.01° RMS respectively for both FLASH 

and the E-XFEL [59]. 

5.1.1. Introduction to the LLRF System at the E-XFEL 

The linac of the E-XFEL consists of 768 superconducting TESLA 1.3 GHz cavities, 

grouped into 96 cryomodules, organized in 24 RF stations [60] over a length of ~ 

1.7 km. Each RF station contains a 10 MW klystron which provides power to four 

cryomodules. Therefore the control of the beam phase is done via a vector sum [10] 
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of 32 cavities rather than the phase at each individual cavity [60]. The injector 

module is fed alone by one RF station. The control of the beam phase normally 

takes place at the low power level. The main components of the control system are 

detectors for RF field amplitude and phase, controller for feedback and feedforward, 

and actuators to control the incident wave to each cavity [58]. 

 

Figure 5.1 Schematic of LLRF control system [58]. It consists of a master oscillator, vector modulator, 

down converting and feedback units. (Courtesy of Christian Schmidt) 

A schematic of the E-XFEL  LLRF system is shown in Figure 5.1. A master 

oscillator provides timing signals. The vector modulator is then used to control the 

klystron. The output high power from the klystron is distributed into different 

cavities via a series of waveguides. The RF field in each cavity is detected by a field 

probe [13]. The down-converted signals from all cavities are digitized and summed 

to form the measured vector sum (𝑦𝐼 , 𝑦𝑄 ). This sum is compared with the set 

operation values. The error between the set and the measured values is used as the 

controller input. The controller outputs are combined with the feedforward signal to 
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provide the drive inputs (𝑢𝐼 , 𝑢𝑄 ) to the vector modulator. The whole system is 

implemented in a FPGA
10

 chip. 

Beam arrival monitor (BAM) and bunch compression monitor (BCM) are also 

employed to monitor the electron beam property to provide feedback information 

for accelerating field control. Particularly the beam timing from BAM is used for 

amplitude and the beam compression is used for phase control [61]. 

In addition to the regulation of RF field, the LLRF is also responsible for providing 

a highly stable RF reference along the tunnel. Other requirements on the system are 

due to its distributive and large scale nature [60]. 

5.1.2. Beam phase determination based on HOMs 

In order to determine the beam phase, in principle, the beam-induced signal and the 

klystron signal have to be compared. For a TESLA cavity, the beam-excited 

accelerating mode (beam loading) is several orders of magnitude smaller than the 

one from the klystron. Therefore, a high dynamic range and resolution of the beam 

monitoring is required. Here I use a different approach which is able to measure the 

beam phase directly by comparing the beam-excited higher order modes and the 

accelerating mode. Normally, during accelerator operation, the power leakage 

through the HOM coupler of the 1.3 GHz mode and the power of the beam-excited 

mode in TM011 band are of the same order of magnitude. Therefore the 

requirement on the dynamic range can be easily met. 

The proof of principle measurement of using HOMs for beam phase measurements 

was first mentioned in [6]. Each beam-induced mode carries the beam arrival 

information. By measuring the signal available at the HOM coupler, it is possible to 

convert the timing information into beam phase relative to the 1.3 GHz field. I use 

the following setup-independent procedure to determine the phase: 

1. Decomposition of the signal 

                                                 
10

 Field-programmable gate array  
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The signal 𝑥(𝑡)  from a HOM coupler contains the 1.3 GHz accelerating 

mode and the beam-excited HOMs. First the modes in the 2
nd

 monopole 

band are filtered. The signal can be projected onto a sine term 𝑥𝑠𝑖(𝑡) and a 

cosine term 𝑥𝑐𝑖(𝑡) according to: 

 𝑥𝑠𝑖(𝑡) = 𝑥(𝑡)sin (𝜔𝑖𝑡) , 
5.1 

 𝑥𝑐𝑖(𝑡) = 𝑥(𝑡)cos (𝜔𝑖𝑡) , 
5.2 

where 𝜔𝑖 is the angular frequency of each mode in the signal and has to be 

determined beforehand. The amplitude and phase of each mode 𝑖 is carried 

by 𝑥𝑠𝑖(𝑡) and 𝑥𝑐𝑖(𝑡). The method behind this is described in Appendix B. 

An example is shown in Figure 5.2 for 𝑥(𝑡), 𝑥𝑠𝑖(𝑡) and 𝑥𝑐𝑖(𝑡), where 𝑖 =

 0, 8, 9. 𝑖 =  0 is used for the fundamental 1.3 GHz mode, 𝑖 =  8 and 9 the 

modes 8 and 9 in the TM011 band. The reason why only two modes are used 

will be discussed later. 
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Figure 5.2 Filtered signal  𝒙(𝒕) , and its components 𝒙𝒔𝒊(𝒕)  and 𝒙𝒄𝒊(𝒕)  etc.  𝒊 =  𝟎  is used for the 

fundamental 1.3 GHz mode, 𝒊 =  𝟖 and 𝟗 the modes 8 and 9 in the TM011 band. 

2. Determination of phase for each mode 

After the operation in equations 5.1 and 5.2, the signal 𝑥(𝑡) is decomposed 

into DC and higher frequency components. This is essentially a digital down 

converting process. 

The phase of each mode inside the signal 𝑥(𝑡) is determined by equation 5.3. 

By integrating the signal, the DC part accumulates while the higher 

frequency part is filtered out: 

 𝜑𝑖 = arctan (
∫ 𝑥𝑐𝑖(𝑡)𝑑𝑡

∫ 𝑥𝑠𝑖(𝑡)𝑑𝑡
).   

5.3 

 

Taking into account the phase delays from components between the cavity 

and the measurement device, e.g. RF cables, the calibration phase 𝜑𝑖𝑐𝑎𝑙 is 

determined during calibration and subtracted from 𝜑𝑖  for each mode  𝑖 

individually: 
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 𝛿φi = 𝜑𝑖 − 𝜑𝑖𝑐𝑎𝑙. 
5.4 

 

3. Determination of beam phase relative to the 1.3 GHz signal 

After calibration, the phase of each HOM is converted into time based on the 

frequency of each mode: 

 𝑡𝑖 =
𝛿𝜑𝑖

𝜔𝑖
. 

5.5 

 

The average arrival time is defined as, 

 𝑡𝑎 = ∑𝑡𝑖𝑤𝑖

𝑁

𝑖=1

, 
5.6 

 

where 𝑁 is the number of HOMs used in the calculation and 𝑤𝑖 is the weight of 

mode 𝑖 according to its power. The phase of the 1.3 GHz signal relative to 𝑡𝑎 

can be calculated with, 

 𝜑1.3 =  (𝑡0 − 𝑡𝑎)𝜔0, 
5.7 

 

where 𝜔0 =  2𝜋 ×  1.3 ×  109 rad·s
-1

 is the angular frequency of the 

accelerating mode. 

Based on steps 1-3, the beam phase relative to RF field can be calculated. The 

algorithm is implemented in a MATLAB script and is used in the following sections. 
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5.2. Simulation based on a Circuit Model  

A single chain circuit model has been developed to study the dynamics of the 

second monopole band as described in Chapter 3. Each LC unit of the circuit is 

driven by a Gaussian pulse to simulate the electron beam. The time delay of two 

adjacent pulses is set to a half period of the 1.3 GHz mode, which is ~ 0.38 ns. This 

delay is introduced to simulate the propagation of the beam along the cavity. The 

normalized voltage across the capacitor can then be obtained by solving the circuit, 

as described in [41]. The circuit model is implemented in Simulink
®
 and solved 

with a 5 ps step. The voltages across the first and ninth cells, denoted by HOM1 and 

HOM2 respectively, are superimposed with a 1.3 GHz signal. The associated 

algorithm for data processing as described in section 5.1.2 was developed based on 

this model. 

In Figure 5.3, example spectra for HOM1 and HOM2 are shown. The vertical lines 

mark the eigenmode frequencies of a TESLA cavity obtained from MAFIA 

simulations [35]. There are nine modes excited corresponding to the nine 

eigenmodes of the 2
nd

 monopole band. These modes are named mode 1, mode 2, up 

to mode 9 according to the frequencies in ascending order. Modes 8 and 9 are 

excited strongly due to their higher 𝑅/𝑄. Therefore, these two modes are used to 

determine the beam phase. In principle, nine modes can be used jointly to give the 

beam phase, but the improvement in terms of resolution is small, while the 

computation power required is tripled. Therefore, in later calculations, only modes 8 

and 9 are used unless otherwise specified. 
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Figure 5.3 Spectra of waveforms HOM1 and HOM2 in the vicinity of 2.4 GHz. The vertical dashed lines 

are the eigenmode frequencies from MAFIA simulation of the TESLA cavity (Appendix G). 

The phase of the 1.3 GHz signal is varied by ± 5° to simulate a phase change and 

can be calculated with the procedure described in section 5.1.2. The calculation is 

done independently for HOM1 and HOM2. The RMS of the phase difference 

between HOM1 and HOM2 can be used to evaluate the resolution of the beam 

phase determination. A factor of √2/2 is applied by assuming that the two channels 

are identical (see Appendix B). A variable level of AWGN
11

 (Add White Gaussian 

Noise) is superimposed to the HOM1 and HOM2 to simulate realistic data. HOM1 

and HOM2 are sampled at different frequencies to investigate the influence on the 

resolution. The result is summarized in Figure 5.4. 

                                                 
11

 Widely used to model the channel noise for communication system 
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Figure 5.4 Resolution dependence on noise level and sampling frequency. 

One can see that the resolution exhibits an exponential decay dependence on the 

SNR (Signal to Noise Ratio). A higher sampling frequency will generally give 

better resolution. Though high sampling rate digitizers with hundreds MS/s are rare 

to date in the market, usable system with 300 GS/s exists [62]. However, the 

resolution is ultimately limited by the SNR. The dependence of the resolution 𝑅 on 

the SNR is obtained by fitting as (in logarithmic scale): 

 ln(𝑅) = 𝐵 − 0.118 × 𝑆𝑁𝑅, 
5.8 

 

where 𝐵  is an intercept term that depends on the sampling frequency. For a 

sampling frequency of 20 GS/s, as used in later measurements, 𝐵 is -0.542. Figure 

5.5 shows the resolution dependence on the SNR in linear scale. 
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Figure 5.5 Resolution dependence on the SNR and exponential decay fitting for a sampling rate of 

20 GS/s. 

Based on the simulation result in Figure 5.4, in order to meet the phase requirement 

(0.01°) at the E-XFEL [63], the SNR should be higher than 35 dB. 

As discussed in section 5.1.2, the frequency of each mode employed for beam phase 

determination has to be known beforehand and stored in a database. In order to 

investigate the resolution dependence on the frequency error, the mode frequencies 

are shifted with respect to the eigenmode frequencies from -1 to 1 MHz with a step 

of 100 kHz. The SNR is fixed at 20 dB, a value estimated from measurements as it 

will be discussed later. Figure 5.6 shows the resolution dependence on the mode 

frequency shift. The resolution is almost unaffected by the frequency shifts within 

this range. 



96 

 

Figure 5.6 Resolution dependence on the frequency shifts of modes 8 and 9 with a step of 100 kHz. 

This result was anticipated because when one mode frequency is shifted, the phase 

information is essentially determined from the other unaffected mode. If the 

frequencies of modes 8 and 9 are shifted independently, the result is summarized in 

Figure 5.7. The 3D plot shows that at the maximum 1 MHz shift, the resolution 

degrades by almost a factor of nine. Therefore at least one mode frequency should 

be determined accurately. 
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Figure 5.7 Resolution dependence on the frequency shift of modes 8 and 9 with a step of 50 kHz. 

Up to now, I assumed that the signal power from HOM1 and HOM2 is balanced. In 

reality, however, due to the difference of the two physical channels, the power is 

unbalanced. Therefore, it is also necessary to scale the simulation data to gain 

insight into the system as it will be discussed later. 

5.3. Beam Phase Measurements 

Beam phase measurements were made at the E-XFEL injector module A1 and the 

1
st
, 2

nd
, 5

th
 and 6

th
 accelerating modules at FLASH. The measurement setup is 

described in section 5.3.1. The estimation of noise and power levels is presented in 

section 5.3.2. The measurement results and comparison with simulation are shown 

in the last two sections. 

5.3.1. Experimental setup 

The setup consists of several RF bandpass filters, combiner/splitter, and a fast scope 

and is schematically shown in Figure 5.8. 
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Figure 5.8 Block diagram of the beam phase measurements setup at FLASH and the E-XFEL. Two 

identical channels are used for the two HOM couplers of a cavity. 

The two HOM couplers on each cavity deliver the signal for the two channels used 

for beam phase measurement. The signal from each HOM coupler is transmitted 

with a RF cable with length of ca. 60 m from the E-XFEL tunnel to the 

measurement rack. The signal is then split with a power splitter (5-2500 MHz). 

Each split signal is then filtered in parallel, one centered at approximately 

1300 MHz with 100 MHz bandwidth and the other approximately 2435 MHz with 

190 MHz bandwidth. The filtered signals are then combined again before they are 

fed into the Tektronix
®
 oscilloscope TDS6604B (20 GS/s with 6 GHz bandwidth). 

The scope is triggered by an external 10 Hz trigger, which is synchronized with the 

data acquisition from the DOOCS control system [64]. The scope is remotely 

connected to a PC with VX11
12

 protocol. One PC serves as a TCP/IP client and a 

second one as a server for collecting data from DOOCS. It should be pointed out 

                                                 
12

 VX11 is an industrial standard to provide instrument connectivity for remote control and data 

acquisition.  
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that the whole system is only partially synchronized with the electron beam because 

the synchronism is provided by the TCP/IP protocol and the command routing 

inside the network depends on the momentary traffic. It takes approximately 

20 seconds to complete one triggered measurement. 

