
Tutorial on techniques for automated borrowing detection
(supplement for the the paper «Automated methods for the

investigation of language contact situations, with a focus on lexical
borrowing»)

Johann-Mattis List

Abstract
While language contact has so far been predominantly studied on the basis of detailed case studies, the

emergence of methods for phylogenetic reconstruction and automated word comparison – as a result of
the recent quantitative turn in historical linguistics – has also resulted in new proposals to study language
contact situations by means of automated approaches. This study provides a concise introduction to
the most important approaches which have been proposed in the past, presenting methods that use (A)
phylogenetic networks to detect reticulation events during language history, (B) sequence comparison
methods in order to identify borrowings in multilingual datasets, and (C) arguments for the borrowability
of shared traits to decide if traits have been borrowed or inherited. While the overview focuses on
approaches dealing with lexical borrowing, questions of general contact inference will also be discussed
where applicable.

Introduction
This very short tutorial will run the readers through a small number of examples showing how automated
borrowing detection methods can be applied to a small dataset. Readers can either follow the instructions on

Installation requirements
You will need LingPy (List et al. 2018, https://github.com/lingpy/lingpy), in its most recent version (2.6.4).
You can install LingPy with the package manager pip LingPy by typing:

$ pip install lingpy

Preparing the data
Before we start preparing the data, we need to download it. You find the IELex dataset (Dunn 2012), which we
are going to use for download on this link (or see https://github.com/sequencecomparison/SupplementaryMaterial,
where you find the file in the folder benchmark/cognates).

If you have downloaded the file IEL.csv, place it in the same folder in which you start your terminal.

We start by importing all relevant libraries.

from lingpy import *
from itertools import combinations
from collections import defaultdict
from lingpy.compare.phylogeny import PhyBo

Now, we load the file, and determine the languages we want to use for the study.

1

https://raw.githubusercontent.com/SequenceComparison/sequencecomparison.github.io/master/benchmark/cognates/IEL.csv

lex = LexStat('IEL.csv')
languages = ['English', 'German', 'French', 'Spanish', 'Dutch_List',

'Italian', 'Breton_ST']
lex.output('tsv', filename='iel-subs',

subset=True,
rows=dict(doculect='in '+str(languages)))

Figure 1: SplitsTree of the data

Computing distances to create data for SplitsTree
Now we can calculate distances, to be shown in the SplitsTree software package.

lex = LexStat('iel-subs.tsv')
lex.distances = lex.get_distances(method='sca', aggregate=True)
lex.output('dst', filename='distances')

The resulting file distances.dst looks as follows:

7
Breton_ST 0.0000 0.7772 0.7629 0.6963 0.7602 0.6806 0.7026
Dutch_List 0.7772 0.0000 0.3600 0.7107 0.1485 0.6954 0.7300
English 0.7629 0.3600 0.0000 0.6735 0.3960 0.6837 0.7035
French 0.6963 0.7107 0.6735 0.0000 0.7136 0.1970 0.2850
German 0.7602 0.1485 0.3960 0.7136 0.0000 0.6985 0.7277
Italian 0.6806 0.6954 0.6837 0.1970 0.6985 0.0000 0.2600
Spanish 0.7026 0.7300 0.7035 0.2850 0.7277 0.2600 0.0000
Created using the LexStat class of LingPy-2.6.4

When removing the last line, it directly be copy-pasted to the data-panel in SplitsTree, or loaded as a proper
file. The resulting networks is shown in Figure 1.

2

Figure 2: Alignment in EDICTOR software for “person”.

Determine cognates and align the data
By identifying automatic cognates, we can also find sequences which are “too similar” to be cognate, like the
example for English person.

lex.cluster(method='sca', threshold=0.45, ref='scaid')
alms = Alignments(lex, ref='scaid')
alms.align()
alms.output('tsv', filename='aligned')

To open and search the file, we recommend to use the EDICTOR tool (List 2017, http://edictor.digling.org),
which provides an easy access to inspect the alignments, as shown in Figure 1.

Computing minimal lateral networks
To compute minimal lateral networks of the data, we can also use the LingPy software. We export one plot of
the data, showing the inferred evolution of the words for ‘person’ in the data.

phy = PhyBo('aligned.tsv', ref='cogid', tree_calc='upgma')
phy.analyze()
phy.plot_concept_evolution('w-2-1', 'person', radius=0.8, outer_radius=0.1,

proto='alignment', fileformat='pdf')

The resulting plot is show in Figure 2. As you can see from this plot, the automatically inferred evolutionary
scenario for the words for “person” in the set of languages points to an independent origin of the word person
in English. If one finds such a situation, this can be interpreted in such a way that either of the cognate sets
which originate independently have been borrowed, which is – in our case – of course true of English person,
being a borrowing from Romance.

3

Figure 3: Minimal lateral network for “person”.

4

References
• Dunn, Micheal (2012): Indo-European Lexical Cognacy Database. Nimegen: Max Planck Institute for

Psycholinguistics.
• List, Johann-Mattis, Simon Greenhill, Tiago Tresoldi, and Robert Forkel. 2018. “LingPy. A Python

Library for Quantitative Tasks in Historical Linguistics.” Jena: Max Planck Institute for the Science of
Human History. 2018. http: //lingpy.org.

• List, J.-M. (2017): A web-based interactive tool for creating, inspecting, editing, and publishing
etymological datasets. In: Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics. System Demonstrations. 9-12.

5

	Introduction
	Installation requirements
	Preparing the data
	Computing distances to create data for SplitsTree
	Determine cognates and align the data
	Computing minimal lateral networks
	References