As an example, a typical waveform and the associated spectrum are shown in Figure 

5.9. The recorded waveform is 20 µs long and the frequency step in the spectrum is 

50 kHz. 

 

Figure 5.9 Measured waveforms (a) and spectra (b) of signals from HOM1 (blue) and HOM2 (red). The 

inset shows the spectra in the region of 2.4 GHz. The last two modes are excited strongly and are used for 

the phase determination.  

The last two modes (mode 8 and mode 9) in the spectrum are excited strongest. The 

mode frequencies can be easily identified by overlapping the signals HOM1 and 

HOM2. 

5.3.2. Non-parametric noise filtering and estimation 

The resolution has a strong dependence on the noise level as shown by simulation 

study. Therefore, it is important to estimate the level in the measurements. For this 

purpose, I used the SVD
13

 (see Appendix B) method. The signals were put in a data 

matrix 𝐷 row wise. The SVD eigen components of matrix 𝐷 can be found, which 

are the basis for signal decomposition. 

                                                 
13

 Singular Value Decomposition 

(b) (a) 
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The signals show larger singular values due to the correlation among signals while 

the noise exhibits smaller singular values due to the randomness. In this way, the 

signal and the noise can be separated. The separation is of course not perfect based 

on this method, but it provides a good estimation. The measurement is made at the 

2
nd

 cavity in the A1 module at the E-XFEL. Seventy five measurements were used 

to form the data matrix. The singular values of the data from HOM1 and HOM2 are 

shown in Figure 5.10. 

 

Figure 5.10 Singular values for HOM1 and HOM2. The values from both channels drop quickly to the 

same level. 

In this calculation, the first 24 singular values are used in the reconstruction of the 

signal and the rest is regarded as noise. The noise waveform is reconstructed based 

on the remaining 51 singular values. The obtained noise waveform and its 

distribution are shown in Figure 5.11. The distribution justifies the AWG noise 

model applied in the simulation. The histogram is found to be a Gaussian 

distribution with mean value 0 and standard deviation 8 mV. 
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Figure 5.11 (a) Waveform of the reconstructed noise. (b) Histogram of the noise waveform with 400,000 

samples. The mean μ is 0 and the standard deviation σ is 8 mV. 

Based on this method, it is found that all measured cavities (# 2, 3, 5, 6 at A1 in the 

E-XFEL) exhibit the same level of noise (~8 mV RMS) and the variation from 

channel to channel is at the sub-millivolt level. 

(a) 

(b) 
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The SNR can be estimated from the separated signal and noise. With an accelerating 

gradient of 22 MV/m, the SNR for HOM1 at cavity 2 of A1 is approximately 22 dB 

in contrast to less than 10 dB for HOM2. The 10 dB difference is likely due to the 

power leakage difference from the two channels because the two HOM coupler 

notch filters are tuned differently. In order to compare the simulation and the 

measurements more accurately, the signals from the simulation are scaled according 

to this measured power difference. 

5.3.3. Results 

The frequency varies by a few MHz from cavity to cavity, which is more than the 

width of each mode (below 1 MHz) at FLASH. Therefore the mode frequency has 

to be determined for each cavity individually. Once the frequency of each mode is 

determined, it is kept constant in later calculation. The variation of the mode 

frequency is a few kHz over time as found in Chapter 4, which is acceptable for our 

application. 

The experimental resolution dependence on the number of monopole modes used is 

shown in Figure 5.12. 
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Figure 5.12 Resolution dependence on the number of modes used for phase determination at cavity 2 of 

injector module at the E-XFEL. On the horizontal axis, 1 means that mode 1 is used and 2 means that 

modes 1 and 2 are used etc. 

When only mode 1 is used the resolution is above 4°. This is improved when more 

modes are included in the calculation. In the best case, when all nine modes are 

used, the resolution is 0.12°. This is due to the fact that mode 1 is excited weakly 

compared with other modes. In contrast, the resolution is 0.12° by solely using 

mode 9. Including more modes does not improve the resolution as long as mode 8 

or 9 is used. It should be noted that due to the cavity geometry variation, mode 9 is 

not always stronger than mode 8. Therefore the best resolution cannot be guaranteed 

by using only one mode. In experiments, no other modes from this band are 

observed to be stronger than modes 8 and 9. Therefore, in later calculations both 

modes 8 and 9 are used for the phase determination. 

The mode frequencies used for digital down conversion are shifted in a similar 

manner as for the simulation data. The resolution dependence on the frequency shift 

is presented in Figure 5.13. 
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Figure 5.13 Resolution dependence on the frequency shifts of modes 8 and 9 with a step of 50 kHz. 

A similar conclusion can be drawn as from the simulation data (Figure 5.7), namely 

that either mode 8 or 9 delivers a comparable resolution and that at least one mode 

needs to be determined accurately. 

The beam charge was varied in order to investigate the resolution dependence on 

the charge. The monopole mode amplitude increases linearly as shown in Figure 

5.14. Linear dependence is obtained in Figure 5.14 (b) as expected. The amplitude 

is calculated based on equations 5.1 and 5.2 (see Appendix B). 
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Figure 5.14 (a) Spectra of modes 8 and 9 for various bunch charges and (b) amplitude of modes 8 and 9 

for various charges. The measurements were made at cavity 2 at the injector module of the E-XFEL. 

For each charge, the RF phase was set to 0°, -5° and 5°. Figure 5.15 shows the 

calculated phase for a beam charge of 0.5 nC at an accelerating gradient of 

~22 MV/m. For each phase, 25 measurements were made. The resolution is 0.12° in 

this case. 

(a) 

(b) 
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Figure 5.15 Phase obtained based on modes 8 and 9. For each set RF phase, 25 measurements were made. 

The beam charge is 0.5 nC and the accelerating gradient is ~22 MV/m. The resolution is 0.12°. 

The simulation data was scaled with the signal strength measured for the different 

charges in the measurements. As mentioned before, a 10 dB power difference in 

channels 1 and 2 is observed and therefore is incorporated in the simulation data as 

well. The phase of the 1.3 GHz signal is changed by -5°, 0° and 5°. Twenty five 

calculations are made at each phase value. The comparison between the 

measurement and the simulation results is shown in Figure 5.16. 
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Figure 5.16 Resolution comparison between the measurements and the simulation from circuit model 

(CM).  

The difference is generally below 0.05° except at 0.1 nC where the discrepancy is 

close to 0.1°. This is due to the fact that a different laser spot size and settings need 

to be used at low charges and the resolution is more sensitive to the charge 

fluctuations at low charge. 

With a bunch charge of 0.5 nC and an accelerating gradient of ~ 20 MV/m, the 

resolution is approximately 0.1° both at the E-XFEL and FLASH. The low 

resolution is observed when the 1.3 GHz signal level is comparable to the noise 

floor as measured at cavities 2 and 7 in the 5
th

 cryomodule at FLASH. The highest 

resolution (0.03°) with the current setup is observed at cavity 8 in the 5
th

 module at 

FLASH. Attenuators were used at FLASH to protect the HOM electronics. By 

removing them, the resolution can be improved by a factor of 2-4 depending on the 

specific cavity. More interestingly, assuming a 10 dB improvement in SNR, 

equation 5.8 predicts that the resolution improves by a factor of 3. 
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5.3.4. Comparison between HOM-based and LLRF measurements 

For the LLRF system, the beam phase is inferred from the 1.3 GHz RF field probe 

signal. This phase is referred to as probe phase later for discussion, and is available 

from the DOOCS control system. Based on the experimental setup (see Figure 5.8), 

the HOM-based phase or HOM phase is determined. 

For comparison, the RF phase was changed at the klystron from -10° to 10° with a 

step of 1° and five measurements were recorded at each step as shown in Figure 

5.17.  

 

Figure 5.17 HOM phase response when the RF phase is changed. A linear dependence of the two channels 

indicates that the HOM system gives the consistent phase. 

During the measurements, the vector sum phase of all cavities connected to one RF 

station (VS phase) [65] and the probe phase were also recorded. A comparison 

between the VS phase and HOM phase is shown in Figure 5.18 (a). The RMS error 

between the two is approximately 0.4°. The comparison between the probe phase 

and HOM phase is shown in Figure 5.18 (b). The RMS error between the two is 

approximately 0.3°. The RMS error is mainly due to the fact that the setup is not 

fully synchronized with each bunch. The synchronization of the future system is 

guaranteed by dedicated timing system and is expected to reduce this error. 
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Figure 5.18 HOM phase versus VS phase (a); HOM phase versus probe phase (b). 

The RF phase is fixed at 0° and 50 measurements are made. The histogram of the 

HOM phase from channels 1 and 2 and the probe phase are shown in Figure 5.19. 

 

Figure 5.19 Histogram of HOM phase and probe phase when the beam phase is set to zero. 

The standard deviation of HOM1 and HOM2 are 0.49° and 0.55° respectively. As a 

comparison, the standard deviation from the probe phase is 0.43°. The HOM phase 

is consistent with the probe phase. This result is also expected to be improved with 

fully synchronized measurements in the future. 

5.3.5. Theoretical resolution limit 

The resolution of the phase monitor has a strong dependence on the noise level in 

the system. In this section, the theoretical resolution limit is estimated assuming that 

only thermal noise is present. The smallest measurable thermal energy, 𝑈𝑡ℎ , is [66]: 

(a) (b) 

(a) (b) (c) 
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 𝑈𝑡ℎ =
1

2
𝑘𝑏𝑇, 

5.9 

 

where 𝑘𝑏  is the Boltzmann constant, and 𝑇 = 300𝐾  the room temperature. The 

amount of energy is approximately 2.07×10
-21

 J or 0.013 eV. 

The energy deposited into mode 8 for 0.5 nC charge is: 

 

𝑈8 =
𝜔

2

𝑅

𝑄
𝑞2 = 0.6

𝑉

𝑝𝐶
⋅ 5002(𝑝𝐶)2 = 150𝑘 𝑉 ⋅ 𝑝𝐶

= 9.4 × 1011 𝑒𝑉. 

5.10 

 

A fraction, 𝛽, of the deposited energy into this mode can be coupled out through the 

HOM coupler [6], which is assumed to be 0.5. The SNR based on mode 8 and the 

thermal detectable noise power is then 136 dB. The resolution at this SNR, based on 

equation 5.8 at 20 GS/s sampling rate, is 6×10
-8

 degree, which is much better than 

the required 0.01°. In reality the best measured resolution is 0.03°. In this case, the 

SNR is approximately 22 dB, which predicts a resolution of approximately 0.04° 

based on the fitting formula in Figure 5.5. Therefore the SNR dominates the 

resolution. To meet the 0.01° phase resolution requirement, the specially designed 

electronics can be used to amplify the signal level and limit the noise level to 

achieve a higher SNR compared to the current measurement setup based on the fast 

scope. 

5.4. Summary and Outlook 

The coupled LC circuit model described in Chapter 3 has been used to aid the 

development of an HOM-based beam phase monitor for 1.3 GHz cavities. The 

results show that the resolution of the monitor depends crucially on the SNR in the 

system. 
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A data acquisition system has been set up based on a fast scope and various 

industrial standard connection protocols. The measured resolution is approximately 

0.1° for both FLASH and the E-XFEL. This is in agreement with circuit simulations, 

which show that the resolution is governed by the SNR. The best resolution 

achieved with current experimental setup is 0.03°. The dedicated electronics now 

under design for the beam phase monitor can improve the SNR by amplifying the 

signal level and limiting the noise level compared to the current setup based on 

oscilloscope. This will in the end improve the resolution to meet the 0.01° 

resolution requirement.  

The HOM-based beam phase measurement agrees with the one from the LLRF 

system and can be integrated into it. The system can be used for long term RF drift 

monitoring, which is a desirable feature for LLRF system. It is also very critical to 

identify the phase jitter sources in the injector part because the contributions from 

RF gun, 1.3 and 3.9 GHz cryomodules are coupled. The developed beam phase 

monitoring technique can be used to fulfil the task. It should be pointed out that 

these application scenarios do not require 0.01° resolution. 

The electronics that will be used for the beam phase monitor is based on a technique 

called direct sampling. The electronics integrate the HOMBPM and the HOMBPhM 

onto the same PCB board. The system will be compact and avoid the issue of phase 

noise from a local oscillator. The electronics is based on the MicroTCA
14

 standard 

and will be synchronized fully by the DOOCS system. A description of the 

prototype electronics can be found in [8]. Two topologies can be used for the 

system. One topology is that the data acquisition unit can be installed as closely as 

possible to the cryomodule. The data can be processed locally and the results are 

transferred digitally which is immune to various environmental influences. The 

disadvantage is that the electronics should be carefully shielded. The other topology 

is to transfer the signals from the tunnel to an instrumentation room where radiation 

is not an issue any more. However, the signal integrity might be an issue. Our 

current measurements are based on the latter topology. The future HOM electronics 

                                                 
14

 see http://mtca.desy.de/  

http://mtca.desy.de/
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for beam phase measurements will be situated directly under the cryomodule in the 

tunnel at the E-XFEL. 

The 3.9 GHz cavity can, in principle, also be used as HOMBPhM. A band of 

trapped monopole modes needs to be found. In principle, any trapped mode inside a 

cavity can be instrumented for beam phase monitoring. The issue however is that 

the non-monopole modes depend on the beam offset. Also, for a well-centered beam, 

the beam excites no transverse HOMs so that no phase can be extracted due to the 

vanishing amplitudes of these modes. 
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Chapter 6 - HOM-based Beam Position Monitoring 

The amplitude of a dipole mode has linear dependence on the beam offset. Based on 

this fact, HOMBPMs have been built in the past for 1.3 GHz cavities [6] and 

3.9 GHz cavities [7] at FLASH. Similar systems are under development for the 

E-XFEL. However, the fact that the HOMBPMs lose the prediction ability over 

time, as observed at FLASH prevents them working as robust BPMs. This chapter 

presents the principles of the HOMBPMs and the techniques used to mitigate the 

instability. 

In section 6.1, the principle behind this method is described, and data analysis 

techniques are presented. The resolution of the HOMBPM has been monitored over 

several months. Also when bunch travels obliquely with respect to the cavity axis, 

an ambiguity arises in terms of beam position. This is discussed in section 6.2. 

6.1. HOM-based Beam Position Monitoring 

As discussed in Chapter 2, when a bunch of electrons traverses a cavity, HOMs are 

excited. When the beam offset relative to the radius of the beam pipe is small, the 

transverse wakefield is dominated by dipole modes [35]. These dipole modes are 

themselves restricted to a series of bands. Each component presents a transverse 

momentum kick to the beam [3]. Here I focus on those with the largest kick factors 

as only these are likely to have an appreciable impact on the beam dynamics and to 

produce sufficiently large radiation to the attached HOM couplers. This large 

radiation provides high sensitivity for beam position monitoring. 

In the following subsections, the principle of a HOMBPM (section 6.1.1), data 

preparation and signal processing (section 6.1.2), HOMBPM calibration 

(section 6.1.3) and characterization (section 6.1.4) are discussed. Due to the 

unavailability of the HOMBPM system during my project at the E-XFEL, the study 

is based on a similar system installed at FLASH. 
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6.1.1. Introduction to HOMBPM 

HOMBPM system is under development for both 1.3 and 3.9 GHz cavities at the 

E-XFEL. Both systems share the same principle by correlating the signal to the 

beam position. The only difference is that the signal to be used is from a single 

mode at 1.3 GHz cavities and from a band of modes at 3.9 GHz cavities. The 

following study will be based on the 1.3 GHz cavities unless otherwise specified. 

HOMBPMs are based on the beam-excited dipole signals radiated to the HOM 

couplers. Their strength is linearly dependent on the beam charge and offset. By 

normalizing to the beam charge, the beam offset can be obtained. A schematic of 

the HOMBPM signal processing at FLASH is shown in Figure 6.1. It should be 

noted that, for TESLA cavities, there is no down-converting stage for the 

HOMBPM system at the E-XFEL. 

 

Figure 6.1 Schematic of the HOMBPM signal processing. The bandpass filter is centred at 1.7 GHz and 

has a bandwidth of 20 MHz. The ADC sampling clock has a frequency of 108.3 MHz. 

A dipole mode at ~1.7 GHz (TE111-6) [51] was selected for beam position 

monitoring because it has strong coupling to the beam and hence will enhance the 

sensitivity. The HOM signal is filtered at approximately 1.7 GHz with a 20 MHz 

bandwidth and down converted to 20 MHz IF (intermediate frequency) signal [51]. 

The IF signal is then sampled at approximately 108 MHz and transmitted to the 

DOOCS control system [67]. A MATLAB
®
 program was developed to perform 

data acquisition and processing. An example of signal in the time and the frequency 

domain is shown in Figure 6.2. The waveform is approximately 19 µs in duration. 

The corresponding spectrum obtained by FFT spans 0-54 MHz. 

TESLA 
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ADC & 
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Figure 6.2 Example of a dipole signal before (red) and after (green) Butterworth filter in time domain (a) 

and frequency domain (b). Note that the filter does not refer to the one used in the electronics. The noise 

at high frequency (index > 700) has been attenuated in (b) after filtering. The waveform is approximately 

19 µs in duration. The frequency in (b) is in the range of 0-54 MHz. 

 

6.1.2. Data preparation and signal processing 

All data were recoded with a MATLAB
®
 program synchronously [68] bunch by 

bunch based on the interface provided by the DOOCS control system.  

(a) 

(b) 
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6.1.2.1. Data preparation 

Signals from all 16 HOM couplers in the 5
th

 cryomodule at FLASH were recorded. 

The charge was read from the nearby toroid. The beam positions were obtained 

from two BPMs located upstream and downstream of the module. The schematic of 

the measurement setup is shown in Figure 6.3. A straight beam trajectory is 

guaranteed by switching off quadrupoles, dipoles, and RF inside the module 

between the two BPMs. 

 

Figure 6.3 Schematic of the measurement setup. The beam positions are recorded by BPMs 1 and 2. 

Provided the beam travels in a straight trajectory, the beam position in each cavity can be interpolated.  

Each dipole waveform has 2048 samples at approximately 108 MHz sample rate. 

Prior to calibration, I carefully removed data points outside the linear range of 

BPMs. The saturated dipole waveforms were also eliminated. The HOMBPMs were 

calibrated in an approximately 2×2 mm
2
 range and were evaluated with a different 

set of data from the same day. Data gathered from other days were used to evaluate 

the performance. 

The data is constructed as in a matrix format: 

 𝐷 =  (

𝑑𝑎𝑡𝑎1

𝑑𝑎𝑡𝑎2

⋮
𝑑𝑎𝑡𝑎𝑚

) = (𝑑1, 𝑑2, … 𝑑𝑛) ∈  𝑅𝑚×𝑛, 
6.1 

 

where 𝑑𝑎𝑡𝑎𝑚 represents the 𝑚𝑡ℎ measurement. Typically, the digitized waveforms 

or their amplitudes are put in the matrix row wise. The position data is organized in 

a similar way: 
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 𝑃 =  (

𝑥1 𝑦1

𝑥2 𝑦2

⋮
𝑥𝑚

⋮
𝑦𝑚

) ∈ 𝑅𝑚×2, 
6.2 

 

where (𝑥𝑚, 𝑦𝑚) is the beam position at the centre of the cavity interpolated from the 

two BPM readings. The process of calibration aims to find the coefficients between 

the data matrix 𝐷 and the position matrix 𝑃. Before calibration, the signals were 

preprocessed to remove components that have weak correlation with the beam 

position. 

6.1.2.2. Dipole signal processing 

It was found that there was phase noise in the dipole signals. This noise is induced 

by the mode frequency variation as described in Chapter 4 and the electronics. To 

correct the phase noise is not trivial. Therefore I used the magnitude of spectrum of 

a dipole signal. Besides, there are also components in the signal which have no 

correlation with the beam position and need to be filtered. 

The main information is contained within the two peaks (index 350~500) in Figure 

6.2 (b). These two peaks have linear dependence on the beam position [69]. The rest 

of the spectrum is irrelevant for beam position although a finite quality factor and 

frequency leakage will cause it to have a weak correlation with the beam position. A 

15
th

 order Butterworth bandpass digital filter was designed to process the waveform 

and remove the unwanted part. The magnitude of the passband is nearly unity 

(0.1 dB ripple) while the stopband of the filter provides enough damping (-100 dB). 

In principle an ideal filter could be applied to the spectrum directly, but that gives 

non-physical signals in time domain which is not desirable and impossible to 

implement in hardware. 

One example of a signal before and after filtering is show in Figure 6.2. Since the 

following analysis does not rely on the phase information, the obvious distortion of 

phase does not concern us here. The filtered spectra were normalized with respect to 
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the charge. The data was not normalized with respect to the charge measured 

directly but with respect to the mean value from multiple measurements during each 

beam time. In this way, I potentially minimize the noise of the charge measurements 

from the toroid of ca. 3 pC RMS
15

. The histograms of charge measurements on 

various dates are shown in Figure 6.4. 

  

  

Figure 6.4 Histograms of charge measurements on January 28 (a), 25 (b), 23 (c) and May 01 (d) in 2015. 

Note that the number of charge measurements is more than the number of data used for calibration. The 

standard deviation of each histogram is ~0.4%. 

Finally, the filtered spectra are organized into data matrix D for calibration. Forty 

four measurements were selected for calibration from data taken on January 28, 

2015. Another 44 measurements were used for validation from data obtained on the 

same day. Data from January 25, 23 and May 1, 2015 were selected to be within the 

calibration range (see Figure 6.5 (a)) and used for evaluating the calibrated 

HOMBPM (called validation in this thesis). 

                                                 
15

 The toroid system has been improved below 1 pC RMS at the E-XFEL. 

(a) (b) 

(c) (d) 
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Figure 6.5 Interpolated beam position (see Figure 6.3) in the first cavity at 5th cryomodule used for 

calibration, validation and characterization; (b) dipole spectra from both HOM couplers are 

concatenated into a single spectrum. 

6.1.3. HOMBPM calibration 

Model independent analysis methods are used to extract the beam position. I applied 

three methods namely PLS (Partial Least Square), SVD (Singular Value 

Decomposition) and ANN (Artificial Neural Network) to calibrate and compare 

their performance. 

(a) 

(b) 
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The HOMBPMs in the first three cavities of the 5
th

 cryomodule in FLASH were 

calibrated and analysed in order to evaluate the performance of the HOMBPM. 

6.1.3.1. RMS error and resolution 

The RMS error is used as a figure of merit to assess the calibration. The RMS error 

is defined as the root mean square of the difference between interpolated beam 

positions from the two BPMs (Figure 6.3) and the calibrated readouts from the 

HOMBPMs: 

 𝐸𝑟𝑚𝑠 = √
1

𝑚
∑(𝑃𝑖 − 𝑃𝑖

𝐻)2

𝑚

𝑖 = 1

, 
6.3 

 

where 𝑃𝑖
𝐻 is the beam position given by the HOMBPM for measurement 𝑖, 𝑃𝑖 the 

interpolated beam position from the two BPMs for measurement 𝑖 , and 𝑚  the 

number of measurements. 

The resolution is calculated based on the three-BPM method [70] (see Appendix B). 

More specifically, beam positions given by HOMBPM in cavity 2 were compared 

with beam position given by HOMBPMs from cavity 1 and 3. One σ  of the 

residuals can be calculated.  By applying the geometrical factor√2/3 [6], [70], the 

resolution of the HOMBPM can be obtained by: 

 𝑅𝐻𝑂𝑀𝐵𝑃𝑀 = √
2

3
√

1

𝑚
∑(𝑃2

𝐻 −  𝑎𝑃1
𝐻 − 𝑏𝑃3

𝐻 − 𝑐)

𝑚

𝑖 = 1

 2, 
6.4 
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where 𝑃1,2,3
𝐻  represent the beam position measured by HOMBPM at cavity 1, 2 and 

3. The coefficients 𝑎 , 𝑏  and 𝑐  can be calculated by linear regression [70]. The 

HOMBPMs 1, 2, 3 were assumed to have identical resolution in the calculation. 

6.1.3.2. HOMBPM calibration based on PLS, SVD and ANN 

Three methods, PLS, SVD, and ANN, are used to extract the beam position from 

the spectra of the dipole signals. The calibration procedure is: 1. Interpolate the 

beam position into each cavity under consideration and build matrix P 

(equation 6.2). 2. Concatenate the dipole signal spectra from both couplers of a 

cavity and build matrix D (equation 6.1). 3. Calculate the correlation between the 

matrices P and D. 

Written in a compact matrix form, it reads: 

 𝐷 ∙ 𝐶 = 𝑃, 
6.5 

 

where C can be obtained by multiple linear regressing D against P. Each row in 

matrix D corresponds to one measurement, and each column corresponds to one 

predictor in the regression model. One drawback of using direct regression is that, 

as it will be seen below, the predictors are correlated with each other. To alleviate 

the potential issues, I adopted partial least square regression [71]. In this thesis, the 

components found by PLS methods are called latent components and they were put 

in matrix D. 

In the SVD method, the amplitudes of dipole signal in the SVD mode space were 

used for matrix D. The calibration matrix can be obtained by linearly regressing D 

against P. 

The calibration matrix C can also be represented by a neural network to map the 

complicated relations, if any, between D and P. To this end, I designed one 
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feedforward neural network based on the Bayesian regulation algorithm [72], [73]. 

The three methods are discussed respectively in the following subsections. 

 Calibration based on PLS 

In principle each sample from the spectrum (i.e. each column of D) can be treated as 

a single predictor in the linear regression model. However, many samples are 

correlated to a certain extent. The correlation coefficient is defined in equation 6.6: 

 
𝐶𝑜𝑟𝑖𝑗 = 

𝐶𝑜𝑣(𝑑𝑖 , 𝑑𝑗)

√𝐶𝑜𝑣(𝑑𝑖, 𝑑𝑖)𝐶𝑜𝑣(𝑑𝑗 , 𝑑𝑗)

 , 6.6 

 

where 𝑑𝑖  and 𝑑𝑗  are the ith and jth column of matrix D defined in equation 6.1, 

𝐶𝑜𝑣(𝑑𝑖, 𝑑𝑗)  is the covariance between 𝑑𝑖  and 𝑑𝑗 . 𝐶𝑜𝑟𝑖𝑗 = ±1 when there is a 

positive/negative linear correlation between 𝑑𝑖 and 𝑑𝑗. 𝐶𝑜𝑟𝑖𝑗 = 0 if there is no linear 

correlation between 𝑑𝑖 and 𝑑𝑗. 

The samples between index 400 and 500 in the dipole spectrum are highly 

correlated as illustrated by the dark red colour in Figure 6.6. This violates the 

assumption of independence among predictors in multiple linear regression and the 

regression is vulnerable to noise from measurement [71]. 

The PLS regression algorithm was applied to overcome this issue [71]. I used PLS 

to find latent components in the spectrum that have high correlation with the beam 

position. Normally the number of components found is significantly smaller than 

the number of samples. The correlations between latent components were found to 

be zero. 
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Figure 6.6 Correlation coefficients of individual samples in the dipole spectrum (from HOM coupler 1 of 

the first cavity at 5th cryomodule). Note: the dipole peak region (index 400-500) is highly correlated as 

indicated by the dark red colour. 

The latent components are put in the data matrix D column wise. The linear 

regression of D against P is performed to find the calibration matrix C.  The RMS 

error (for both calibration and validation) dependence on the number of latent 

components is shown in Figure 6.7 for cavity 1. Similar results were obtained for 

cavities 2 and 3 [75]. 

 

Figure 6.7 The RMS error dependence on the number of latent components for HOMBPM 1. Data from 

January 28 was used for both calibration and validation. 
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The minimum number of latent components needed for calibration without 

increasing the validation RMS error is six. Therefore, six latent components were 

used for calibration and later for the resolution calculation. 

 Calibration based on SVD 

In the SVD method, the spectrum matrix D is decomposed to find a number of 

principal components (SVD modes) that can best represent the original matrix in a 

least square sense: 

 D = U ∙ S ∙ VT, 
6.7 

 

where 𝑈 and  𝑉𝑇 represent singular vectors and 𝑆 is a diagonal matrix that contains 

the singular values. The details of the SVD method can be found in [6], [7], [76]. 

The original data matrix D can be reconstructed based on the top 𝑘 modes (𝐷𝑘) with 

good approximation. The Euclidean norm between D and 𝐷𝑘 is, 

 ‖𝐷 − 𝐷𝑘‖ =  𝑆𝑘+1, 
6.8 

 

where 𝑆𝑘+1  is the (k+1)
th 

 singlar value in equation 6.7. This gurantees that the 

matrix 𝐷𝑘 is a good approximation to 𝐷 in the least square sense. 

Figure 6.8 (a) shows the top 30 singular values found by the decomposition. The 

singular values change by almost three orders of magnitudes for the top 30 modes.  

The singular vectors in 𝑉 are the SVD modes found by decomposition. The top two 

modes are shown in Figure 6.8 (b). The first SVD mode resembles the original 

dipole spectrum. These modes found are generally a combination of physical modes 

[6]. 
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Figure 6.8 (a) The singular values of the spectrum matrix in cavity 1 and (b) the corresponding top 2 SVD 

modes. 

The amplitude for each spectrum in the SVD mode space can be calculated by the 

dot product: 

 𝐴 = 𝐷 ∙ 𝑉 = (𝐴1
𝑆𝑉𝐷, 𝐴2

𝑆𝑉𝐷 , … 𝐴𝑛
𝑆𝑉𝐷), 

6.9 

 

where 𝐴𝑛
𝑆𝑉𝐷  is a vector containing the amplitudes for all measurements in the n

th
 

SVD mode. 

Figure 6.9 shows the reconstructed spectra based on eight SVD modes. The 

correlation between the amplitudes 𝐴𝑛
𝑆𝑉𝐷  and the beam position is shown in Figure 

6.10. One can observe the amplitude’s linear dependence on the beam position for 

the first two SVD modes. This justifies the usage of linear regression with small 

number of modes. However the dependence becomes complicated with more modes 

(a) 

(b) 
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taken into consideration. This motivates the use of ANN to mimic the complicated 

relation. 

 

Figure 6.9 Spectra reconstructed based on various number of SVD modes used. 𝑫𝒊 means that the first 𝒊  
SVD modes were used for reconstruction. 𝑺𝒊 is the singular value or the Euclidean norm between the 

original matrix and the reconstructed one (equation 6.8). 

 

Figure 6.10 The SVD mode amplitudes versus the beam positions in cavity 1. It is based on the first cavity 

at module 5. The blue lines are used to indicate the beam movement sequence. 
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The SVD mode amplitudes (A in equation 6.9) are put in the data matrix D column 

wise. The linear regression of D against P is performed to find the calibration 

matrix C.  

The RMS error (for both calibration and validation) dependence on the number of 

SVD modes is shown in Figure 6.11 for cavity 1. Similar results were obtained for 

cavities 2 and 3 [75]. 

 

Figure 6.11 The RMS error dependence on the number of SVD modes for HOMBPM 1. The calibration 

and validation were performed on January 28, 2015. 

The minimum number of SVD modes needed for calibration without increasing the 

validation RMS error is 7, 11, and 14 for cavities 1, 2 and 3 respectively. It should 

be pointed out that the number of modes chosen for calibration is somewhat 

arbitrary within the region where the RMS error has minor change (e.g. modes 

number 7-11 in Figure 6.11). Reducing or adding a few modes has a minor 

influence on the RMS error. 

 Calibration based on ANN 

Artificial neural network (ANN) is a branch of statistical learning methods [77]. It 

can be used to learn the complicated relationship from inputs to outputs and has 

wide applications in machine learning. There is a wide range of topologies available 

for different purposes [78]. For beam position extraction, I used feedforward neural 
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network based on one hidden layer with 20 neurons for computation. The inputs are 

the amplitudes calculated in the SVD method. Effort was mainly made to optimize 

the number of inputs for the network with a fixed hidden layer. The number of 

neurons is less concerned because Bayesian regulation techniques are adopted to 

find the optimal size automatically. A detailed description of the algorithms can be 

found in [79]. One schematic of an ANN is shown in Figure 6.12. 

 

Figure 6.12 Schematic of a feedforward neural network. The number of inputs n was varied from 1 to 20 

and the number of hidden neurons is fixed at 20. The number of outputs is set to 1 (for x or y position). 

The input and output mapping can be written as: 

 𝑥 𝑜𝑟 𝑦 =  ∑�̂�𝑗 tanh(∑𝑤𝑖𝑗𝑑𝑖 + 𝑏𝑗

𝑛

𝑖

) + �̂�

𝑗

, 
6.10 

 

where 𝑤𝑖𝑗  represents the weight for the synapse connection 𝑖 and 𝑗 in the hidden 

layer, 𝑏𝑗  is the bias term. �̂�𝑗  and �̂� are the weight and bias for the output layer 

respectively. 

In principle a fraction of the spectrum can be used to train the network. But it has 

proved to be less efficient and consumes large amount of computing time and 

memory. Therefore, the amplitudes used in SVD method were used as inputs for the 

ANN. The number of inputs was varied from 1 to 20 in order to find out the optimal 

number. The interpolated beam positions were used as the outputs (targets) for 

learning. This forms a supervised learning problem. Two separate networks were 

built for x and y respectively. 
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The RMS error dependence on the number of inputs (SVD modes) is shown in 

Figure 6.13 for cavity 1. Similar results were obtained for cavities 2 and 3 [75]. 

 

Figure 6.13 The RMS error dependence on the number of inputs for HOMBPM 1. The points with error 

below 1 micron are excluded and are regarded as over-trained by the network. 

Therefore the number of inputs for ANN was chosen as 4, 2 and 3 respectively, 

based on the same criteria as for other two methods. 

In summary, the HOMBPM is calibrated based on three different methods, namely 

PLS, SVD and ANN. The RMS errors for the calibration are summarized in Table 

6-1. They show comparable performance with each other in terms of validation 

RMS error. PLS operates faster than the other two methods in general. ANN needs 

more time to converge in the learning (training) process. ANN used here refers to 

the topology presented in this section instead of ANN in a general sense. 

Table 6-1 Summary of RMS errors for the calibration data on January 28 

Method PLS SVD ANN 

Cavity # 1 2 3 1 2 3 1 2 3 

January 28 

(x,y) (µm) 
(25,17) (30,19) (36,25) (27,17) (31,17) (32,16) (26,16) (33,22) (35,30) 
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6.1.4. HOMBPM validation and characterization 

6.1.4.1. HOMBPM validation 

Datasets from January 25, January 23 and May 01, 2015 were applied to the 

calibrated HOMBPMs 1, 2 and 3 respectively. The RMS errors for all three 

methods are summarized in Table 6-2. 

Table 6-2 Summary of RMS errors for January 23 and 25 and May 01 based on the calibrated 

HOMBPMs on January 28.  

Method PLS SVD ANN 

Cavity # 1 2 3 1 2 3 1 2 3 

January 25 

(x,y) (µm) 

(42,32) (46,40) (60,30) (43,32) (47,37) (55,31) (46,37) (66,33) (63,46) 

January 23 

(x,y) (µm) 

(32,34) (41,74) (40,77) (35,33) (43,68) (41,82) (37,37) (78,61) (43,10

4) 

May 01 

(x,y) (µm) 

(49,42) (49,73) (51,75) (49,43) (51,76) (49,68) (51,49) (55,81) (52,71) 

In Table 6-2  the RMS error tends to increase from cavity 1 to 3. This is due to the 

fact that BPM 2 used for interpolation has worse resolution than BPM 1 (see Figure 

6.3). 

Several factors contribute to the RMS error given in Table 6-2: 1. The resolution of 

the BPMs 1 and 2 used for calibration 2. Bunch angle effects (the angle is ~100-200 

µrad for the calibration data) 3. The noise of HOMBPM electronics 4. The 

mechanical stability of the cryomodule including the BPMs. 

It should be mentioned that the calibration using signal in time domain as  in [6], 

rather than the frequency domain as shown above, also gives acceptable calibration 

RMS error (approximately 50 µm). However the RMS error for the validation 

degrades over time from 50 µm to millimetre range. 

6.1.4.2. HOMBPM resolution 

The resolution of HOMBPM is calculated based on equation 6.4. The minimum 

possible resolution, assuming that only thermal noise is present, is no more than 
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130 nm [6]. It was reported that the resolution of the HOMBPM is, to a large extent, 

limited by the charge measurement (contributes ~ 6 µm at 1 mm offset) and phase 

noise of the local oscillator (contributes ~ 1 µm at 1 mm offset) [6]. Instead of 

normalization to individual charge measurement, the mean value of multiple 

measurements was used. In this manner, the error in the charge measurement is 

reduced. The calibration based on the spectra of dipole signals mitigates the issue of 

phase jitter. 

Using the procedure presented in the previous sections, a resolution below 2 µm is 

achieved in the y direction for January 23 and 25 and May 1, 2015 based on the PLS 

method. A resolution below 5 µm was observed for most of the data based on all 

three methods. The results are summarized in Figure 6.14. 

 

(a) PLS 
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Figure 6.14 Summary of resolution on January 23 and 25 and May 01, 2015 based on three methods: PLS, 

SVD, ANN (a, b, c). PLS method suggests best resolution with below 2 µm in y and below 4 µm in x. All 

three methods give below ~5 µm resolution. 

(b) SVD 

(c) ANN 
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It should be noted that the resolution was evaluated with a beam position range of 2 

by 2 mm
2
 (Figure 6.5 (a)). Therefore the resolution obtained is an averaged value 

within the range in contrast to the beam jitter data normally used for the calibration 

of a standard BPM.  

In summary, a resolution of ~ 5 µm has been achieved over a period of three months 

in 2015. I used three methods to extract the beam position, namely ANN, SVD and 

PLS. The latter yielded the best resolution and minimum computation time. 

6.2. Dipole Modes induced by Beam Trajectory Angle  

6.2.1. Dipole mode excitation 

The dipole modes radiated to the HOM ports can be caused by a combination of 

bunch transverse offset 𝑦, bunch tilt 𝛼, and bunch trajectory angle 𝜃 with respect to 

the cavity axis [6] as illustrated in Figure 6.15: 
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Figure 6.15 Three scenarios of a bunch traveling through a cavity: (a) the bunch travels with an offset, (b) 

the bunch is tilted and (c) the bunch travels with an angle with respect to cavity axis. 

The corresponding signal voltages have the following dependence [70]: 

 𝑉𝑦 ∝ 𝑦𝑒−
𝑡

2𝜏  sin(𝜔𝑡), 6.11 

 

 𝑉𝛼 ∝ −𝛼𝑒−
𝑡

2𝜏  cos(𝜔𝑡), 6.12 

 

 𝑉𝜃 ∝ 𝜃𝑒−
𝑡

2𝜏  cos(𝜔𝑡), 6.13 

 

where 𝜏 = 𝑄𝐿/𝜔 is the decay constant. Normally the contribution from bunch tilt to 

the signal strength is vanishingly small [6] compared with beam offset signal at 

FLASH and E-XFEL due to the ultrashort bunches (hundred femtoseconds). The 

contribution of the wakefield from bunch trajectory angle is not negligible in several 

cases [6], [51]. Therefore the following discussion will focus on this contribution. 

(a) 

(b) 

(c) 

𝑦 

𝛼 

𝜃 
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6.2.2. Angle effects based on eigenmode expansion 

Based on the method described in Appendix A, the amplitude evolution of a mode 

can be described in time as a harmonic oscillator by equations A.13 and A.14 for 

various bunch trajectories. 

The field distribution of eigenmode TE111-6 is solved for an ideal TESLA cavity 

with the computer codes CST
®
. Equations A.13 and A.14 are then solved 

numerically for various beam offsets and angles. The beam offset was varied from 0 

to 35 mm with a step of 1 mm. The amplitude dependence on the beam offset 𝑦 is 

shown in Figure 6.16. The beam angle 𝜃 was varied from 0 rad to 23.1 mrad with a 

step of 1.1 mrad. The amplitude dependence on the beam angle 𝜃  is shown in 

Figure 6.17. 

 

Figure 6.16 Dependence of amplitude A on the beam offset 𝒚 for mode TE111-6 of a TESLA cavity 

By linear fit, one obtains the following amplitude 𝐴 dependence on the beam offset 

y: 𝐴 = 180𝑦 − 1.5. Similarly, performing a linear fit to the amplitude versus angle 

𝜃 is shown in Figure 6.17 and 𝐴 = 3.9 × 104𝜃 − 1.9. 
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Figure 6.17 Dependence of amplitude A on the angular offset of the beam 𝜽 for mode TE111-6 of a 

TESLA cavity 

From here I deduce that the amplitude of a signal produced by a point charge 

travelling with an angle of 1 mrad is the same as the one travelling with 

approximately 200 μm offset. This is different than predicted in [6], that a 1 mrad 

signal has the same amplitude as a 100 μm offset signal. The difference is due to the 

fact that the angle effect is estimated for a single cell in [6]. The beam trajectory 

angle 𝜃 with respect to the BPM reference evaluated by BPM reading in previous 

sections is in the range of 100-200 μrad during the measurements, which 

corresponds to 20-40 μm in terms of offsets. This adds ambiguity to the beam 

position determination. This is difficult to eliminate because the beam angle excites 

the mode with the same frequency as the beam offset. 

It was observed in Chapter 4 that the dipole mode frequencies vary with a few kHz 

over time. This is not an issue for our present application because in the calibration 

and validation parts, the effects caused by this variation were contained in the 

analysis. In our present system the sampling step (~50 kHz) is insufficient to resolve 

the mode frequency variation. 
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In summary, the principle of a HOMBPM and the procedure of calibration and 

validation have been presented. By working in frequency domain and discarding the 

phase information, the system delivers a resolution below 5 µm over a 2 mm by 

2 mm range stably over a three-month period. The beam angle contributes a few 

tens µm to the calibration and validation RMS error depending on the beam actual 

trajectory angle. Based on the simulation it shows that 1 mrad angle is equivalent to 

~200 µm in terms of the amplitude of the induced dipole signal. 

For the HOMBPM system now being built for the 1.3 GHz cavities at the E-XFEL, 

a directly sampling technique will be utilized [8]. This avoids the issue from LO. 

Instead of using directly the charge value measured by toroids, the monopole signal 

can be used for normalization. In this respect, the performance of HOMBPM may 

be improved. The HOMBPhM will be integrated with HOMBPM onto the same 

electronics in order to make the whole system compact and economical. 

The HOMBPMs for the 3.9 GHz cavities at the E-XFEL have been designed [55] 

similar to the system at FLASH [7]. The modal spectra presented in Chapter 4 can 

be used to finely tune the filters for the electronics. Future work in this area will be 

focused on testing the associated electronics with beam and commissioning at the 

E-XFEL.  



138 

Chapter 7 - Conclusions 

In this thesis, I have investigated the beam instrumentation of higher order modes 

for 1.3 and 3.9 GHz accelerating cavities at the E-XFEL. The accelerating cavities 

are used as beam pickups for beam phase and position monitoring. This novel 

method is non-invasive and economical. The phase of the accelerating field directly 

influences the quality of the electron beam. One main part of my thesis is to explore 

the beam phase measurement based on the beam-excited higher order modes in 

1.3 GHz cavities. In particular, I investigated the beam phase monitoring with a 

coupled circuit model and an experimental setup expressly developed for this 

purpose. The necessary algorithms have been developed and the ways to improve 

the resolution have been identified. The other part of the thesis concerns 

HOM-based beam position monitoring for 1.3 and 3.9 GHz cavities. Both types of 

HOMBPMs installed at FLASH are subject to a drift in calibration. I focused on the 

HOMBPMs for 1.3 GHz cavities. I demonstrated for the first time a stability of the 

calibration over several months by implementing complex signal processing and 

data mining techniques. A study in view of the HOMBPMs for 3.9 GHz cavities at 

the E-XFEL was mainly focused on the understanding of the HOM spectra of the 

eight coupled cavities. Therefore extensive measurements and characterization work 

has been done in this respect. 

7.1. Summary 

Among the beam-excited higher order modes, the monopole modes depend only on 

the charge of the excitation bunch, but not on the offset. This property makes them 

suitable candidates for the beam phase measurement. The dipole modes depend on 

the beam charge and offset. Therefore by normalizing the dipole signal with respect 

to charge, the beam offset can be determined. 

7.1.1. HOM-based phase measurement studies 

A proof of principle of HOM-based beam phase measurements for 1.3 GHz cavities 

has been previously demonstrated. I built on this initial concept to provide a reliable 
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phase measurement. This is the first monitor that can directly deliver the beam 

phase with respect to the accelerating field inside a cavity. I first used a coupled 

circuit model (Chapter 3) to aid the development of the beam phase monitor and 

investigate the means to improve its performance. The circuit model quantifies the 

dependence of the resolution of the beam phase determination on the SNR and the 

sampling frequency. I proposed and fully implemented a fast scope based 

experimental system that is able to be integrated into the accelerator control system. 

Measurements have been made at both FLASH and the European XFEL. For a 

bunch charge of 0.5 nC and accelerating gradient of 20 MV/m, the obtained 

resolution is approximately 0.1° (Chapter 5) which is limited by the signal power. 

With an amplified signal power, the best resolution observed was 0.03°. The 

dedicated electronics under design can improve the SNR by amplifying the signal 

strength and limiting the noise level and hence the resolution is expected to be 

improved to meet 0.01° resolution. 

The dependence of the resolution on the bunch charge was studied experimentally. 

The resolution obtained is consistent with the results from my circuit model. The 

experimental results are also found to be consistent with the phase readouts from the 

LLRF system (see Chapter 5). The theoretical resolution limit is estimated to be 

6×10
-8

 degree, which is several orders of magnitude smaller than the 

required (0.01°). The measured resolution is mainly limited by SNR. Therefore 

there is an opportunity to improve the resolution. Since the monitor delivers the 

beam phase directly with respect to the accelerating field, and is insensitive to the 

drifts of the trigger, it can be used for long term RF drift monitoring, which can 

provide diagnostic information to the current LLRF system. Also it is capable to 

decouple the phase jitter from the injector 1.3 GHz module, the gun or the 3.9 GHz 

module so that it is expected to largely improve the long term performance. 

7.1.2. HOM-based beam position monitoring studies 

My HOMBPM study is focused on means to improve the system stability over time. 

This is an issue of the HOMBPM system at FLASH, for both the 1.3 and 3.9 GHz 

cavities. This problem may also occur at the systems at the E-XFEL. 
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I looked for a cure of the instability of the HOMBPM for the 1.3 GHz cavities at 

FLASH by investigating different signal processing and data mining techniques. A 

resolution below 5 µm was demonstrated over a period of several months. Three 

methods were used, namely, PLS, SVD, and ANN, to extract the beam position. 

The resolutions found by three methods are consistent with each other. The PLS 

method was found to give the best resolution, with less computation power. 

However, with modern digital processors or FPGAs, the computation power needed 

for either method should not be of concern. 

The study of the HOMBPM for the 3.9 GHz cavities at the E-XFEL focused on the 

measurements and characterization of the HOM spectra of the eight coupled cavities 

due to the limited experience with such a system. The simulation of eigenmodes for 

such an electrical large structure is quite demanding, not to mention the 

quantification of the influence of fabrication errors on the spectra. Therefore I have 

measured the HOM spectra of single as well as coupled cavities. The bands to be 

used for the HOMBPM are selected to be around 5440 MHz (propagating modes in 

the 2
nd

 dipole band) to monitor the beam position in a cryomodule and 9040 MHz 

(trapped modes in the 5
th

 dipole band) to monitor the beam position in each cavity. 

The HOMBPM system can also give other valuable information. It can be used to 

detect the cavity misalignment inside the cryomodule, which is important to prove 

that all cavities are still positioned within the required alignment tolerance. The 

system could also be used to find the beam orbit that minimizes the transverse kick 

from wakefields. These application scenarios are independent of the instability issue 

aforementioned. 

7.2. Outlook 

Based on the extensive measurements at FLASH and the E-XFEL, the electronics 

for the HOM-based beam diagnostic system have been designed and prototypes are 

now being built and tested. These include the electronics of HOMBPhM and 

HOMBPM for the 1.3 GHz cavities and the electronics of HOMBPM for the 

3.9 GHz cavities. 
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Future work on the characterization of the prototype electronics with beam is 

planned. Its impact on the LLRF performance needs to be studied. Various 

aforementioned application scenarios can be experimentally explored. 

For the 3.9 GHz cavities, based on the experience with the HOMBPM system at 

FLASH, the beam-based tuning of the electronics is essential for the reliable 

operation. Also the developed algorithms have to be implemented in the control 

system. A study on the possibility to monitor the beam phase in 3.9 GHz cavities is 

also worth investigation. 

With the momentum of HOM-based beam diagnostics, further investigations could 

be made on the use of other higher order modes such as quadrupole modes for beam 

distribution prediction [80]. 
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Appendix A. Condon Method 

Condon [29] stated that an arbitrary electromagnetic field inside a closed resonator 

which satisfies the boundary conditions can be expanded in terms of resonant wave 

patterns (modes). The method is reviewed first and then used for the evaluation of 

angular wakefields. 

A1. Condon Method 

The following derivation is based on Condon [29], and Bane [45]. The electric field 

𝑬  and magnetic field 𝑯  are expanded in terms of orthogonal eigen-functions 

𝒆(𝑚)(𝑥, 𝑦, 𝑧) and 𝒉(𝑚)(𝑥, 𝑦, 𝑧): 

 𝑬(𝑥, 𝑦, 𝑧, 𝑡) =  𝑅𝑒 {∑𝑞(𝑚)(𝑡)𝒆(𝑚)(𝑥, 𝑦, 𝑧)

𝑚

}, A.1 

 

 𝑯(𝑥, 𝑦, 𝑧, 𝑡) =  𝑅𝑒 {∑𝑝(𝑚)(𝑡)𝒉(𝑚)(𝑥, 𝑦, 𝑧)

𝑚

}, A.2 

 

where 𝒆(𝑚)(𝑥, 𝑦, 𝑧)  and  𝒉(𝑚)(𝑥, 𝑦, 𝑧)  are the field distributions of eigenmode 

normalized with the energy stored in the mode: 

 ∫𝒆(𝒎) ⋅ 𝒆(𝒏) 𝑑𝑉 =  𝛿𝑚𝑛, A.3 

 

 ∫𝒉(𝒎) ⋅ 𝒉(𝒏) 𝑑𝑉 = 𝛿𝑚𝑛. A.4 

 

where 𝛿𝑚𝑛is the Kronecker delta function. 

The Maxwell Equation (Ampère's law) in vacuum with current source: 

 ∇ × 𝑯 =  𝑱 + 𝜖0

𝜕𝑬

𝜕𝑡
, 

A.5 

 

https://en.wikipedia.org/wiki/Amp%C3%A8re%27s_circuital_law
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can be written based on equations A.1 and A.2 as: 

 ∇ × ∑𝑝(𝑚)𝒉(𝑚)

𝑚

=  𝑱 + 𝜖0

𝜕

𝜕𝑡
(∑𝑞(𝑚)𝒆(𝑚)

𝑚

). 
A.6 

 

By multiplying 𝒆(𝑚) on both sides of equation A.6 and then integrating over the 

cavity volume, one obtains: 

 
𝜔𝑚

𝑐
𝑝(𝑚)(𝑡) =  𝜖0

𝑑

𝑑𝑡
𝑞(𝑚)(𝑡) + ∫𝑱 ⋅ 𝒆(𝑚)𝑑𝑉

𝑽

. 
A.7 

 

The relation  ∇ × 𝒉(𝑚) =
𝜔𝑚

𝑐
𝒆(𝑚)  is used. Based on the Maxwell equation 

(Faraday’s law): 

 ∇ × 𝑬 =  −𝜇0

𝜕𝑯

𝜕𝑡
, 

A.8 

 

the following equation can be obtained by using the relation ∇ × 𝒆(𝑚) =
𝜔𝑚

𝑐
𝒉(𝑚): 

 
𝜔𝑚

𝑐
𝑞(𝑚)(𝑡) + 𝜇0

𝑑

𝑑𝑡
𝑝(𝑚)(𝑡) = 0. 

A.9 

 

From the equations A.7 and A.9, 𝑝(𝑚)(𝑡) can be decoupled from 𝑞(𝑚)(𝑡) to obtain a 

second order differential equation of 𝑞(𝑚)(𝑡): 
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 (
𝑑2

𝑑𝑡2
+ 𝜔𝑚

2 )𝑞(𝑚)(𝑡) = −
1

𝜖0

𝑑

𝑑𝑡
(∫𝑱 ⋅ 𝒆(𝑚)𝑑𝑉

𝑉

) . 
A.10 

 

The equation A.10 dictates the amplitude evolution over time of mode 𝑚. 

A2. Mode Amplitude Evolution for various Beam Trajectories 

There is no restriction on the trajectory of the current source 𝑱 in equation A.10. 

Assuming a charge moving with trajectory of (𝑥0(𝑡), 𝑦0(𝑡), 𝑧0(𝑡))  and 

density 𝜌(𝑥, 𝑦, 𝑧, 𝑡) = 𝑄𝛿(𝑧 − 𝑧0)𝛿(𝑥 − 𝑥0)𝛿(𝑦 − 𝑦0), the current source then can 

be written as: 

 𝑱 =  𝜌𝑐𝒓, 
A.11 

 

where 𝒓 is the unit instant direction vector along the trajectory. By substituting A.11 

for A.10, the amplitude 𝑞(𝑡) can be solved. 

 (
𝑑2

𝑑𝑡2
+ 𝜔𝑚

2 )𝑞(𝑚)(𝑡) = −
𝑄𝑐

𝜖0

𝑑

𝑑𝑡
(𝒆(𝑚)(𝑥0, 𝑦0, 𝑧0) ⋅ 𝒓). 

A.12 

 

Two scenarios are considered here: 

1. The charge travels in parallel to the cavity axis 𝒛: 
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Figure A.1 A point charge travels in parallel with the cavity axis z 

 (
𝑑2

𝑑𝑡2
+ 𝜔𝑚

2 )𝑞(𝑚)(𝑡) = −
𝑄𝑐

𝜖0

𝑑

𝑑𝑡
(𝒆(𝑚)(𝑥0, 𝑦0, 𝑧0 + 𝑐𝑡) ⋅ 𝒛). 

A.13 

 

2. The charge travels at an angle to the cavity axis 𝒛 : 

 

Figure A.2 A point charge travels at an angle 𝜽 to the cavity axis z 
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(
𝑑2

𝑑𝑡2
+ 𝜔𝑚

2 )𝑞(𝑚)(𝑡) = −
𝑄𝑐

𝜖0

𝑑

𝑑𝑡
(𝒆(𝑚)(𝑥0, 𝑦0 + 𝑐𝑡sin𝜃, 𝑧0 + 𝑐𝑡cos𝜃)𝒛′)

=  −
𝑄𝑐

𝜖0

𝑑

𝑑𝑡
(𝒆(𝑚)(𝑥0, 𝑦0 + 𝑐𝑡sin𝜃, 𝑧0 + 𝑐𝑡cos𝜃)(𝒚sin𝜃

+ 𝒛cos𝜃)). 

A.14 

 

The eigenmode field 𝒆(𝑚) can be obtained from any 3D eigenmode field solver. The 

equations A.13 and A.14 can be solved numerically. 
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Appendix B. Data Analysis Techniques 

This is a collection of signal processing techniques used throughout the thesis. 

B1. Singular Value Decomposition 

Singular value decomposition (SVD) is used to lower the dimensions required for 

data analysis while retaining most of the information in a matrix. 

A 𝑚 × 𝑛 real matrix A can be decomposed as: 

 

𝐴 = 𝑈 ∙ 𝑆 ∙ 𝑉𝑇 , 

𝑈 = [𝑢1, 𝑢2, … 𝑢𝑚] , 

𝑆 = 𝑑𝑖𝑎𝑔(𝑠11, 𝑠22, … , 𝑠𝑘𝑘), 𝑘 ≤ min(𝑚, 𝑛), 

𝑉𝑇 = [𝑣1, 𝑣2, … 𝑣𝑛] , 

B.1 

 

where 𝑈 is a 𝑚 × 𝑚 matrix with orthonormal columns 𝑢𝑚 . 𝑆 is a 𝑚 × 𝑛 diagonal 

matrix. The diagonal elements are sorted in descending order and are called singular 

values. 𝑉 is a 𝑛 × 𝑛 matrix with orthonormal columns 𝑣𝑛. 𝑉𝑇 is the transpose of 𝑉.  

If matrix A is decomposed as in B.1, it can be reconstructed with: 

 𝐴𝑘 = ∑𝑠𝑖𝑖 ∙ 𝑢𝑖 ∙ 𝑣𝑖
𝑇

𝑘

𝑖=1

, 𝑘 ≤ 𝑟𝑎𝑛𝑘(𝐴). 
B.2 
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Equation B.2 is a rank k approximation to the matrix 𝐴. It can be proved that the 

2-norm distance
16

 between the original and reconstructed matrices is given by: 

 ‖𝐴 − 𝐴𝑘‖ = 𝑠𝑘+1. 
B.3 

 

Equation B.3 guarantees that 𝐴𝑘 is an optimized approximation to 𝐴  in the least 

square sense. 

B2. Linear Regression and PLS – Partial Least Square 

𝑋 is a 𝑛 × 𝑚 predictor matrix with the form 𝑋 = [𝑥1 𝑥2 …𝑥𝑚], which contains 𝑚 

predictors and 𝑛 observations or measurements. The response variable 𝑌 contains 

only one variable and 𝑛 observations or measurements. Linear regression models 

the relation between 𝑋 and 𝑌 as: 

 𝑦 =  𝛽0 + 𝛽1𝑥1 + ⋯+ 𝜖, 
B.4 

 

where 𝛽0 is the intercept term and 𝜖 is the error term. The error may come from 

effects of other variables and the measurement imperfections. 

The regression coefficients in B.4 can be obtained in a least square sense: 

 𝛽 = 𝑉−1𝑐𝑜𝑣(𝑋, 𝑌), 
B.5 

 

where 𝑉  is the covariance matrix of 𝑋 , i.e. 𝑣𝑖𝑗  =  𝑐𝑜𝑣(𝑥𝑖, 𝑥𝑗) and 𝑐𝑜𝑣(𝑋, 𝑌)  the 

vector of covariances between 𝑋 and 𝑌 and 𝛽 contains the coefficient 𝛽𝑖 in B.4. 

                                                 
16

 The 2-norm distance is defined as the root mean square sum of each element in  matrix 𝐴 − 𝐴𝑘 
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Once the coefficient 𝛽 is obtained, the model is ready to make predictions. In the 

ideal case, the prediction error 𝑌 − 𝛽 ∙ 𝑋 will be uncorrelated with the predictor 

variable 𝑥𝑖. 

If predictors in 𝑋 are correlated, the number of predictors can be reduced. Partial 

least square (PLS) is one method to reduce the number when some of the predictors 

are collinear or correlated. The new predictor variables �̂�  can be written as the 

linear combination of the original ones from 𝑋. The combination factors are found 

to maximize the covariance between the predictors and the response while �̂� still 

possessing orthogonality and normalization properties. Therefore the algorithm 

provides a parsimonious model when the predictors are highly collinear. The details 

of the algorithm can be found in [81]. 

B3. Signal Decomposition 

Signal 𝑥(𝑡) = 𝐴sin(𝜔0𝑡 + 𝜙) can be decomposed into two components: 

𝐶1(𝑡) = 𝐴sin(𝜔0𝑡 + 𝜙) sin(𝜔0𝑡) =
1

2
𝐴[cos(𝜙) − cos(2𝜔0𝑡 + 𝜙)], B.6 

 

𝐶2(𝑡) = 𝐴sin(𝜔0𝑡 + 𝜙) cos(𝜔0𝑡) =
1

2
𝐴[sin(𝜙) + sin (2𝜔0𝑡 + 𝜙)]. B.7 

 

By filtering the high frequency components (2
nd

 part on the right side) in equations 

B.6 and B.7, the phase term (1
st
 part on the right side) can be recovered. This is how 

the beam phase can be determined as described in Chapter 5. 

The amplitude 𝐴 of the signal component can be readily obtained by taking square 

sum of the zero frequency components in equations B.6 and B.7. 

B4. Fourier Transform 

A signal in time domain 𝑥(𝑡) and in frequency domain 𝑋(𝜔) are connected by the 

transform: 
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 𝑋(𝜔) = ∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

∞

−∞

, 
B.8 

 

where 𝑗 is the imaginary unit and 𝜔 the angular frequency. The signal 𝑥(𝑡) can be 

obtained by an inverse transform: 

 𝑥(𝑡) =
1

2𝜋
∫ 𝑋(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔

∞

−∞

, 
B.9 

 

𝑋(𝜔) is commonly referred to as the spectrum of signal 𝑥(𝑡). The equation B.9 is a 

synthesis equation of the signal 𝑥(𝑡). It should be pointed out that not every signal 

𝑥(𝑡) can be analysed by the Fourier transform. 

As an example, the Fourier transform of a Gaussian signal 
1

𝜎√2𝜋
𝑒

−
𝑡2

2𝜎2  is still 

Gaussian 𝑒−
𝜔2𝜎2

2 . It can be easily seen that, for a short bunch, the spectrum is rich of 

various frequency components. 

Let us assume that there is some time delay 𝑡0 of the signal 𝑥(𝑡). Accordingly 𝑋(𝜔) 

is: 

 𝑋(𝜔) = 𝑒𝑗𝜔𝑡0  ∫ 𝑥(𝑡 − 𝑡0)𝑒
−𝑗𝜔𝑡𝑑𝑡

∞

−∞

. 
B.10 

 

The Fourier transform of the time delayed signal 𝑥(𝑡 − 𝑡0) is 𝑋(𝜔)𝑒−𝑗𝜔𝑡0. A time 

delay is equivalent to adding a linear phase to each component of the spectrum 

𝑋(𝜔) while there is no influence on the amplitude of the signal. 
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A frequency shift ∆𝜔 in the spectrum 𝑋(𝜔) leads to: 

 𝑥(𝑡) =
1

2𝜋
𝑒−𝑗∆𝜔 𝑡  ∫ 𝑋(𝜔 − ∆𝜔 )𝑒𝑗𝜔𝑡𝑑𝜔

∞

−∞

. 
B.11 

 

The frequency shift modulates the time domain signal 𝑥(𝑡) by 𝑒𝑗∆𝜔𝑡  and has the 

influence on the amplitude of 𝑥(𝑡). 

B5. The Characteristic Polynomial of a Matrix 

For a 𝑛 ×  𝑛 matrix 𝐴, a characteristic polynomial can be defined as: 

 
𝑃(𝜆) = det(𝐴 − 𝜆𝐼) = 𝑏0𝜆

𝑛 + 𝑏1𝜆
𝑛−1 + 𝑏2𝜆

𝑛−2 + ⋯+ 𝑏𝑛−1𝜆 + 𝑏𝑛, B.12 

 

where 𝐼 is the 𝑛 ×  𝑛 identity matrix and 𝑏𝑖 is the coefficient of the characteristic 

polynomial. The eigen values of the matrix 𝐴  can be obtained from the roots 

of 𝑃(𝜆) = 0. The procedure works well when 𝑛 is small and the solution becomes 

complicated when 𝑛 increases. 

For the problem in Chapter 3, the eigen values are already known. The problem is to 

estimate the unknown parameters or elements inside the matrix 𝐴 (various coupling 

terms in Chapter 3). The relationship between the coefficients 𝑏𝑖𝑠 and the matrix 

elements needs to be found. It has been proved that the coefficients can be identified 

based on the following recursive formula [82]: 
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𝑏0 = (−1)𝑛, 𝑏1 = −𝑏0𝑇1, 𝑏2 = −
1

2
(𝑏1𝑇1 + 𝑏0𝑇2), 

 𝑏𝑛 = −
1

𝑛
(𝑏𝑛−1𝑇1 + 𝑏𝑛−2𝑇2 + ⋯ + 𝑏1𝑇𝑛−1 + 𝑏0𝑇𝑛), 

B.13 

 

where 𝑇𝑖  denotes the trace of matrix 𝐴𝑖  (the power 𝑖 of matrix 𝐴). The trace of a 

matrix is a relative simple property to compute compared with eigen values or eigen 

vectors. This enables us to estimate the parameters inside the matrix 𝐴. 

B6. Error Propagation 

Any measurements are subject to uncertainties or errors. When a quantity is based 

on the calculation of a set of measured data, the uncertainty of the measurements 

propagates to the calculated results. 

Let us consider a calculated quantity 𝑢 = 𝑓(𝑥, 𝑦), where 𝑥 and 𝑦 are the measured 

quantities with uncertainties 𝜎𝑥 and 𝜎𝑦, and 𝑓 is the mathematical rule of how 𝑢 is 

calculated. 

By expanding 𝑓(𝑥, 𝑦)  around the mean value  �̅�, �̅�  , it can be shown that the 

uncertainty 𝜎𝑢 can be written as: 

 𝜎𝑢
2  ≅ (

𝜕𝑓

𝜕𝑥
)
2

𝜎𝑥
2 + (

𝜕𝑓

𝜕𝑦
)
2

𝜎𝑦
2 + 2𝑐𝑜𝑣(𝑥, 𝑦)

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
, 

B.14 

 

where 𝑐𝑜𝑣(𝑥, 𝑦)  represents the covariance of 𝑥  and 𝑦 . The covariance term can 

influence the uncertain 𝜎𝑢 a lot depending on the specific measurement. Therefore, 

the measurements of quantities 𝑥  and 𝑦  should be designed as statistically 

independent as possible. The equation B.14 can then be simplified to: 
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 𝜎𝑢
2  ≅ (

𝜕𝑓

𝜕𝑥
)
2

𝜎𝑥
2 + (

𝜕𝑓

𝜕𝑦
)
2

𝜎𝑦
2. 

B.15 

 

The BPM resolution can be calculated based on three-BPM method. If there are 

three identical beam position monitors (BPMs 1, 2, 3 in one direction) and they are 

equally positioned. These BPMs are perfectly aligned and there is no coupling 

between 𝑥 and 𝑦 readings. The beam position at BPM 2 can be read out from the 

beam position monitor as 𝑥2  and also be interpolated as �̂�2 based on the BPM 1 and 

BPM 3 by assuming a straight trajectory: 

 
�̂�2 =

1

2
(𝑥1 + 𝑥3). B.16 

 

 
�̂�2 − 𝑥2 = 

1

2
(𝑥1 + 𝑥3) − 𝑥2. B.17 

 

Based on equations B.16 and B.17 , the uncertainty 𝜎𝑥2
 can be estimated based on 

the uncertainty 𝜎�̂�2−𝑥2
: 

 𝜎𝑥2
= √

2

3
𝜎�̂�2−𝑥2 

. 
B.18 

 

This can be interpreted as resolution of the BPM as used in Chapter 6. 
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Appendix C. Delta Wake and simple RLC Circuit 

Due to the orthogonality of eigenmodes in a closed cavity, each mode can be treated 

individually and be simulated with a lumped resonant circuit. A parallel circuit is 

used to illustrate the connection between circuit parameters and the RF parameters 

for a cavity. 

C1. Parallel RLC Circuit 

A simple parallel RLC circuit consists of a resistor 𝑅, a capacitor 𝐶, and an inductor 

𝐿 as shown in Figure C.1.  

 

Figure C.1 A parallel RLC circuit. 

The circuit forms a simple harmonic oscillator. The energy stored in such a circuit 

oscillates between the inductor and capacitor. The presence of the resistor consumes 

the energy, thus the oscillation will die away over time. The quality factor, as 

defined in Chapter 2, for the circuit is: 

 𝑄0 = 

1
2𝑉2𝐶

1
2𝑉2𝑇/𝑅/2𝜋

= 𝐶𝑅𝜔0, 
C.1 

 

where 𝑉  is the amplitude of voltage across the capacitor C, T is the oscillation 

period, and 𝜔0 is the resonant angular frequency. 

The input (current 𝐼) and output (voltage 𝑉) in frequency domain are related by: 
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 𝑉𝑜𝑢𝑡(𝜔) =  
𝑅

𝑗𝑅 (𝜔𝐶 −
1

𝜔𝐿) + 1
𝐼(𝜔). C.2 

 

The resonant frequency is defined as the frequency at which the response takes the 

maximum value, so that 𝜔0 = 
1

√𝐶𝐿
 . Two half power (3 dB) frequencies (𝜔1,𝜔2) can 

be found on the resonant curve, therefore two equations are set: 

 𝑅
𝜔2

2

𝜔0
2 − 𝜔2𝐿 − 𝑅 = 0 , 

C.3 

 

 𝑅
𝜔1

2

𝜔0
2  + 𝜔1𝐿 − 𝑅 = 0. 

C.4 

 

Based on equations C.3 and C.4, the relation between 𝑄0 and the bandwidth ∆𝜔 of 

the resonance curve: 

 ∆𝜔 = 𝜔2− 𝜔1 = 
𝜔0

𝑄
 , 

C.5 

 

where  𝜔2 >  𝜔1 is assumed. 

The impedance of such a circuit can be defined as the voltage and current ratio: 

 𝑍(𝜔) =
𝑅

𝑗𝑅 (𝜔𝐶 −
1

𝜔𝐿) + 1
 . C.6 
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For complex RF structures, it is not trivial to determine the capacitance and 

inductance directly from the geometry. Therefore, it is useful to express 𝑍(𝜔) in 

terms of 𝑄0 and 𝜔0, which are readily available from measurements or simulations. 

 𝑍(𝜔) =
𝑅

𝑗𝑄0 (
𝜔
𝜔0

−
𝜔0

𝜔 ) + 1
. C.7 

 

As we can perceive from equation C.7, the impedance shows different electrical 

properties: 

1. 𝜔 > 𝜔0, the impedance is capacitive. 

2. 𝜔 < 𝜔0, the impedance is inductive. 

3. 𝜔 = 𝜔0, the impedance is purely resistive. 

The real part of the impedance shows how the energy decays over time: 

 
𝑅𝑒{𝑍(𝜔)} =

−𝑅

1 + 𝑄0
2 (

𝜔0

𝜔 −
𝜔
𝜔0

)
2 ≅

−𝑅

1 + 4(
𝜔 − 𝜔0

∆𝜔 )
2. C.8 

 

Equation C.8 justifies the Lorentz fitting equation used in Chapter 4. 

C2. Circuit natural response when t < 0, t = 0, t > 0 

If 𝑡 = 0 is defined as the time when beam enters a RF cavity, the response of the 

simple RLC circuit can be used to simulate the wake potential for a single mode. 

Here three regimes are discussed namely 𝑡 <  0, 𝑡 =  0, 𝑡 >  0:  

 𝑡 <  0: the voltage across the capacitor and the current through the inductor 

in Figure C.1 are zero. This means that there is no wakefield ahead of the 

bunch according to causality for ultra-relativistic bunch. 
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 𝑡 =  0: the circuit in Figure C.1 is fed with a driving current 𝐼(𝑡) =  𝑞0𝛿(𝑡). 

The voltage across capacitor ramps up to 
𝑞0

𝐶
 instantly. At the same time, the 

current that goes through the inductor is zero. These two initial conditions 

serve as the starting point of the RLC circuit when 𝑡 > 0. From the energy 

conservation point of view, the energy stored in the capacitor is 
1

2
𝐶𝑈2 or 

1

2

𝑞0
2

𝐶
 and the energy loss when beam transverses an empty cavity is 𝑞0𝑈1 . 

Therefore the voltage is 𝑈1(𝑡 =  0 ) =
1

2

𝑞0

𝐶
. 

 𝑡 >  0: the circuit response is first solved in s domain, and then the time 

domain solution is obtained through inverse Laplace transformation. 

The components of 𝑅, 𝐿, 𝐶 can be modelled as 𝑅, 𝑠𝐿 and 1/𝑠𝐶  in s domain. 

Therefore the response of the circuit can be written as: 

 ℒ(𝑉𝑜𝑢𝑡) =  

𝑞0

𝐶 𝑠

𝑠2 + ∆𝜔𝑠 + 𝜔0
2 , 

C.9 

 

where ℒ represents the Laplace operator and ∆𝜔 is defined in equation C.5. 

The output voltage in s domain can be expanded as: 

 ℒ(𝑉𝑜𝑢𝑡) =  
𝐴1

𝑠 − (−𝑎 + 𝑗𝑏)
+

𝐴1
∗

𝑠 − (−𝑎 − 𝑗𝑏)
  , 

C.10 

 

where 𝑎 =
∆𝜔

2
, 𝑏2 = 𝜔0

2 −
∆𝜔2

4
, 𝐴1 is a complex number containing the information 

of initial conditions and 𝐴1
∗  the complex conjugate of 𝐴1. 

By inverse transformation, the voltage is: 
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 𝑉𝑜𝑢𝑡(𝑡) = 𝑒−𝑎𝑡(𝐴1𝑒
𝑗𝑏𝑡 + 𝐴1

∗𝑒−𝑗𝑏𝑡) , 𝑡 ≥ 0+. 
C.11 

 

The constants 𝐴1 and  𝐴1
∗  can be determined based on the initial conditions. When 

the quality factor is high enough, which is the general case for SRF cavities, the 

time response is: 

 𝑉𝑜𝑢𝑡(𝑡) =  
𝑞0

𝐶
  
𝜔0

𝜔𝑑
𝑒−

∆𝜔
2

𝑡cos (𝜔𝑑𝑡 + arctan (
∆𝜔

2𝜔𝑑
)) , 

C.12 

 

where 𝜔𝑑 = 
√|∆𝜔2−4𝜔0

2|

2
. When 𝑄 ≫ 1, 𝜔𝑑 ≅ 𝜔0.  

Based on 𝜔0 = 
1

√𝐶𝐿
 , 𝑄0 = 𝐶𝑅𝜔0, in the context of wakefield, a loss factor can be 

defined as: 

 𝑘𝑙𝑜𝑠𝑠 = 
𝐸𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝑐ℎ𝑎𝑟𝑔𝑒

𝑝𝑜𝑖𝑛𝑡 𝑐ℎ𝑎𝑟𝑔𝑒2
= 

1

2𝐶
=

𝜔0𝑅

2𝑄0
. 

C.13 

 

Equation C.12 is useful when expressed in quantities which can be obtained through 

measurements or simulation: 

 𝑉𝑜𝑢𝑡(𝑡) =  2𝑘𝑙𝑜𝑠𝑠𝑞0  
𝜔0

𝜔𝑑
𝑒−

∆𝜔
2

𝑡 cos (𝜔𝑑𝑡 + arctan (
∆𝜔

2𝜔𝑑
)). 

C.14 

 

In a superconducting cavity, 𝑄0  is normally in the order of 109~1010 , therefore 

equation C.14 can be further simplified as: 



166 

 𝑉𝑜𝑢𝑡(𝑡) =  2𝑘𝑙𝑜𝑠𝑠𝑞0 𝑒
−

∆𝜔
2

𝑡 cos(𝜔𝑑𝑡). 
C.15 

 

Interestingly, 𝑉𝑜𝑢𝑡 can also be obtained directly by inverse Laplace transformation 

of C.9: 

 𝑉𝑜𝑢𝑡(𝑡) =  
1

2𝜋𝑗
  ∫ 𝑉(𝑠)𝑒𝑠𝑡

𝛾+𝑗∞

𝛾−𝑗∞

𝑑𝑠 , 
C.16 

 

where 𝛾  lies on the right side of any poles from 𝑉(𝑠)𝑒𝑠𝑡 . The integral in 

equation C.16 can be evaluated by constructing contours C1 and C2 as shown in 

Figure C.2. 

.  

Figure C.2 The integral contours C1 and C2 used for equations C.17 and C.19. 

If 𝑡 < 0, one can take the contour C1 so that according to Cauchy’s theorem, the 

integral is zero: 
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𝑉𝑜𝑢𝑡(𝑡) =  
1

2𝜋𝑗
 lim
(𝑅→ +∞)

(

 ∮ 𝑉(𝑠)𝑒𝑠𝑡𝑑𝑠
𝐶1

− ∫ 𝑉(𝑠)𝑒𝑠𝑡 𝑑𝜃

−
𝜋
2

𝜋
2 )

 = 0 − 0 = 0. 
C.17 

 

If t = 0, equation C.16 becomes: 

 𝑉𝑜𝑢𝑡(0) =  
1

2𝜋𝑗
  ∫ 𝑉(𝑠)

𝛾+𝑗∞

𝛾−𝑗∞

𝑑𝑠. 
C.18 

 

The integral is evaluated along the contour C2 and according to Residue theorem 

one can obtain: 

𝑉𝑜𝑢𝑡(0) =  
1

2𝜋𝑗
 lim
(𝑅→ +∞)

(

 
 

∮𝑉(𝑠)

𝐶2

𝑑𝑠 − ∫ 𝑉(𝑠) 𝑑𝜃

3𝜋
2

𝜋
2

)

 
 

= (𝐴1 + 𝐴1
∗) − 

1

2
(𝐴1 + 𝐴1

∗) =
1

2
(𝐴1 + 𝐴1

∗) =  
1

2

𝑞0

𝐶
. 

C.19 

 

In summary, the voltage response 𝑉𝑜𝑢𝑡 is: 

 𝑉𝑜𝑢𝑡(𝑡) = { 

0,                                                                𝑡 < 0,
𝑘𝑙𝑜𝑠𝑠𝑞0,                                                     𝑡 = 0,

2𝑘𝑙𝑜𝑠𝑠𝑞0 𝑒
−

∆𝜔
2

𝑡 cos(𝜔𝑑𝑡),                     𝑡 > 0.

 
C.20 
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C3. Capacitance and 𝑹/𝑸 

The quantity 𝑅/𝑄 as defined in Chapter 2 can be written as: 

 
𝑅

𝑄
= 

1

𝐶𝜔0
= √

𝐿

𝐶
 . 

C.21 

 

𝑅/𝑄  is a useful quantity to describe the beam cavity interaction and does not 

depend on the cavity size and material. Therefore there is no dependence on the 

resistance 𝑅 in the expression. Based on the definition of loss factor (equation C.13), 

the relation between 𝑅/𝑄 and loss factor 𝑘𝑙𝑜𝑠𝑠 can be obtained: 

 
𝑅

𝑄
=  

1

𝐶𝜔0
= 

2𝑘𝑙𝑜𝑠𝑠

𝜔0
. 

C.22 

 

Several RLC circuits can be coupled together to represent a band of modes as 

shown in Chapter 3 and Appendix D. This technique is exploited in Chapter 3 and 

also demonstrated in Appendix D. 
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Appendix D. Double Chain Circuit Model 

D1. Double Chain Circuit Model 

The first two dipole bands for the TESLA cavity are TE111 and TM110 like bands 

[35]. The modes in these bands are hybrid in their nature. Compare to the circuit 

model for monopole band in Chapter 3, two chains of circuits are required to 

represent the TE and TM bands. The model is schematically shown in Figure D.1 

[83]. Mutual inductances 𝑴  and �̂�  are introduced in order to account for the 

coupling within each band. The cross coupling term �̅̅̅̅�  represents the coupling 

between TE and TM band. Beam current is coupled to the TM band by adding a 

parallel current source to the capacitors in TM band. 

The model was reported in [45] and I tailored it to represent the first two dipole 

bands for a cavity with nine identical cells. The dispersion relation is obtained from 

an infinite circuit model. The infinite chain is then truncated to represent a nine cell 

cavity. 

 

Figure D.1 A two chain coupled LC circuit model. The quantities with circumflex are reserved for the TE 

band, e.g. �̂� is the inductance for the TE band circuit. 𝑴 and �̂� indicate the mutual inductance in the TM 

and TE band circuit model respectively. A third coupling term �̅� is introduced in the model to account 

for the coupling between the TE and TM bands. The beam current 𝑰𝒃𝒏 is used to represent the beam 

current or the excitation for the circuit model. Note that the notation is slightly different compared with 

[83]. 
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The dynamics of the system is governed by the equations for the TE and TM band 

respectively as shown in [83]: 

1

�̂�𝑛

∫𝑖̂𝑛𝑑𝑡 + �̂�𝑛

𝑑𝑖̂𝑛
𝑑𝑡

+
�̂�𝑛+1

2

𝑑𝑖̂𝑛+1

𝑑𝑡
+

�̂�𝑛−1

2

𝑑𝑖̂𝑛−1

𝑑𝑡
−

�̅�𝑛−1

2

𝑑𝑖𝑛+1

𝑑𝑡

+
�̅�𝑛−1

2

𝑑𝑖𝑛−1

𝑑𝑡
= 0, 

D.1 

 

1

𝐶𝑛
∫(𝑖𝑛 − 𝐼𝑏𝑛)𝑑𝑡 + 𝐿𝑛

𝑑𝑖𝑛
𝑑𝑡

−
𝑀𝑛+1

2

𝑑𝑖𝑛+1

𝑑𝑡
−

𝑀𝑛−1

2

𝑑𝑖𝑛−1

𝑑𝑡
+

�̅�𝑛+1

2

𝑑𝑖̂𝑛+1

𝑑𝑡

−
�̅�𝑛−1

2

𝑑𝑖̂𝑛−1

𝑑𝑡
= 0, 

D.2 

 

where 𝐼𝑏𝑛 represents the beam current in cell 𝑛. For convenience, the equation is 

normalized by the current terms: 𝑎𝑛 = 𝑖𝑛𝜔𝑛√𝐿𝑛  and  �̂�𝑛 = 𝑖̂𝑛�̂�𝑛√�̂�𝑛 . Then 

equations D.1 and D.2 become: 

 �̂�𝑟
2 ∬�̂�𝑛 𝑑𝑡 + �̂�𝑛 +

1

2
�̂�(�̂�𝑛+1 + �̂�𝑛−1) −

1

2
�̅�

�̂�𝑟

𝜔𝑟

(𝑎𝑛+1 − 𝑎𝑛−1) = 0 , 
D.3 

 

 

𝜔𝑟
2 ∬𝑎𝑛 𝑑𝑡 + 𝑎𝑛 −

1

2
𝜂(𝑎𝑛+1 + 𝑎𝑛−1) +

1

2
�̅�

𝜔𝑟

�̂�𝑟

(�̂�𝑛+1 − �̂�𝑛−1)

= 𝜔𝑟
2 ∬𝑎𝑏 𝑑𝑡 . 

D.4 
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The coupling terms are defined as,  𝜂
𝑛±

1

2

=
𝑀𝑛±1

√𝐿𝑛𝐿𝑛±1
 ,  �̂�

𝑛±
1

2

=
�̂�𝑛±1

√�̂�𝑛�̂�𝑛±1

 and  �̅�
𝑛±

1

2

=

�̅�𝑛±1

√𝐿𝑛�̂�𝑛±1

 ,where �̂�𝑟 and 𝜔𝑟 are the resonant frequencies for the TE111 and TM110 

modes in a single cell respectively. �̂� and 𝜂 are the coupling terms for the TE and 

TM bands, and �̅� is responsible for the TE to TM band coupling. I assumed: �̂�
𝑛+

1

2

=

�̂�
𝑛−

1

2

= �̂� , 𝜂
𝑛+

1

2

= 𝜂
𝑛−

1

2

= 𝜂  and �̅�
𝑛+

1

2

= �̅�
𝑛−

1

2

= �̅� . The 𝑛 ±
1

2
 indices indicate the 

coupling from the right and left side in the same cell 𝑛. 𝑎𝑏 is beam excitation source. 

Since the cavity under consideration has nine cells, there are 18 coupled recursive 

equations in total. 

D2. Infinite Periodic coupled Circuit 

It is straight forward to translate equations D.3 and D.4 into frequency domain 

(beam current is set to zero): 

 (1 −
�̂�𝑟

2

𝜔2
) �̂�𝑛 +

1

2
�̂�(�̂�𝑛+1 + �̂�𝑛−1) −

1

2
�̅�

�̂�𝑟

𝜔𝑟

(𝐴𝑛+1 − 𝐴𝑛−1 ) = 0 , 
D.5 

 

 (1 −
𝜔𝑟

2

𝜔2
)𝐴𝑛 −

1

2
𝜂(𝐴𝑛+1 + 𝐴𝑛−1 ) +

1

2
�̅�

𝜔𝑟

�̂�𝑟
(�̂�𝑛+1 − �̂�𝑛−1) = 0 . 

D.6 

 

By assuming the Floquet periodic boundary condition (𝐴𝑛+1 = 𝐴𝑛𝑒𝑗𝜙 and �̂�𝑛+1 =

 �̂�𝑛𝑒𝑗𝜙 ) in equations D.5 and D.6, the dispersion relation can be derived: 

 (
1 + �̂�cos𝜙

�̂�𝑟
2

−
1

𝜔2
) (

1 − 𝜂 cos𝜙

𝜔𝑟
2

−
1

𝜔2
) −

�̅�2

�̂�𝑟
2𝜔𝑟

2
sin2 𝜙 = 0. 

D.7 
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The parameters in equation D.7 can be obtained based on a single cell simulation. 

Here the coupling terms �̂�, 𝜂 and �̅� are restricted to be positive. The parameters can 

be determined based on the frequency values with phase advance of 0 and π: 

 𝜔𝑟 = √
2𝜔𝜋

2𝜔0
2

𝜔𝜋
2+𝜔0

2  and 𝜂 =
𝜔0

2 − 𝜔𝜋
2

𝜔𝜋
2+𝜔0

2 , D.8 

 

 �̂�𝑟 = √
2�̂�𝜋

2�̂�0
2

�̂�𝜋
2+�̂�0

2  and �̂� =
�̂�𝜋

2−�̂�0
2

�̂�𝜋
2+�̂�0

2. 
D.9 

 

Under the assumption of thin irises [45], the band to band coupling term �̅� can be 

estimated by the relation: 

 �̅� =  √𝜂�̂�. 
D.10 

 

The coupling parameters estimation based on equations D.8 and D.9 is called 

method 1. The parameters in the dispersion curve can be obtained by fitting to the 

data from single cell simulation and it is named as method 2. Both methods are 

shown in Figure D.2. 
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Figure D.2 Dispersion relation of a single cell subject to periodic boundary condition obtained from CST 

(blue); Analytic dispersion curve based on 0 and π modes (method 1) and based on fitting (method 2); 

Dispersion curve when �̅� = 𝟎 (magenta). 

It is the band to band coupling term �̅� that accounts for the behaviour of the coupled 

TE111 and TM110 bands. Based on method 1 and method 2, the parameters 

obtained are summarized in Table D.1: 

Table D.1 Coupling terms obtained based on method 1 and method 2 

 Method 1 Method 2 

𝜂 3.46% 3.44% 

�̂� 10.23% 10.24% 

�̅� 5.95% 6.37% 

In Table D.1, 𝜂 and �̂� are almost identical for methods 1 and 2 respectively, but 

method 2 gives a higher band to band coupling. This result agrees with the fact that 

the irises are not thin for TESLA cavity so that equation D.10 is violated. The 

following analysis is based on method 2. 

The set of equations D.5 and D.6 can be written as in a matrix form: 
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 [

1+�̂�cos 𝜙

�̂�𝑟
2

𝑗�̅�

𝜔𝑚�̂�𝑚
𝑠𝑖𝑛 𝜙

−
𝑗�̅�

𝜔𝑚�̂�𝑚
𝑠𝑖𝑛 𝜙

1−𝜂cos 𝜙

𝜔2

] [
𝐴
�̂�
] =

1

𝜔2 [
𝐴
�̂�
]. 

D.11 

 

The frequencies of the eigenmodes in TE and TM band can be found from the 

eigenvalues of 𝐻. 

D3. Truncated Circuit Model 

To approximate a nine cell cavity, the infinite model is truncated and boundary 

conditions need to be specified as described in Chapter 3. There are two possible 

sets of boundary conditions ever proposed [45], [83]. One set corresponds to N-cell 

structure: 

 𝐴0 = 𝐴1, 𝐴𝑁+1 = 𝐴𝑁 , �̂�0 = −�̂�1, �̂�𝑁+1 = −�̂�𝑁 . 
D.12 

 

The other set of boundary condition corresponds to N-2 full cells terminated by two 

half cells: 

 𝐴0 = 𝐴2, 𝐴𝑁+1 = 𝐴𝑁−1, �̂�0 = 0, �̂�𝑁+1 = 0. 
D.13 

 

By using equation D.12 as boundary conditions, on average the mean difference 

between mode frequencies from the circuit model and from the CST simulation of a 

cavity is 6 MHz. The boundary condition D.13 suggests approximately 10 MHz 

difference. To further reduce the error, a third type of boundary condition is 

proposed by terminating the structure similar as the single chain circuit as in 

Chapter 3. The first equation (𝑛 =  1) for the TE and TM bands can be written as: 

H 
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 �̂�1�̂�1 + �̂�2�̂�2 + 𝜅3𝐴2 + 𝜅4𝐴1 = 0 , D.14 

 

 𝜅1𝐴1 + 𝜅2𝐴2 + 𝜅3�̂�2 + 𝜅4�̂�1 = 0  . D.15 

 

There are six unknown parameters in equations D.14 and D.15. A program was 

written in MATLAB
®
 in order to tune the parameters with the goal to minimize 

RMS between the circuit model results and the CST simulation. 

To make the parameter space scan converge faster, I used again the relation in 

Appendix B (section B5) to reduce the dimension of the parameter space. The work 

flow of the tuning program is shown in Figure D.3. 



176 

 

Figure D.3 Flow chart of tuning procedure to find the unknown parameters in the circuit model 

(equations D.14 and D.15) 

The relative tolerance is chosen to be 10
-6

, which corresponds to 1 Hz. After tens of 

iteration, the program is able to converge to the parameters that minimize the RMS 

error. After tuning, the error is below 1 MHz compared to 10 MHz before the tuning. 

As shown in Figure D.4, the average absolute error is below 1 MHz. 

Initialize 
Parameters 

Calculate RMS error 

between CM and 

simulation 

diff< 10
-6

? 

Find κi to minimize 

the RMS error ecur 

diff = |ecur − epre| 

End 

Use current κi, and 

update step 
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Figure D.4 Mode frequencies of a tuned circuit (Blue dots) and a nine cell structure with beam pipes from 

CST simulation. The average error is below 1 MHz. 
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Appendix E. Scattering Matrix for Network Analysis 

Due to the difficulty in dealing with impedances in microwave frequencies, a more 

convenient way to characterize the system is to analyze the reflected and transmitted 

waves with the scattering matrix [40]. In order to illustrate the definition of the 

scattering matrix, an arbitrary N-port microwave network is shown in Figure E.1. 

 

Figure E.1 An arbitrary N-port microwave network (from [40], p.174).  

The reflected voltage amplitude 𝑉𝑛
− at port 𝑛 is related to the incident voltage wave 

𝑉𝑛
+ on the same port by: 

 [

𝑉1
−

𝑉2
−

⋮
𝑉𝑁

−

] =  [

S11 S12 ⋯ S1N

S21

⋮
S22 ⋯

⋮    ⋮
S2N

⋮
SN1 SN1 ⋯ SNN

] [

𝑉1
+

𝑉2
+

⋮
𝑉𝑁

+

]. 
E.1 

 

The element Sij in the S matrix can be determined as: 



179 

 Sij =
𝑉𝑖

−

𝑉𝑗
+ |

𝑉𝑘
+=0 𝑓𝑜𝑟 𝑘≠𝑗 

 . E.2 

 

Taking the transmission measurements in Chapter 4 as an example, the cavity can 

be treated as a two port system with the couplers HOM1 and 2 as port 1 and 2. The 

parameter S21 is the ratio between voltage wave 𝑉2
− coming out of the port 2 and 

voltage wave  𝑉1
+  coming into the port 1. This meaning justifies the name 

transmission parameter S21. Conveniently, the S matrix of a system e.g. a RF cavity, 

can be measured with a vector network analyser. 
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Appendix F. Technical Setup of Beam Phase and Position 

Measurements and associated Electronics 

The beam phase measurement setup at FLASH is shown in Figure F.1. It consists of 

a fast scope, a set of splitters and filters. The setup is essentially the same as the 

experimental setup at the E-XFEL in section 5.3.1 of Chapter 5. 

 

Figure F.1 Photo of the broadband setup for beam phase measurement at FLASH. 

 

F1. Electronics of HOMBPM for 3.9 GHz Cavities 

This section shows the block diagram and real pictures for the electronics used by 

HOMBPM for 3.9 GHz cavities. 
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Figure F.2 A block diagram of the HOM electronics for 3.9 GHz cavities at the E-XFEL [55]. 

 

Figure F.3 Photo of downconverter RTM (Rear Transition Module) with Struck SIS8300 AMC. 

(Courtesy of Thomas Wamsat) 

 

Figure F.4 Photo of the PLL (Phase Locked Loop) RTM with DAMC2. (Courtesy of Thomas Wamsat) 

BPF  

5.44/9.06 GHz 

BW: 100 MHz 

  Local Oscillator 
5-5.5 GHz, 8.6-10.2 GHz 

30 MHz IF 
with 20 MHz 

BW   

FPGAa 

ADC: 108.33 MS/s 
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F2. HOMBPM and HOMBPhM for 1.3 GHz Cavities 

This section shows the block diagram and a real picture for the electronics used by 

HOMBPM and HOMBPhM for 1.3 GHz cavities. 

 

Figure F.5 A block diagram of the HOM electronics for 1.3 GHz cavities at the European XFEL. The 

HOMBPM and HOMBPhM are integrated in the same electronics. 

 

Figure F.6 Photo of DAMC-DS800 MTCA.4 Fast Digitizer. The future electronics will be slightly 

different from this picture. (Courtesy of Samer Bou Habib) 
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Appendix G. Simulation Data  

The following two tables show the data used in Chapter 3 for the circuit model 

development. The data is reproduced from the report [35]. 

Table G.1 Eigenmode frequencies used for circuit model of first monopole band in Chapter 3. The data is 

cited in page 30 of report [35]. 

Mode index 𝜔/2𝜋 (GHz) R/Q (Ω) Phase advance: 𝜙 (°) 

TM010-1 1.2756 0.0002 20.0 

TM010-2 1.2776 0.0001 39.9 

TM010-3 1.2807 0.0013 59.9 

TM010-4 1.2845 0.0005 79.8 

TM010-5 1.2885 0.0005 99.8 

TM010-6 1.2924 0.0019 119.7 

TM010-7 1.2955 0.0339 139.6 

TM010-8 1.2976 0.0163 159.2 

TM010-9 1.2983 511.0652 176.1 

Table G.2 Eigenmode frequencies used for circuit model of beam phase monitor in Chapter 3. The data is 

cited in page 30 of report [35]. 

Mode index 𝜔/2𝜋 (GHz) R/Q (Ω) Phase advance: 𝜙 (°) 

TM011-1 2.3800 0.0010 159.9 

TM011-2 2.3856 0.0196 139.9 

TM011-3 2.3943 0.0329 119.9 

TM011-4 2.4055 0.0547 100.1 

TM011-5 2.4181 0.4943 80.6 

TM011-6 2.4308 0.0075 61.4 

TM011-7 2.4419 10.2352 43.0 

TM011-8 2.4499 77.6533 25.9 

TM011-9 2.4539 73.8717 11.5 

 


